波动方程数值模拟的三种方法及对比

波动方程数值模拟的三种方法及对比
波动方程数值模拟的三种方法及对比

拉普拉斯方程数值解

二维有限差分析是求解两个变量的拉普拉斯方程的一种近似方法,这种方法的要点如下: 在平面场中,将平面划分成若干正方形格子,每个格子的边长都等于h ,图13-10表示其中的一部分,设0点的电位为V 0,0点周围方格顶点的电位分别为V 1、V 2、V 3和V 4。现在来推导一个用V 1、V 2、V 3和V 4表示V 0的公式: 图13-10 已知平面场的电位满足两个变量的拉普拉斯方程: 0222 2=??+??y V x V 其中 h x V x V x V x x V c a ??- ??≈??? ??????= ??0 22 但是 h V V x V h V V x V c a 30 01 ,-≈??-≈ ?? 所以 2 30013 0010 2 2h V V V V h h V V h V V x V +--≈-- -≈?? 同理 2 4 0020 2 2h V V V V y V +--≈ ?? 将上面两个方程相加一起得: 042 43212222=-+++≈??+??h V V V V V y V x V 由上面方程推出:)(4 1 43210V V V V V +++≈ (13.47) 该式说明0点的电位近似等于相互垂直的方向上和0点等距离的四个点上的电位平均值,距离h 愈小则结果愈精确,方程(13.47)是用近似法求解两个变量拉普拉斯方程的依据。 然而,V 0和V 1、V 2、V 3、V 4都是未知值,这种情况下需要按照方程(13.47)写出每一点的电位方程,然后求这些方程的联立解。 求解时较简便的方法是选代法,这种方法可求出平面场中各点电位的近似值。 图13-11表示一个截面为正方形的导体槽,槽的顶面与侧面相互绝缘,顶面的电位为

叠加地震记录的相移波动方程正演模拟数值模拟实验共22页

《地震数值模拟》实验报告 一、实验题目 叠加地震记录的相移波动方程正演模拟

二、实验目的 1.掌握各向同性介质任意构造、水平层状速度结构地质模型的相移波动方程正演模拟基本理论 2.实现方法与程序编制 3.由正演记录初步分析地震信号的分辨率。 三、实验原理 1、地震波传播的波动方程 设(x,z)为空间坐标,t为时间,地震波传播速度为v(x,z),则二位介质中任意位置、任意时刻的地震波场为p(z,x,t):压缩波——纵波。则二维各向同性均匀介质中地震波传播的遵循声波方程为 2、傅里叶变换的微分性质 p(t)与其傅里叶变换的P(w)的关系: 3、地震波传播的相移外推公式 令速度v不随x变化,只随z变化,则利用傅里叶变换微分性质把波动方程(变换到频率-波数域,得: 4、初始条件和边界条件 按照爆炸界面理论,反射界面震源在t=0时刻同时起爆,此时刻的波场就是震源。根据不同情况,可直接使用反射系数脉冲或子波作震源。如果直接使用反射系数作震源脉冲,则初始条件可表示为: 5、边界处理

(1)边界反射问题 把实际无穷空间区域中求解波场的问题化为有穷区域求解时,左右两边使用零边界条件。物理上假设探区距Xmin与Xmax两个端点很远,在两个端点上收到的反射波很弱。但是,上述条件在实际中不能成立,造成零边界条件反而成为绝对阻止波通过的强反射面。在正演模拟的剖面上出现了边界假反射干涉正常界面的反射。 (2)边界强反射的处理 镶边法、削波法、吸收边界都能有效消除边界强反射。 削波法就是在波场延拓过程中,没延拓一次,在其两侧均匀衰减到零,从而消除边界强反射的影响。假设横向总长度为NX,以两边Lx道吸波为例,有以下吸波公式: 四、实验内容

波动方程的变步长有限差分数值模拟

收稿日期:2007-03-23;修订日期:2007-04-27 作者简介:李胜军,男,在读硕士研究生,研究方向为地震波传播理论。联系电话:(0546)8392055,E-mail:hdpulis@126.com,通讯地址:(257061)中国石油大学(华东)地球资信与信息学院。 *中国石油大学(华东)研究生创新基金资助,编号:S2006—06。 油气地球物理 2007年7月 PETROLEUMGEOPHYSICS 第5卷第3期 在地震资料采集、处理和解释中通常需要进行地震波场数值模拟:假设已知地下的地质情况,应用地震波运动学和动力学的基本原理,计算给定地质模型的地震响应。这种做法对正确认识地震波的运动学和动力学特征,以及准确分析油气藏的反射波场特征有着重要的指导意义。声波在介质中的正演模拟研究为我们精确模拟地震波在复杂介质中的传播提供了理论基础[1]。 傅立叶变换法和高阶有限差分法(FD)已成为计算声波方程空间导数的标准技术[2,3]。虽然常网格步长差分算法比较容易实现,但是它们对大部分模型都增大了不必要的计算量。例如,对存在浅层低速带的沉积盆地模型地面地震记录进行模拟时,由于低速地层阻抗小,地震波传入其中会引起较大的振幅和较长的延续时间(这与深层的高速层完全不同)。由于这些浅层低速层中地震波的波长较短、地层厚度较小,模拟时需要用小网格进行。这样,常网格步长算法就必须用小网格离散整个模型,从而增加了不必要的代价,如内存、计算量的增大。 因而,采用变网格算法将能改进有上覆低速层情况模拟结果的有效性(对地层中间有超薄夹层的情形,必须用精细网格覆盖才能精确的对地层进行模拟)。应用这种变网格算法既能实现对夹层的模拟,又能保障计算量不增加。因此这种通过函数实现在任意深度上网格步长变化的有限差分方法被 推广[4]。为了计算空间导数,在X方向用傅立叶变换法或有限差分算法,在Z方向使用高阶有限差分方法。通过时间积分快速展开法(REM)来保障差分方法的计算精度[6]。这种差分技巧比二阶时间差分有较高的精确度且计算用时短。 1时间积分 均匀介质中的二维声波方程可用下式表示[2] 式中:P=P(x,z,t),代表压力项;c=c(x,z),代表速度;s=s(s,z),代表震源函数;L2为差分算子。在密度!=!(x,z)变化的情况下,常用的是Vidale给出的公式[5] 波动方程的变步长有限差分数值模拟* 李胜军1,2) 孙成禹1) 张玉华1) 倪长宽1) 1)中国石油大学地球资源与信息学院;2)中石油勘探开发研究院西北分院 摘要:有限差分算法是常用的正演模拟方法之一,其包含的地震信息丰富,且实现简单。传统的有限差分方法通常都采用均匀网格步长,在对含低速/高速介质、 薄层/厚层介质的模型进行波场模拟时往往缺乏稳定性。文章介绍了一种可以有效解决上述问题的变网格算法,对常规有限差分法与变网格差分算法在内存需求、计算速率等方面的差别进行了比较,对变网格差分算法中的边界条件、 时间积分的快速展开算法作了阐述,进而总结了变网格算法的优点。关键词:变步长;边界条件;计算时间;快速展开法;数值模拟 !2 P!t2=-L2P+s (1) (2) -L2 =c 2 !2!x2+!2 !z 2" # (3) (4) !2 P!t 2=-L2P!"$ -1!L2P+PL21!+s -L2 =!c 2 2 !2!x2+!2 !z 2% $

声波方程数值模拟实验报告

声波方程数值模拟实验报告 一.基础理论知识 需要的已知条件包括: 1.1)震源函数 2)地层速度(波速) 3)边界条件 2.弹性波方程:?????????+??=??+??+??=??) ()()(222222 22222 222z w x w v t w t S z u x u v t u s p 声波方程的有限差分法数值模拟 对于二维速度-深度模型,地下介质中地震波的传播规律可以近似地用声波方程描述: )()(2222 222t S z u x u v t u +??+??=?? (4-1) (,)v x z 是介质在点(x , z )处的纵波速度,u 为描述速度位或者压力的波场,)(t s 为震 源函数。 为求式(4-1)的数值解,必须将此式离散化,即用有限差分来逼近导数,用差商代替微商。为此,先把空间模型网格化(如图4-1所示)。 设x 、z 方向的网格间隔长度为h ?,t ?为时间采样步长,则有: h i x ?= (i 为正整数) h j z ?= (j 为正整数)t n t =? (n 为正整数) k j i u , 表示在(i,j)点,k 时刻的波场值。 将1 ,+k j i u 在(i,j)点k 时刻用Taylor 展式展开: z ?,i j 1,i j +2,i j +1,i j -2,i j -,2 i j -,2 i j +,1i j +,1 i j -1,1i j -+1,2 i j -+2,1i j -+2,2 i j -+1,2 i j ++2,2 i j ++1,1 i j +-2,1i j +-1,1i j ++2,1i j ++1,1i j --1,2i j +-2,2i j +-2, 2i j --2,1 i j --1,2i j --x ?

拉普拉斯方程

拉普拉斯方程 一、概念:一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 二、在数理方程中 拉普拉斯方程为:,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ: 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。

三、方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 四、二维方程 两个自变量的拉普拉斯方程具有以下形式: Δu =δ2u/δu2+δ2u/δy2=0 解析函数的实部和虚部均满足拉普拉斯方程

波动方程正演模型的研究与应用

波动方程正演模型的研究与应用 郑鸿明* 娄 兵 蒋 立 (新疆油田公司勘探开发研究院地物所) 摘要野外采集的地震数据是经过大地滤波后的畸变信号,处理的地震剖面只是间接地反映了地下构造和地质体的特征,虽然目前有很多方法和手段可以分析并提取相关的地质信息,但由于处理对波场的改造和噪声的存在以及方法本身的多解性问题降低了识别地质信息的可靠性。处理中每一步对有效信息的影响有多大,对地震属性解释的影响有多大,没有一个定量的标准,只能凭经验和认识来定性地判断。正演模型在弹性波理论指导下,遵循严格的数学公式,可以最佳模拟地下各种情况。各种处理方法和不同的处理流程所得到的结果能否符合或最佳逼近波动方程建立的数学模型,正演模型是判断处理工作合理性的良好准则。 主题词地质模型波动方程正演模型地震响应模块测试 1 引 言 随着地震勘探的不断深入,地震勘探也由构造型油气藏勘探进入精细的岩性勘探阶段,要求地震勘探能够反映地下地质体岩性变化,以及识别含油、气、水的地震响应特征,分辨薄互层、低幅度构造的能力。地球物理学家们在长期的实践中已经研究开发了很多相关的技术,虽然理论上这些方法都能够成立,这些技术应用成功的实例也很多,但也不乏有失败的教训,往往产生多解性,或与钻探的结论不符。这里除了复杂地表和复杂地下构造形成的复杂地震波场而不满足建立在简单地质模型处理理论的因素外,与处理过程对地震波场的改造也有很大关系。从地震数据的采集到最终处理的地震剖面,整个过程是一个系统工程,地下地质结构、地质体的岩性变化以及含流体的性质,对处理人员来说是看不见、摸不着的“黑匣子”,我们所看到的只是经过大地滤波后产生畸变的地震波场,如何从这个畸变的地震波场中去伪存真、恢复真实的构造形态、提取储层的相关地震属性信息,这是岩性处理的最终目标。处理中的每一步环环相扣、相互影响、相互制约,而我们对处理中的每一步产生的中间结果所应达到的标准只是凭经验、感觉进行定性判定,加入了很多人为因素,这些因素或多或少影响着我们对解释成果的正确认识。另外,处理技术发展很快,相应的地震处理软件越来越多,应用这些模块之前对各模块所起的作用以及它们所产生的结果都需要有一个定量的认识,以及验证处理流程的合理性是当前迫切需要解决的问题。究竟什么样的结果满足岩性解释的要求、什么样的结果反映的是真正地下地质体的响应、什么样的处理方法满足保振幅处理和地震属性分析的应用等等一系列问题,这都是当前岩性处理中迫切需要解决的主要问题。它直接关联着处理成果的真伪及后续解释的可靠性,关联着勘探的投资风险。 随着计算机运算能力发展迅猛,特别是微机群的出现,为波动方程算法提供了硬件环境,开展此项技术的研究与应用已成为可能。此次模型的设计全面考虑了地表和地下的典型地质特征并将这些特征容入到模型中,真实模拟了实际地质结构。应用该地质模型正演叠前炮集的地震响应。 2 模型的建立 模型分物理模型和数学模型两种,目前的物理模型只能做非常简单的模拟,只有用数学模型才能模拟各种复杂的地质现象。20世纪70年代,美国哥伦比亚大学在郭宗汾

地震波数值模拟方法研究综述.

地震波数值模拟方法研究综述 在地学领域,对于许多地球物理问题,人们已经得到了它应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件,但能用解析方法求得精确解的只是少数方程性质比较简单,且几何形状相当规则的问题。对于大多数问题,由于方程的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析解。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但这种方法只是在有限的情况下是可行的,过多的简化可能导致很大的误差甚至错误的解答。因此人们多年来寻找和发展了另一种求解方法——数值模拟方法。 地震数值模拟(SeismicNumericalModeling)是地震勘探和地震学的基础,同时也是地震反演的基础。所谓地震数值模拟,就是在假定地下介质结构模型和相应的物理参数已知的情况下,模拟研究地震波在地下各种介质中的传播规律,并计算在地面或地下各观测点所观测到的数值地震记录的一种地震模拟方法。地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,这种地震数值模拟方法已经在地震勘探和天然地震领域中得到广泛应用。 地震数值模拟的发展非常迅速,现在已经有各种各样的地震数值模拟方法在地震勘探和地震学中得到广泛而有效

的应用。这些地震波场数值模拟方法可以归纳为三大类,即几何射线法、积分方程法和波动方程法。波动方程数值模拟方法实质上是求解地震波动方程,因此模拟的地震波场包含了地震波传播的所有信息,但其计算速度相对于几何射线法要慢。几何射线法也就是射线追踪法,属于几何地震学方法,由于它将地震波波动理论简化为射线理论,主要考虑的是地震波传播的运动学特征,缺少地震波的动力学信息,因此该方法计算速度快。因为波动方程模拟包含了丰富的波动信息,为研究地震波的传播机理和复杂地层的解释提供了更多的佐证,所以波动方程数值模拟方法一直在地震模拟中占有重要地位。 1地震波数值模拟的理论基础 地震波数值模拟是在已知地下介质结构的情况下,研究地震波在地下各种介质中传播规律的一种地震模拟方法,其理论基础就是表征地震波在地下各种介质中传播的地震波传播理论。上述三类地震波数值模拟方法相应的地震波传播理论的数学物理表达方式不尽相同。射线追踪法是建立在以射线理论为基础的波动方程高频近似理论基础上的,其数学表形式为程函方程和传输方程。积分方程法是建立在以惠更斯原理为基础的波叠加原理基础上的,其数学表达形式为波动方程的格林函数域积分方程表达式和边界积分方程表达式。波

1. 积分方程一般概念与弗雷德霍姆方程

第十五章 积分方程 积分方程论是泛函分析的一个重要分支,它是研究数学其他学科(例如偏微分方程边值问题)和各种物理问题的一个重要数学工具。本章叙述线性积分方程,重点介绍弗雷德霍姆积分方程的性质和解法;并简略地介绍了沃尔泰拉积分方程以及一些奇异积分方程;此外,还扼要地叙述积分方程的逐次逼近法和预解核,并举例说明近似解法;最后考察了一个非线性积分方程。 §1 积分方程一般概念与弗雷德霍姆方程 一. 积分方程一般概念 1. 积分方程的定义与分类 [线形积分方程] 在积分号下包含未知函数y (x )的方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? (1) 称为积分方程。式中α(x ),F (x )和K (x,ξ)是已知函数,λ,a,b 是常数,变量x 和ξ可取区间(a,b ) 内的一切值;K (x,ξ)称为积分方程的核,F (x )称为自由项,λ称为方程的参数。如果K (x,ξ)关于x,ξ是对称函数,就称方程(1)是具有对称核的积分方程;如果方程中的未知函数是一次的,就称为线性积分方程,方程(1)就是线性积分方程的一般形式;如果F (x )≡0 ,就称方程(1)为齐次积分方程,否则称为非齐次积分方程。 [一维弗雷德霍姆积分方程(Fr 方程)] 第一类Fr 方程 ()()(),d b a K x y F x ξξξ=? 第二类Fr 方程 ()()()(),d b a y x F x K x y λξξξ=+? 第三类Fr 方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? [n 维弗雷德霍姆积分方程] 111()()()()(),d D P y P F P K P P y P P α=+? 称为n 维弗雷德霍姆积分方程,式中D 是n 维空间中的区域,P ,P 1∈D ,它们的坐标分别是 (x 1,x 2, ,x n )和),,,(21 n x x x ''' ,α(P )=α(x 1,x 2, ,x n ),F (P )=F (x 1,x 2, x n )和K (P ,P 1)=K (x 1,x 2, ,x n , ),,,21 n x x x ''' 是已知函数,f (P )是未知函数。 关于Fr 方程的解法,一维和n (>1)维的情况完全类似,因此在以后的讨论中仅着重考虑一维Fr 方程。 [沃尔泰拉积分方程] 如果积分上限b 改成变动上限,上面三类Fr 方程分别称为第一、第二、第三类沃尔泰拉积分方程。 由于第三类Fr 方程当α(x )在(a ,b )内是正函数时,可以化成

求第一类Fredholm积分方程的离散正则化方法

求第一类Fredholm积分方程的离散正则化方法 【摘要】基于矩阵奇异值分解的离散正则化算法,本文给出了第一类Fredholm积分方程的求解方法。并通过算例验证了此算法的可行性。 【关键词】第一类Fredholm积分方程;矩阵奇异值;正则化方法 0 引言 在实际问题中,有很多数学物理方程反问题的求解最后总要归结为一个第一类算子方程: Kx=y(1) 的求解问题,其中K是从Hilbert空间X到Hilbert空间Y一个有界线性算子,x∈X,y∈Y。通常右端项y是观测数据,因而不可避免的带有一定的误差δ。文中假设方程(1)的右端的扰动数据yδ∈Y满足条件:yδ-y≤δ(C1)。我们需要求解扰动方程Kx=yδ∈Y。(2) 通常境况下,当K为紧算子时,方程(1)的求解时不适定的[1]。即右端数据的小扰动可导致解的巨大变化。消除不稳定性的一个自然的方式是用一族接近适定问题的模型去逼近原问题,比如最著名的Tikhonov正则化方法,用如下适定的算子方程: 去逼近原问题Kx=yδ,其中α>0为一正的“正则参数”,K*表示K的伴随算子。正则化[2-3]是近似求解方程(1)的一种有效方法。Krish应用奇异系统理论提出的正则化子的概念,这给正则化方法的建立提供了新的理论依据。本文利用基于矩阵奇异值分解的离散正则化算法,通过适当选取正则化参数进行不适定问题的求解。 1 基于矩阵奇异值分解的离散正则化算法 矩阵的奇异值分解(SVD)是现代数值线性代数中最重要的基本计算分析工具之一,它具有优良的数值稳定性。其重要应用领域包括矩阵理论以及自动控制理论,力学和物理学等,还有更多的应用方面尚在继续探索中。 对于一般算子方程Kx=y,利用高斯-勒让德求积公式、复化梯形公式或者复化辛普森求积公式等的数值方法将它离散得到一个矩阵方程Ax=y,这样,算子方程Kx=y的求解就转化为矩阵方程: 的求解。 定义设A是m×n实矩阵(m≥n),称n阶方阵ATA的非零特征值的算术平

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。 拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。 通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。该公式成为拉普拉斯方程。 在数理方程中

拉普拉斯方程拉普拉斯方程为:Δ u=d^2u/dx^2+d^2u/dy^2=0,其中Δ为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ:其中Δ称为拉普拉斯算子. 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x, y, z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator或简称作Laplacian。 狄利克雷问题 拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。

正方形环域Laplace方程的简明数值解法

收稿日期:2005212210 基金项目:辽宁省教育厅科研基金资助项目(05L415)? 作者简介:刘大卫(1964-),男,贵州贵阳人,贵州工业大学副教授? 第24卷 第2期 2006年4月 沈阳师范大学学报(自然科学版) Journal of S henyang Norm al U niversity (N atural Science ) V ol 124,N o.2Apr.2006 文章编号:1673-5862(2006)02-0166-04 正方形环域Laplace 方程的简明数值解法 刘大卫1,高 明2,3 (1.贵州工业大学基础部,贵州贵阳 550003; 2.沈阳师范大学物理科学与技术学院,辽宁沈阳 110034; 3.沈阳师范大学实验中心,辽宁沈阳 110034) 摘 要:通过正方形环域的Laplace 方程的数值求解过程,详细介绍了使用MA TLAB 求解微 分方程的方法?用MA TLAB 的M 文件,生成正方形环域,用函数numgrid 作网格划分,用函数delsq 建立五点差分格式建立并求解拉普拉斯方程第一边值问题?关 键 词:Laplace 方程;差分法;MA TLAB 中图分类号:O 175 文献标识码:A 0 引 言 Laplace 方程是解决电磁场问题中最常见的方程,在一些具有较复杂边界形状的区域中求出方程的 解析解是非常困难的[122]?因此寻求一种有效的、简明的数值解法对于解决实际问题中复杂边界区域中 的电磁场分布问题具有非常重要的实际价值?通过一个特殊的方形区域的电场分布问题介绍一种应用MA TLAB 数值求解Laplace 方程的方法? 考虑图1所示正方形环域,设区域内满足Laplace 方程Δu =0,内边界处电势u =100,外边界处电势u =0,求区域内的电势分布,易见,这是一个Laplace 方程的第一边值问题? 现用差分法求解这个问题,首先把研究区域划分为图2所示的网格,在这个划分中,除去边界点,区域被分为240个网格节点 ? 图1  正方形环域 图2 网格的划分 差分法求解的基本思想是,在网格节点上用差商代替微商,结合边界条件,把定解问题转化为以未知函数u (x ,y )在节点上的数值为未知量的线性方程组: Ax =b 其中,x 为解向量,代表函数u (x ,y )在节点上的数值?A 为系数矩阵,与网格节点的划分和编号方式有关,通常是一个大型的稀疏矩阵?b 为常数向量,由边界条件确定?对上述问题,A 为240×240阶稀疏矩阵,b 为240×1阶稀疏常数向量?下面用MA TLAB 提供的网格划分函数numgrid 和差分格式建立函数delsq 来构造系数矩阵A ?

拉普拉斯方程

拉普拉斯方程应该和泊松方程是同胞兄弟了,都是扩散方程,用来描述散度场的。只不过拉普拉斯方程是无源场,泊松方程是有源场。预备内容:梯度、旋度、散度和拉普拉斯算子在曲线坐标下的表达式: 如果在某个曲线坐标系内位移微元(其中是坐标),那么便有: 梯度:散度:旋度:拉普拉斯算符: 对于直角坐标系、球坐标系和柱坐标系来说,的值为: 于是,我们便可以轻松地默写球坐标下拉普拉斯算符的表达式\^o^/ 下面进入正题 1.直角坐标系 当出现金属平板之类的边界条件时,使用直角坐标系较为方便。 在直角坐标系下,拉普拉斯方程的表达式为: i)二维问题 假设沿z轴平移V保持不变,于是方程便简化为二维形式: 我们假设V可以写成两个函数相乘的形式: (乍看之下这不是一个很合理的假设。但是我们很快可以看到为什么可以这样做)

代入原方程并在两边除以V: 因为两部分之和为0,因此我们可以假设一个是正数另一部分是负数:(这里以含x的部分为正含y的部分为负为例) 很显然,这两个方程的解就是: 注记:这里决定哪一部分是正数哪一部分是负数要由边界条件来确定。比如说,沿x方向到达无限远时电势为零,x就应该含有指数衰减项,因此令含x的部分为正数。 于是,方程的一个解是 对所有可能的k求和,可以得到通解: 常数A,B,C,D的值需要由边界条件来确定。通常情况下,通过边界条件可以把k化成含有正整数的式子。将求和号改成对n求和,可以看到,第二个括号里的项便是傅里叶级数。狄利克雷定理保证了这个级数可以拟合任何边界条件。傅里叶系数可以由积分来确定。 ii)三维问题 三维问题的处理方法与二维的情形类似。 同样,假设是这种形式: 同样,代入方程并在两边同除以V:

非线性Volterra积分方程(学习资料)

一类第二种非线性Volterra 积分方程 积分数值解方法 1前言 微分方程和积分方程都是描述物理问题的重要数学工具,各有优点.相对于某种情况来说,对于某种物理数学问题,积分方程对于问题的解决比微分方程更加有优势,使对问题的研究更加趋于简单化,在数学上,利用积分形式讨论存在性、唯一性往往比较方便,结果也比较完美,所以研究积分方程便得越来越有用,日益受到重视. 积分方程的发展,始终是与数学物理问题的研究息息相关.一般认为,从积分发展的源头可以追溯到国外的数学家克莱茵的著作《古今数学思想》,该书是被认为第一个清醒的认为应用积分方程求解的是Abel.Abel 分别于1833年和1826年发表了两篇有关积分方程的文章,但其正式的名称却是由数学家du Bois-Raymond 首次提出的,把该问题的研究正式命名为积分方程。所以最早研究积分方程的是Abel,他在1823年从力学问题时首先引出了积分方程,并用两种方法求出了它的解,第一的积分方程便是以Abel 命名的方程.该方程的形式为:?=-b a a x f dt t x t )()() (?,该方程称为广义Abel 方程,式中a 的值在(0,1)之间.当a=21时,该式子便成为)()(x f dt t x x x a =-??.在此之前,Laplace 于1782年所提出的求Laplace 反变换问题,当时这个问题就要求解一个积分方程.但是Fourier 其实已经求出了一类积分方程的反变换,这就说明在早些时候积分方程就已经在专业性很针对的情况下得到了研究,实际上也说明了Fourier 在研究反变换问题是就相当于解出了一类积分方程.积分方程的形成基础是有两位数学家Fredholm 和V olterra 奠定的,积分方程主要是研究两类相关的方程,由于这两位数学家的突出贡献,所以这两个方程被命名为Fredholm 方程和V olterra 方程。后来又有德国数学家D.Hilbert 进行了重要的研究,并作出了突出的贡献,由于D.Hilbert 领头科学家的研究,所以掀起了一阵研究积分方程的热潮,并出现了很多重要的成果,后来该理论又推广到非线性部分。我国在60年代前,积分方程这部分的理论介绍和相关书本主要靠翻译苏联的相关书籍,那时研究的积分方程基本是一种模式,即用古典的方法来研究相关的积分方程问题,这样使得问题的研究变得繁琐、复杂,在内容方面比较单一、狭隘,甚至有些理论故意把积分方程的研究趋向于复杂化。随着数学研究的高速发展,特别是积分方程近年来的丰富发展,如此单一、刻板的解法已经不能跟上数学研究时代的步伐。在九十年代我国的数学专家路见可、钟寿国出版了《积分方程论》,该书选择2L 空间来讨论古典积分方程,并结合泛函分析的算子理论来分析积分方程的相关问题。最近出版的比较适

声波波动方程正演模拟程序总结

声波波动方程正演模拟程序 程序介绍: 第一部分:加载震源,此处选用雷克子波当作震源。 编写震源程序后,我将输出的数据复制,然后我用excel做成了图片,以检验程序编写是否正确。以下为雷克子波公式部分的程序: for(it=0;it

模型构建与试算: 1、我首先建立了一个均匀介质模型,首先利用不同时间,进行了数值模拟,得到波场快照如图所示: 100ms 200ms 300ms 此处,纵波速度为v=3000m/s。模型大小为200×200,空间采样间隔为dx=dz=10m。采用30Hz的雷克子波作为震源子波,时间采样间隔为1ms,图中可以看出,波场快照中的同相轴是圆形的,说明在均匀各向同性介质中,点源激发的波前面是一个圆,这与理论也是吻合的。并且随着时间的增大,波前面的面积逐渐增大,说明地震波从震源中心向外传播。 2、我在建立的均匀模型的基础上,改变差分算子的精度,分别采用2阶、6阶、12阶精度进行试算。时间统一采用300ms的时候。得到的波长快照如下: 2阶精度6阶精度12阶精度

拉普拉斯方程

拉普拉斯方程,也称为谐波方程和势方程,是一种偏微分方程,最早由法国数学家拉普拉斯提出。 拉普拉斯方程是液体表面曲率和液体表面压力之间关系的公式。 曲面称为曲面。通常,使用两个相应的曲率半径来描述表面,即在表面上的某个点处绘制垂直于该表面的直线,然后通过该线制作一个平面。平面和表面的截面是曲线,并且在该点与曲线相切的圆的半径称为曲线的曲率半径R1。第二剖面线及其曲率半径R2可以通过使第二平面垂直于第一平面并与表面相交来获得。液面的弯曲可以用R1和R2表示。如果液体表面弯曲,则液体P1内部的压力将与液体外部的压力P2不同,并且液体表面的两侧之间将存在压力差△P = P1-P2,这称为附加压力。压力。其值与液体表面的曲率有关,可以表示为:其中γ是液体的表面张力系数,称为拉普拉斯方程。 在数学公式中 拉普拉斯方程是:其中∥是拉普拉斯算子,而这里的拉普拉斯方程是二阶偏微分方程。在三维情况下,拉普拉斯方程可按以下形式描述。可以将问题简化为求解对于实变量X,y和Z可二阶微分的实函数φ ?2称为拉普拉斯算子。 拉普拉斯方程的解称为谐波函数。 如果在等号右边是给定的函数f(x,y,z),即: 然后将该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆偏微分方程。偏微分算子(可以在任何维空间中定义)称为拉

普拉斯算子。 方程解 它称为谐波函数,可以在建立方程的区域进行分析。如果任何两个函数满足拉普拉斯方程(或任何线性微分方程),则这两个函数的总和(或它们的任何线性组合)也满足上述方程。这种非常有用的特性称为叠加原理。根据这一原理,可以将已知的复杂问题的简单特殊解组合起来,以构建具有更广泛适用性的一般解。

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。 [1] 拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。 中文名 拉普拉斯方程 外文名 Laplace's equation 别称 调和方程、位势方程 提出者 拉普拉斯 关键词 微分方程、拉普拉斯定理 涉及领域 电磁学、天体物理学、力学、数学 目录 .1基本概述 .?在数理方程中 .?方程的解 .2二维方程 .3人物介绍

基本概述 一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为: ,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 在数理方程中 拉普拉斯方程为: ,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ : 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子 (可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。 方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 [2] 二维方程

第一章积分方程的来源及基本概念

第一篇积分方程 第一章方程的导出和基本概念 §1.1 方程的导出 许多力学、工程技术和数学物理问题都能用积分方程形式描述,而求解常微分方程和偏微分方程的定解问题常常可转化为求解积分方程的问题。下面举几个典型的问题作为例子,扼要地阐明导出积分方程的方法以及微分方程与积分方程之间的联系。 例1:弹性弦负荷问题 一根轻且软的弹性弦,长为l,两端固定,如图所示,静止时与x轴重合,弦内张力为 T.今在其上加以强度为

()x ?的负荷.设在任一点M (横坐标 为x ) ()x ?, 且设 解:在任一点x ξ=处取微小的一段弦d ξ,则作用于其上的重力为 ()d ?ξξ,记之为0P ,则这一重力0P 必 引起弦的形变,记ξ处位移为S ,则: 01020sin sin T T P θθ+=, 因为0()T x ?>>,所以12,1θθ<< 112sin tan ,sin .S S l θθθξξ ?≈=≈- 所以000S S T T P l ξξ ?+? =-, 得

00()P l S T l ξξ-=?. 记0P 引起的x 处位移为* ()y x , 则0x ξ≤≤时, 由y S x ξ *=得 * 00() ()P l S y x x x T l ξξ-=?=??; 当x l ξ≤≤时,y S l x l ξ*= -- , ? 00()()P l x y x T l ξ* -= ??; 记:0 0,0(,),.l x x T l G x l x x l T l ξ ξξξξ-??≤≤??=?-??≤≤?? 则 0()(,)y x G x P ξ* =, ()(,)()y x G x d ξ?ξξ* =, 对ξ从0l 到求积分,

泊松方程和拉普拉斯方程

拉普拉斯方程和泊松方程 摘要:拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象的性质。 关键词:分离变量电磁场拉普拉斯 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和 即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ,叫做势方程,后来通称拉普拉斯方程。1813年,S.D.泊松撰文指出,如 果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-V高斯定理微分式,即可导出静电场的泊松方程: 式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。在各分区的公共界面上,V满足边值关系,

, 式中i ,j 指分界面两边的不同分区,σ 为界面上的自由电荷密度,n 表示边界面上的内法 线方向。 边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物 理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄 利克雷边界条件;给定边界面上各点的自由电荷 ,叫做诺埃曼边界条件。 静电场的唯一性定理: 设区域V 内给定自由电荷分布)(x ,在V 内电势满足泊松方程 或拉普拉斯方程,在V 的边界S 上给定电势 ,或V 边界上给定电势的法线方向偏导数 ,则V 内场(静电场)唯一确定。 除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。 各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任 何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。 静磁场的泊松方程和拉普拉斯方程 在SI 制中,静磁场满足的方程为 ,式中j 为传导电流密度。第一式表明静磁 场可引入磁矢势r)描述: 。 在各向同性、线性、均匀的磁媒质中,传导电流密度j 0的区域里,磁矢势满足的方程 为 。 选用库仑规范,,则得磁矢势A 满足泊松方程 ,式中纯数μr 为媒质的相对磁导率, 真空磁导率μo =1.257×10-6亨/米。在传导电流密度j=0的区域里,上 式简化为拉普拉斯方程 。

积分方程

积分方程理论的发展,始终与数学物理问题的研究紧密相联,它在工程、力学等方面有着极其广泛的应用。通常认为,最早自觉应用积分方程并求出解的是阿贝尔(Abel),他在1823年研究质点力学问题时引出阿贝尔方程。此前,拉普拉斯(Laplace)於1782年在数学物理中研究拉普拉斯变换的逆变换以及傅里叶(Fourier)於1811年研究傅里叶变换的反演问题实际上都是解第一类积分方程。随着计算技术的发展,作为工程计算的重要基础之一,积分方程进一步得到了广泛而有效地应用。如今,“物理问题变得越来越复杂,积分方程变得越来越有用”。 积分方程与数学的其他分支,例如,微分方程、泛函分析、复分析、计算数学、位势理论和随机分析等都有着紧密而重要地联系。甚至它的形成和发展是很多重要数学思想和概念的最初来源和模型。例如,对泛函分析中平方可积函数、平均收敛、算子等的形成,对一般线性算子理论的创立,以至於对整个泛函分析的形成都起着重要的推动作用。积分方程论中许多思想和方法,例如,关於第二种弗雷德霍姆(Fredholm)积分方程的弗雷德霍姆理论和奇异积分方程的诺特(Noether)理论以及逐次逼近方法,本身就是数学中经典而优美的理论和方法之一。 编辑本段起源 积分号下含有未知函数的方程。其中未知函数以线性形式出现的,称为线性积分方程;否则称为非线性积分方程。积分方程起源于物理问题。牛顿第二运动定律的出现,促进了微分方程理论的迅速发展,然而对积分方程理论发展的影响却非如此。1823年,N.H.阿贝尔在研究地球引力场中的一个质点下落轨迹问题时提出的一个方程,后人称之为阿贝尔方程,是历史上出现最早的积分方程,但是在较长的时期未引起人们的注意。“积分方程”一词是 P.du B.雷蒙德于1888年首先提出的。19世纪的最后两年,瑞典数学家(E.)I.弗雷德霍姆和意大利数学家V.沃尔泰拉开创了研究线性积分方程理论的先河。从此,积分方程理论逐渐发展成为数学的一个分支。 1899年,弗雷德霍姆在给他的老师(M.)G.米塔-列夫勒的信中,提出如下的方程 公式 , (1) 式中φ(x)是未知函数;λ是参数,K(x,y)是在区域0 ≤x,y≤1上连续的已知函数;ψ(x)是在区间0≤x≤1上连续的已知函数。并认为方程(1)的解可表为关于λ的两个整函数之商。1900年,弗雷德霍姆在

相关文档
最新文档