叠加地震记录的相移波动方程正演模拟数值模拟实验共22页

叠加地震记录的相移波动方程正演模拟数值模拟实验共22页
叠加地震记录的相移波动方程正演模拟数值模拟实验共22页

《地震数值模拟》实验报告

一、实验题目

叠加地震记录的相移波动方程正演模拟

二、实验目的

1.掌握各向同性介质任意构造、水平层状速度结构地质模型的相移波动方程正演模拟基本理论

2.实现方法与程序编制

3.由正演记录初步分析地震信号的分辨率。

三、实验原理

1、地震波传播的波动方程

设(x,z)为空间坐标,t为时间,地震波传播速度为v(x,z),则二位介质中任意位置、任意时刻的地震波场为p(z,x,t):压缩波——纵波。则二维各向同性均匀介质中地震波传播的遵循声波方程为

2、傅里叶变换的微分性质

p(t)与其傅里叶变换的P(w)的关系:

3、地震波传播的相移外推公式

令速度v不随x变化,只随z变化,则利用傅里叶变换微分性质把波动方程(变换到频率-波数域,得:

4、初始条件和边界条件

按照爆炸界面理论,反射界面震源在t=0时刻同时起爆,此时刻的波场就是震源。根据不同情况,可直接使用反射系数脉冲或子波作震源。如果直接使用反射系数作震源脉冲,则初始条件可表示为:

5、边界处理

(1)边界反射问题

把实际无穷空间区域中求解波场的问题化为有穷区域求解时,左右两边使用零边界条件。物理上假设探区距Xmin与Xmax两个端点很远,在两个端点上收到的反射波很弱。但是,上述条件在实际中不能成立,造成零边界条件反而成为绝对阻止波通过的强反射面。在正演模拟的剖面上出现了边界假反射干涉正常界面的反射。

(2)边界强反射的处理

镶边法、削波法、吸收边界都能有效消除边界强反射。

削波法就是在波场延拓过程中,没延拓一次,在其两侧均匀衰减到零,从而消除边界强反射的影响。假设横向总长度为NX,以两边Lx道吸波为例,有以下吸波公式:

四、实验内容

1、基本要求

(1)点绕射构造和水平层状速度模型(参数如图1所示)的正演数值模拟;

五、实验步骤

1、参数初始化;

2、形成边界削波数据;

3、波场初始化;

4、Zmax层波场延拓到深度Zmax-1;

5、Zi+1层波场延拓到深度Zi;

6、重复5,从Iz=Nz-1开始,直到Iz=1,得测线上的频率—空间域波场;

7、频率-空间域波场对频率做反傅里叶变换,得时间-空间波场;

8、使用Fimage软件显示所得结果。

六、实验编程

/*******1.头文件********/

#include

#include

#include

#include

#include

//---2.Function Request功能要求函数说明------

int kkfft(float *,float *,int,int);

int Absorb(int); //削波函数

int Rflct(); //反射函数

int Vlcty(); //速度函数

int WvFld0(); //波长函数

int exp_ikzDz(float *,int,float,int,float,float);//

int PsFrwd();//

int Po2Judge(int);//

-#define Nx 128 //---3.参数设置定义符号--- --

#define Nt 256

#define Nz 100

#define Dx 20

#define Dt 0.004

#define Dz 20

#define pai 3.1415926

int main()

int Labs=10; //定义削波边界范围

if(Po2Judge(Nt) !=1) { printf("Nt=%d is not the Power of

2\n",Nt);exit(0); }

if(Po2Judge(Nx) !=1) { printf("Nx=%d is not the Power of

2\n",Nt);exit(0); }

if(Absorb(Labs) !=1) { printf("Absorb is error\n"); exit(0); }

if(Rflct() !=1) { printf("Rflction is error\n"); exit(0); }

if(Vlcty() !=1) { printf("Vlcty is error\n"); exit(0); }

if(WvFld0() !=1) { printf("WvFld is error\n"); exit(0); }

if(PsFrwd() !=1) { printf("PsFrwd is error\n"); exit(0); }

return 1;

int Po2Judge(int N) //////////判断是否是2的倍数

/////////////////

int k=0;

long Ln=0;

for(k=0;N-Ln>0;k++)

Ln=(long)pow(2,k);

Ln=(long)pow(2,k-1);

if (fabs(Ln-N)>=1)return (0);

return 1;

//////////定义快速傅立叶函

数///////////////

int kkfft(float pr[],float pi[],int n,int l)

int it,m,is,i,j,nv,l0,il=0;

float p,q,s,vr,vi,poddr,poddi;

float fr[4096],fi[4096];

int k=0;

long Ln=0;

for(k=0;n-Ln>0;k++)

Ln=(long)pow(2,k);

k=k-1;

for (it=0; it<=n-1; it++)

m = it;

is = 0;

for(i=0; i<=k-1; i++)

j = m/2;

is = 2*is+(m-2*j);

m = j;

fr[it] =pr[is];

fi[it] = pi[is];

pr[0] = 1.0;

pi[0] = 0.0;

p = 6.283185306/(1.0*n);

pr[1] = (float) cos(p);

pi[1] = -(float)sin(p);

if (l!=0)

pi[1]=-pi[1];

for (i=2; i<=n-1; i++)

p = pr[i-1]*pr[1];

q = pi[i-1]*pi[1];

s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]);

pr[i] = p-q;

pi[i] = s-p-q;

for (it=0; it<=n-2; it=it+2)

vr = fr[it];

vi = fi[it];

fr[it] = vr+fr[it+1];

fi[it] = vi+fi[it+1];

fr[it+1] = vr-fr[it+1];

fi[it+1] = vi-fi[it+1];

m = n/2;

nv = 2;

for (l0=k-2; l0>=0; l0--)

m = m/2;

nv = 2*nv;

for(it=0; it<=(m-1)*nv; it=it+nv)

for (j=0; j<=(nv/2)-1; j++)

p = pr[m*j]*fr[it+j+nv/2];

q = pi[m*j]*fi[it+j+nv/2];

s = pr[m*j]+pi[m*j];

s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]);

poddr = p-q;

poddi = s-p-q;

fr[it+j+nv/2] = fr[it+j]-poddr;

fi[it+j+nv/2] = fi[it+j]-poddi;

fr[it+j] = fr[it+j]+poddr;

fi[it+j] = fi[it+j]+poddi;

if(l!=0)

for(i=0; i<=n-1; i++)

fr[i] = fr[i]/(1.0*n);

fi[i] = fi[i]/(1.0*n);

if(il!=0)

for(i=0; i<=n-1; i++)

pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i]);

if(fabs(fr[i])<0.000001*fabs(fi[i]))

if ((fi[i]*fr[i])>0)

pi[i] = 90.0;

else

pi[i] = -90.0;

else

pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306;

for(i=0;i

pr[i]=fr[i];

pi[i]=fi[i];

return(1);

//***调用削波函数,形成削波数据存入一个文件**/

int Absorb(int Lx) //Nx已为全局变量不参与传递

FILE *fp_Abs;

int Ix;

float Abs[Nx];

if((fp_Abs=fopen("Absb.dat","wb"))==NULL) {printf("Connot open file""Absb"""); }

for(Ix=0;Ix

Abs[Ix]=1;//*****

for(Ix=0;Ix

Abs[Ix]=sqrt(sin((pai/2)*(Ix/(Lx-1))));

Abs[Nx-Ix-1]=Abs[Ix];//*****

for(Ix=0;Ix

fwrite(&Abs[Ix],sizeof(Abs[Ix]),1,fp_Abs);

fclose(fp_Abs);

return 1;

/******反射系数_构造形态模型的生成*****/

int Rflct()

FILE *fp_Rflct;

int Ix,Iz;

float Rflct[Nz];

if((fp_Rflct=fopen("Rflct.dat","wb"))==NULL)

{printf("Connot open file""Reflection""");}

for(Ix=0;Ix

for(Iz=0;Iz

Rflct[Iz]=0;//*****

if(Ix==Nx/2-1&&Iz==Nz/2-1)//*****

Rflct[Iz]=1;//*****

fwrite(&Rflct[Iz],sizeof(Rflct[Iz]),1,fp_Rflct);

fclose(fp_Rflct);

return 1;

int Vlcty() /********速度模型的生成*********/

FILE *fp_Vlcty;

int Ix,Iz;

float Vlcty[Nz];

if((fp_Vlcty=fopen("Vlcty.dat","wb"))==NULL)

{printf("Connot open file""Vlcty""");}

for(Ix=0;Ix

for(Iz=0;Iz

if(Iz<=3*Nz/4-1)//*****

Vlcty[Iz]=5000;//*****

else

Vlcty[Iz]=5500;//*****

fwrite(&Vlcty[Iz],sizeof(Vlcty[Iz]),1,fp_Vlcty);

fclose(fp_Vlcty);

return 1;

/********爆炸反射界面的生成,并调用FFT函数变换到频率域储存*******/

int WvFld0()

FILE *fp_Rflct,*fp_Wfld0r,*fp_Wfld0i;

int Ix,Iz,It;

float Rflct[Nz],Wfld0r[Nt],Wfld0i[Nt];

if((fp_Wfld0r=fopen("Wfld0r.dat","wb"))==NULL)

{printf("Connot open Wfld0r.dat");}

if((fp_Wfld0i=fopen("Wfld0i.dat","wb"))==NULL)

{printf("Connot open Wfld0i.dat");}

if((fp_Rflct =fopen("Rflct.dat" ,"rb"))==NULL)

{printf("Connot open Rflct.dat");}

for(Ix=0;Ix

printf("Wavefield0_FFT: Ix=%d\n",Ix);

for(Iz=0;Iz

fread(&Rflct[Iz],sizeof(Rflct[Iz]),1,fp_Rflct);

for(It=0;It

Wfld0r[It]=0;

Wfld0i[It]=0;

if(It==0) Wfld0r[It]=Rflct[Iz];//*****

if(kkfft(Wfld0r,Wfld0i,Nt,0)!=1) {printf("FFT is error");exit(0);}

for(It=0;It

fwrite(&Wfld0r[It],sizeof(Wfld0r[It]),1,fp_Wfld0r);//*****

fwrite(&Wfld0i[It],sizeof(Wfld0i[It]),1,fp_Wfld0i);//*****

fclose(fp_Rflct);

fclose(fp_Wfld0r);

fclose(fp_Wfld0i);

return 1;

/////**********PhaseShift Forward Modeling **********/////

int PsFrwd() //--波场相移延拓int PhaseShift( ); // Requset Function:PhaseShift

调用波长函数相移延拓计算函

int Frqcy2Time( ); //调用波场做IFFT从频率域变换到时间域函数

if ( PhaseShift( ) !=1 ) {printf("PhaseShift is error\n"); exit(0); }// Call Function

if ( Frqcy2Time( ) !=1 ) {printf("Frqcy2Time is error\n"); exit(0); }// Call Function

return 1;

int PhaseShift()

// 1. Prepprocedure预处理

FILE

*fp_Wfldr,*fp_Wfldi,*fp_Wfld0r,*fp_Wfld0i,*fp_Vlcty,*fp_Absb;

float kz[2];

int Ix,Ikx,Nkx=Nx,Iz,Iw,Nw=Nt;

long Mgrtn;

float Vlcty[Nz];

float Absb[Nx],Wfld0r[Nx],Wfld0i[Nx],Wfldr[Nx],Wfldi[Nx];

float Wfld_r,Wfld_i;

float Kxmax,Dkx,Wmax,Dw;

Wmax = pai/0.004;

Dw = Wmax/Nt;

Kxmax = pai/20.;

Dkx = Kxmax/Nx;

// 2. Read in Velocity and Absorbing Boundary Date速度与削波数据读入

if((fp_Vlcty = fopen("Vlcty.dat","rb"))==NULL)

{printf("Cann't open file Vlcty.dat\n");}

for(Iz=0;Iz

fread(&Vlcty[Iz],sizeof(Vlcty[Iz]),1,fp_Vlcty);

fclose(fp_Vlcty);

if((fp_Absb = fopen("Absb.dat","rb"))==NULL) {printf("Cann't open file Absb.dat\n");}

for(Ix=0;Ix

fread(&Absb[Ix],sizeof(Absb[Ix]),1,fp_Absb);

fclose(fp_Absb);

// 3. Open Initial Wave Field File and Current Wave Field File using In Wave Fied Extrapolating波场文件打开

if((fp_Wfld0r = fopen("Wfld0r.dat","rb"))==NULL)

{printf("Cann't open file Wfld0r.dat\n");}

if((fp_Wfld0i = fopen("Wfld0i.dat","rb"))==NULL)

{printf("Cann't open file Wfld0i.dat\n");}

if((fp_Wfldr = fopen("Wfldr.dat","wb")) ==NULL)

{printf("Cann't open file Wfldr.dat \n");}

if((fp_Wfldi = fopen("Wfldi.dat","wb")) ==NULL)

{printf("Cann't open file Wfldi.dat \n");}

// 4. 每个频率的波场延拓

for(Iw=0;Iw

// 4.1初始化当前波场

for(Ix=0;Ix

Wfldr[Ix]=0.;

Wfldi[Ix]=0.;

// 4.2波场从Iz=Nz-1最深处开始,延拓到

Iz=1测线深度

for(Iz=Nz-1;Iz>0;Iz--)

// 4.2.1形成新波场

for(Ix=0;Ix

// 1. Take out Initial Wave Field Data With every Depth取出当前深度的初始波场

Mgrtn=(Ix*Nz+1+Iz)*(Nt/2+1)+Iw;

fseek(fp_Wfld0r,sizeof(Wfld0r[Ix])*Mgrtn,SEEK_SET);

fseek(fp_Wfld0i,sizeof(Wfld0i[Ix])*Mgrtn,SEEK_SET);

fread(&Wfld0r[Ix],sizeof(Wfld0r[Ix]),1,fp_Wfld0r);

fread(&Wfld0i[Ix],sizeof(Wfld0i[Ix]),1,fp_Wfld0i);

// 2.新波场=初始波场+从下面延拓到此处的波场

Wfldr[Ix] = Wfldr[Ix]+Wfld0r[Ix];

Wfldi[Ix] = Wfldi[Ix]+Wfld0i[Ix];

// 3.边界削波:新波场=新波场×削波因子

Wfldr[Ix] = Wfldr[Ix]*Absb[Ix];

Wfldi[Ix] = Wfldi[Ix]*Absb[Ix];

// 4.2.2 新波场FFT到波数

if( kkfft(Wfldr,Wfldi,Nx,0) !=1 ) { printf("FFT is error\n");exit(0); }

// 4.2.3频率-波数域波场在从Iz+1延拓到Iz

for(Ikx=0;Ikx

// 1.计算相移数据expikzdz(实部、虚部

if( exp_ikzDz(kz,Ix, (float)(Vlcty[Iz]/2.),

Iw,Dw,Dkx) !=1) { printf("exp_ikzDz is error\n");exit(0); };

// 2.波场延拓:波场=波场×相移数据

Wfld_r = Wfldr[Ikx]*kz[0]-Wfldi[Ikx]*kz[1];

Wfld_i = Wfldi[Ikx]*kz[0]+Wfldr[Ikx]*kz[1];

Wfldr[Ikx] = Wfld_r;

Wfldi[Ikx] = Wfld_i;

if(Ikx!=0&&Ikx!=Nkx/2)

Wfld_r =

kz[0]*Wfldr[Nkx-Ikx]-kz[1]*Wfldi[Nkx-Ikx];

Wfld_i =

kz[1]*Wfldr[Nkx-Ikx]+kz[0]*Wfldi[Nkx-Ikx];

Wfldr[Nkx-Ikx] = Wfld_r;

Wfldi[Nkx-Ikx] = Wfld_i;

// 4.2.4 波场反FFT到空间域

if( kkfft(Wfldr,Wfldi,Nkx,1) !=1 ) { printf("FFT is error\n");exit(0); }

// 4.3 存储延拓到了测线的波场

for(Ix=0;Ix

fwrite(&Wfldr[Ix],sizeof(Wfldr[Ix]),1,fp_Wfldr);

fwrite(&Wfldi[Ix],sizeof(Wfldi[Ix]),1,fp_Wfldi);

// 5.关闭文件,删除中间文件。

fclose(fp_Wfld0r);

fclose(fp_Wfld0i);

fclose(fp_Wfldr);

fclose(fp_Wfldi);

//remove("Absb.dat"); //Delete Absb.dat

//remove("Rflct.dat"); //Delete Rflcy.dat

//remove("Vlcty.dat"); //Delete Vlcty.dat

//remove("Wfld0r.dat"); //Delete Wfld0r.dat

//remove("Wfld0i.dat"); //Delete Wfld0i.dat

return(1);

int exp_ikzDz(float eikzdz[],int Ix,float Vc,int Iw,float Dw,float Dkx)

float kz=0;

eikzdz[0]=0;

eikzdz[1]=0;

kz=sqrt(pow(Iw*Dw/Vc,2)-pow(Ix*Dkx,2));

if(kz>0)

eikzdz[0]=(float)cos(kz*Dz);

eikzdz[1]=(float)-sin(kz*Dz);

return 1;

FILE *fp_Wfldr,*fp_Wfldi;

FILE *fp_Record;

int Ix,It,Iw,Nw=Nt;

float Wfldtr[Nt],Wfldti[Nt];

long AddFrmStrt;

if((fp_Wfldr = fopen("Wfldr.dat","rb")) ==NULL)

{printf("Cann't open file Wfldr.dat ");exit(0);}

if((fp_Wfldi = fopen("Wfldi.dat","rb")) ==NULL)

{printf("Cann't open file Wfldi.dat ");exit(0);}

if((fp_Record = fopen("Record.dat","wb")) ==NULL)

{printf("Cann't open file Record.dat ");exit(0);}

for(Ix=0;Ix

for(Iw=0;Iw

AddFrmStrt=Iw*Nx+Ix;

fseek(fp_Wfldr,sizeof(Wfldtr[Iw])*AddFrmStrt,SEEK_SET);

fseek(fp_Wfldi,sizeof(Wfldti[Iw])*AddFrmStrt,SEEK_SET);

fread(&Wfldtr[Iw],sizeof(Wfldtr[Iw]),1,fp_Wfldr);

fread(&Wfldti[Iw],sizeof(Wfldti[Iw]),1,fp_Wfldi);

if(Iw!=0&&Iw!=Nw/2)

Wfldtr[Nw-Iw] = Wfldtr[Iw];

Wfldti[Nw-Iw] = -Wfldti[Iw];

if(kkfft(Wfldtr,Wfldti,Nw,1)!=1){printf("FFT is error");exit(0);}

for(It=0;It

fwrite(&Wfldtr[It],sizeof(Wfldtr[It]),1,fp_Record);

} //按道存入数据,实部数据存入

fclose(fp_Wfldr);

fclose(fp_Wfldi);

remove("Wfldr.dat");

remove("Wfldi.dat");

fclose(fp_Record);

return 1;

七、实验结果

1、结果显示

①.改变绕射点位置观察截图:

②.改变速度观察截图

2、对比分析

①削波后曲线更为平滑清晰

②改变绕射点位置时,曲线左右移动,移动趋势同绕射点移动方向一致

③改变速度时,由公式可知,速度越大曲线越缓,其物理意义为,速度大走时短

八、讨论建议

1、实验收获

大量上机实践,编写褶积函数的C语言源程序有很大程度提高,在与同学交流讨论过程中收获很大,不管是学习还是工作要扬长避短,但更要面对自己的不足,努力改善不足,完善各方面能力,尤其是编程能力。通过对比分析的实践,学会了从差异中学习,在差异中进行深入研究讨论学习。

2、存在问题

编程能力有待提高,对专业理论只是有待巩固加强。

附:心得体会

其一,世上无难事只怕有心人,虽然对编程有惧,但是用心一步一步的进行其实不是很难。完成本次试验后感觉编程有很大提到,得益于老师提供提供的原程序段,让学生依葫芦画瓢,降低了学习难度。

其二,功在平时,每次做好实验进行存档整理很重要,养成习惯不管是对学业、生活或是人生都是无形的财富。

其三,学习可以和同学一起讨论但是深入研究需要自己完成,其中的收获只有自己慢慢的领悟。

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

致谢

时间飞逝,大学的学习生活很快就要过去,在这四年的学习生活中,收获了很多,而这些成绩的取得是和一直关心帮助我的人分不开的。

首先非常感谢学校开设这个课题,为本人日后从事计算机方面的工作提供了经验,奠定了基础。本次毕业设计大概持续了半年,现在终于到结尾了。本次毕业设计是对我大学四年学习下来最好的检验。经过这次毕业设计,我的能力有了很大的提高,比如操作能力、分析问题的能力、合作精神、严谨的工作作风等方方面面都有很大的进步。这期间凝聚了很多人的心血,在此我表示由衷的感谢。没有他们的帮助,我将无法顺利完成这次设计。

首先,我要特别感谢我的知道郭谦功老师对我的悉心指导,在我的论文书写及设计过程中给了我大量的帮助和指导,为我理清了设计思路和操作方法,并对我所做的课题提出了有效的改进方案。郭谦功老师渊博的知识、严谨的作风和诲人不倦的态度给我留下了深刻的印象。从他身上,我学到了许多能受益终生的东西。再次对周巍老师表示衷心的感谢。

其次,我要感谢大学四年中所有的任课老师和辅导员在学习期间对我的严格要求,感谢他们对我学习上和生活上的帮助,使我了解了许多专业知识和为人的道理,能够在今后的生活道路上有继续奋斗的力量。

另外,我还要感谢大学四年和我一起走过的同学朋友对我的关心与支持,与他们一起学习、生活,让我在大学期间生活的很充实,给我留下了很多难忘的回忆。

最后,我要感谢我的父母对我的关系和理解,如果没有他们在我的学

《地震》教案(1)

19《地震》教案 教学目标: 1能用自己的话说出地震的成因及引起的危害。 2能根据实验方法进行地层皱褶和折断的模拟实验,并能根据实验现象推想地震的成因。 3能收集和整理地震灾害的资料。 4能与小组同学分工合作进行学习,并把自己的收获与同学交流 教学重点:通过模拟实验认识地震的成因。 教学难点:对地震的成因进行推理、想象。 教具准备: 学生准备: 1.有关地震的文字、图片资料。 2.毛巾(每组三条)、长30厘米直径0.5厘米、1厘米的干木棍、薄木片。 教师准备: 1.地震的视频资料(现象)、课件资料(地震成因) 教学过程: 一、情境导入,提出问题 谈话导入:同学们你们知道地震吗?老师搜集了一个地震发生时的资料片,我们一起来开一看。同学们在观看时注意地震发生时有什么现象。 播放录像片 提问:谈一谈伴随着地震发生时看到了什么现象? 学生总结(声音、地面出现裂缝、大地震动)

师:那是什么力量使这么高大的建筑物晃动倒塌(李老师,建筑物晃动倒塌就能说明大地在震动,我能这么表述吗?)甚至使大地出现裂缝呢?(来自地球内部的力量。) 师:地球的内部是什么样子的?看课件(地壳、地幔、地核三个圈层,地壳是有一层一层的岩石组成的,地球内部是不断运动着的。) 二、用模拟实验模拟地震成因 猜测:地震是怎样形成的? 学生猜测 师:大家说得都有一定的道理,我们的猜测是否正确呢?(做实验) 师:对,实验是解决问题的好办法!地震这种自然现象我们看不到,我们只能用模拟实验的方法来模拟地震的成因。 出示实验要求:1把几条颜色不同的毛巾叠放在桌上,当做水平的岩石层。两手按在“岩层”上,把它慢慢向中间挤压,观察会发生什么变化? 学生汇报 师引导:如果毛巾是地壳的岩层,同学们想象会发生什么现象? 同学们在前面猜测到岩层断裂会形成地震,那岩层为什么会断裂呢?下面我们接着做实验 2用手握住木棍(直径0.5厘米干木棍、直径1厘米的干木棍、薄木片。)两端,用力将它压弯,继续用力压,直至压断。注意当木棍被压断时,你听到什么声音?手有什么感觉? 学生实验,教师指导 三、分析现象,认识地震的成因

多波多分量地震波场数值模拟及分析

第46卷第5期2007年9月 石油物探 GEOPHYSICALPROSPECTINGFORPETRoI。EUM V01.46,No.5 Sep.,2007 文章编号:1000—1441(2007)05—0451—06 多波多分量地震波场数值模拟及分析 刘军迎,雍学善,高建虎,杨午阳 (中国石油天然气股份有限公司勘探开发研究院西北分院,甘肃兰州730020) 摘要:以多波多分量地表资料处理和解释为目的,利用波动方程数值模拟方法对多波多分量地震波场进行了分析和研究。通过单界面和双界面模型正演,对反射纵波(PP波)和转换横波(P-SV波)的识别及波场响应特征进行了研究:①P-SV波速度低,频率低,能量随偏移距的增加而增加,零偏移距处能量为零;②界面反射系数为正时P-SV波与PP波极性相反,界面反射系数为负时P-SV波与PP波极性一致;③Z分量和X分量地震记录都是PP波与P-SV波的混合信息;④X分量的PP波和P.SV波都是由两个极性相反的分支组成的。通过多界面模型正演,分析了转换波勘探的多解性,即地质上的同一个岩性界面有可能对应地震剖面上的两个甚至更多的同相轴。通过理论、模型和实际资料分析,探讨了多波多分量勘探中水平分量旋转处理存在的问题,即通过水平分量旋转处理获得的三分量记录仍然包含了全波场信息,指出通过极化分析,进行三分量同时旋转,可以实现纵波波场和横波波场的完全分离。最后讨论了PP波和P-SV波的分辨率,认为P-SV波的纵、横向分辨率均低于PP波。 关键词:多波多分量;波场特征;水平分量旋转;三分量旋转;波场分离;分辨率 中图分类号:P631.4文献标识码:A 数值模拟技术已广泛应用于油气勘探的各个阶段,如模型正演AVO研究[1],叠前深度偏移的初始速度模型建立[2],等等。数值模拟方法主要有两大类,即波动方程法和几何射线法[3]。几何射线法以研究波的运动学特征为主,适合地质构造的模拟与研究,但该方法缺乏对波的动力学特征的表征能力,不适合多波多分量地震波场的表征、刻画和研究;波动方程法具有同时表征波场的运动学特征和动力学特征的能力,是地震波(包括P波、PS波等)的传播机理、波场响应特征研究和分析的有力工具。 有人利用Aid近似公式进行多波多分量记录合成,研究弹性参数的反演问题[4],但因为基于褶积模型,不算真正意义上的模型正演。我们利用全波场波动方程数值模拟技术分析了多波多分量地震波场的传播特征和地层响应特征;对目前的水平分量旋转处理技术进行了讨论,指出其存在的不足,给出了应对策略,同时还对转换横波的地震分辨率进行了分析,为多波多分量资料处理和解释提供了参考依据。 1PP波、P-SV波的识别和波场特征研究 研究中遵循的指导思想是“由简单到复杂”:由单界面模型到多界面模型,由声波方程到弹性波方程,由单分量(Z分量)波场到多分量(Z分量、X分量)波场。 1.1PP波、P-SV波的识别 图1是设计的单界面模型,地层1的纵波速度为3000.00m/s,横波速度为1730.00m/s,密度为2.20g/C1.n3;地层2的纵波速度为4724.49m/s,横波速度为2737.45m/s,密度为2.57g/crn3。图2是弹性波动方程法模拟的单炮记录和波场快照,可以看出,转换横波(P_SV波)的同相轴位于反射纵波(PP波)同相轴的下方,曲率较大。这说明P_SV波传播速度较小,在同一反射层、同一反射/转换点的情况下,旅行时较大。由公式 vf,s一2vpvs/(Vp—l—vs) 及 to==2h/v 也可以得出这样的结论,并且P-SV波和PP波的速度差异越大,二者分得越开,在单炮记录或地震剖面上就越容易识别。 图1单界面模型 收稿日期i2006—12—04;改回日期:2007—03—01。 作者简介:刘军迎(1966一),男,高级工程师,现从事多波多分量地 震波场数值模拟和资料解释等研究工作。 万方数据

地震记录簿数值模拟的褶积模型法

本科生实验报告 实验课程数值模型模拟 学院名称地球物理学院 专业名称勘测技术与工程 学生 学生学号 指导教师熊高君 实验地点5417 实验成绩 2015年5月

理工大学 《地震数值模拟》实验报告

实验报告 一、实验题目: 地震记录数值模拟的褶积模型法 二、实验目的: 掌握褶积模型基本理论、实现方法与程序编制,由褶积模型初步分析地震信号的分辨率问题。 三、原理公式 1、褶积原理 地震勘探的震源往往是带宽很宽的脉冲,在地下传播、反射、绕射到测线,传播经过中高频衰减,能量被吸收。吸收过程可以看成滤波的过程,滤波可以用褶积完成。在滤波中,反射系数与震源强弱关联,吸收作用与子波关联。最简单的地震记录数值模拟,可以看成反射系数与子波的褶积。通常,反射系数是脉冲,子波取雷克子波。 (1)雷克子波: wave(t)=cos(2ft)* (2)反射系数: (3)褶积公式: 数值模拟地震记录trace(t): trace(t) =rflct(t)*wave(t); 反射系数的参数由 z 变成了 t,怎么实现?在简单水平层介质,分垂直和非垂直入射两种实现,分别如图 1 和图 2 所示。

图1 图2 1)垂直入射: t=2h/v; 2)非垂直入射: t= 2、褶积方法 (1)离散化(数值化) 计算机数值模拟要求首先必须针对连续信号离散化处理。反射系数在空间模型中存在,不同深度反射系数不同,是深度的函数。子波是在时间记录上一延续定时间的信号,是时间的概念。在离散化时,通过深度采样完成反射系数的离散化,通过时间采样完成子波的离散化。如果记录是 Trace(t),则记录是时间的函数,以时间采样离散化。时间采样间距以Δt 表示,深度采样间距以Δz 表示。在做多道的数值模拟时,还有横向Δx 的概念,横向采样间隔以Δx 表示。 离散化的实现:t=It×Δt;x=Ix×Δx;z=Iz×Δz; 或:It=t/Δt; Ix=x/Δx; Iz=z/Δz (2)离散序列的褶积 trace(It)= 四、实验容 1、垂直入射地震记录数值模拟的褶积模型; 2、非垂直入射地震记录数值模拟的褶积模型。 五、方法路线

-地震勘探实验报告

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB口连 接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

叠加地震记录的相移波动方程正演模拟数值模拟实验共22页

《地震数值模拟》实验报告 一、实验题目 叠加地震记录的相移波动方程正演模拟

二、实验目的 1.掌握各向同性介质任意构造、水平层状速度结构地质模型的相移波动方程正演模拟基本理论 2.实现方法与程序编制 3.由正演记录初步分析地震信号的分辨率。 三、实验原理 1、地震波传播的波动方程 设(x,z)为空间坐标,t为时间,地震波传播速度为v(x,z),则二位介质中任意位置、任意时刻的地震波场为p(z,x,t):压缩波——纵波。则二维各向同性均匀介质中地震波传播的遵循声波方程为 2、傅里叶变换的微分性质 p(t)与其傅里叶变换的P(w)的关系: 3、地震波传播的相移外推公式 令速度v不随x变化,只随z变化,则利用傅里叶变换微分性质把波动方程(变换到频率-波数域,得: 4、初始条件和边界条件 按照爆炸界面理论,反射界面震源在t=0时刻同时起爆,此时刻的波场就是震源。根据不同情况,可直接使用反射系数脉冲或子波作震源。如果直接使用反射系数作震源脉冲,则初始条件可表示为: 5、边界处理

(1)边界反射问题 把实际无穷空间区域中求解波场的问题化为有穷区域求解时,左右两边使用零边界条件。物理上假设探区距Xmin与Xmax两个端点很远,在两个端点上收到的反射波很弱。但是,上述条件在实际中不能成立,造成零边界条件反而成为绝对阻止波通过的强反射面。在正演模拟的剖面上出现了边界假反射干涉正常界面的反射。 (2)边界强反射的处理 镶边法、削波法、吸收边界都能有效消除边界强反射。 削波法就是在波场延拓过程中,没延拓一次,在其两侧均匀衰减到零,从而消除边界强反射的影响。假设横向总长度为NX,以两边Lx道吸波为例,有以下吸波公式: 四、实验内容

模拟地震

【探究缘由】2004年12月26日的印度洋海域地震并引发的海啸,让全世界为之震惊。面对这样的自然灾害,人类的力量实在渺小。人地关系的和谐发展是我们追求的目标,先让我们进行一次地震模拟实验吧!【活动目的】地震是一种常见的、突发的自然灾害。在学习有关专题后,我们用实验模拟地震,以正确理解震级和烈度的关系,强化学生防灾减灾自我救护的意识。【知识整合】结合物理学中有关机械波的知识。【活动准备】地震模拟实验所需的基本材料有:一个高大中空的讲台、一把榔头、一堆木制积木、一堆乐高(有咬合口)积木等。【活动过程】1.在讲台上用普通的木制积木搭建一建筑物(表示建筑物抗震性能一般),榔头敲击讲台四周,模拟地震的发生。2.改变敲击力度,模拟震级升高,烈度加大,建筑物毁坏。3.改变震中距、震源深浅等地震要素,烈度随之改变。4.在讲台上用普通的木制积木搭建两个不同结构的建筑物,使之位于不同位置(如一位于桌角,另一位于桌中央),敲击讲台,观察结果。5.采用乐高积木(表示建筑物抗震性能良好)继续重复上述步骤,模拟实验。(填写表格略)【分析结论】改变震级、震中距、震源深浅、地质构造、地貌特点、地面建筑物的结构等要素,可理解地震、烈度与灾度的区别与联系,即每次地震只有一个震级,却有不同的烈度。【拓展建议】1.能否设计出更精准的实验敲击力度,使实验更具有可观测性和比较性。2.能否将两种积木结合,尝试搭建框架结构或钢筋混凝土结构建筑物,继续实验。【知识链接】震级·烈度·灾度一个地方发生了地震,它的强度有多大?破坏程度如何?灾损如何?这一切,都需要有一个衡量和界定的标准。这个标准,就是“震级”“烈度”和“灾度”。“震级”指的是地震的强度,它跟地震释放的能量有关。一次地震,只有一个震级。释放能量相同的地震,它们的震级相同。释放的能量越大,震级也越大。震级是根据台、站地震图上记录的最大振幅的地动位移及与之相应的周期,并考虑到地震波按震中距离而产生的衰减,按一定公式计算出来的。地震与所释放的地震波能量有固定的函数关系。震级每增大1级,其释放能量约增30~32倍。按震级定义和计算公式,震级没有上限。不过,到目前为止,世界上有记录可查的最大地震,是1933年3月2日的日本大地震和1960年5月22日的智利大地震,其震级为8.9级。[!--empirenews.page--]“烈度”是用来反映地震中地面受到的影响和破坏程度的一个概念。是用以表达地震强度的一种方式,是衡量地震在一定地域产生或可能造成的破坏程度的一种“尺度”。烈度的大小,主要是根据在一定地点地震对地面建筑物和地形的破坏程度,以及人的直觉反应等等来界定的。我国和世界上多数国家都把地震烈度划为12度:1度最轻,12度最强烈。●小于3度:人无感受,仅仪器能记录到;●3度:夜深人静时人有感受;●4~5度:睡觉的人惊醒,吊灯摆动;●6度:器皿倾倒、房屋轻微损坏;●6~8度:房屋破坏,地面裂缝;●9~10度:房倒屋塌,地面破坏严重;●10~12度:毁灭性的破坏。一次地震,震级只能是一个,但烈度则会因地而异。因为烈度不仅与震级的强弱有关,而且还与震源的深浅、距离震中的远近,以及地震波通过地段的“介质条件”等有关。一般地说,如果震级相同,震源浅的地震往往要比震源深的地震对地表的破坏程度大,烈度也高。“灾度”是指地震区所受到的灾害严重程度。不仅包括地表形态和地貌的被扭曲、断裂、陷落和崩塌程度,同时也包括各种建筑物、人员及经济的损害程度。灾度的大小不仅取决于震级的大小和烈度的高低,而且还与发震区的人口密度和经济发达程度密切相关。此外,与地震发生的时刻(白昼和黑夜),以及防灾救灾的具体措施是否得当等,也有很大的关系。

基于Matlab实现的地震波场边界处理软件

基于Matlab实现的地震波场边界处理软件 姓名:姚嘉德学号:2015301130007 院系:资源与环境科学学院 摘要:用有限差分法模拟地震波场是研究地震波在地球介质中传播的有效方法。但我们在实验室进行波场数值模拟时有限差分网格是限制在人工边界里面,即引入了人工边界条件。本文采用Clayton_Engquist_Majda二阶吸收边界条件,通过MATLAB编程实现了这一算法。依靠MATLAB具有更加直观的、符合大众思维习惯的代码,为用户提供了友好、简洁的程序开发环境,方便同行们交流。利用Matlab本身所具有可视化功能以及像素识别功能,可以将生成的动画电影进行识别,用于地震局实时分析有着深远意义。 关键词:有限差分法,地震波场,吸收边界条件,MATLAB矢量帧,像素识别 Abstract:Modeling seismic wave field with the Finite Difference Method (FDM) is an effective method to study theseismic wave propagation in the earth medium. When we model seismic wave field in the laboratory, the finitedifference grids are restricted in the artificial boundary. So it should introduce the artificial boundary conditions. This paper adopts Clayton_Engquist_Majda second absorbing boundary conditions and realizes the arithmetic with MATLAB. The MATLAB codes are direct and accord with our thinking custom. So it can provide the friendlyand succinct programming environment and is easy to communicate with https://www.360docs.net/doc/2c17458275.html,ing the functions of Matlab that make visualization come true and identify the pixel,we can identify the earthquake wave field. Key words: finite difference method, seismic wave field, numerical modeling, absorbing boundary conditions,MATLAB

地震记录数值模拟的褶积模型法

实验课程数值模型模拟 学院名称地球物理学院 专业名称勘测技术与工程 学生姓名 学生学号 指导教师熊高君 实验地点 5417 实验成绩 2015年5月

成都理工大学 地震数值模拟》实验报告

实验报告 实验题目: 地震记录数值模拟的褶积模型法 二、实验目的: 掌握褶积模型基本理论、实现方法与程序编制,由褶积模型初步分析地震信号的分辨率问题。 三、原理公式 1、褶积原理 地震勘探的震源往往是带宽很宽的脉冲,在地下传播、反射、绕射到测线,传播经过中高频衰减,能量被吸收。吸收过程可以看成滤波的过程,滤波可以用褶积完成。在滤波中,反射系数与震源强弱关联,吸收作用与子波关联。最简单的地震记录数值模拟,可以看成反射系数与子波的褶积。通常,反射系数是脉冲,子波取雷克子波。 (1)雷克子波: wave(t)=cos(2 ft)* (2)反射系数: (3)褶积公式: 数值模拟地震记录trace(t): trace(t) =rflct(t)*wave(t); 反射系数的参数由 z 变成了 t,怎么实现?在简单水平层介质,分垂直和非垂直

图1 图 2 1) 垂直入射: t=2h/v ; 2)非垂直入射: t= 2 、褶积方法 (1) 离散化(数值化) 计算机数值模拟要求首先必须针对连续信号离散化处理。反射系数在空间模 型中存在,不同深度反射系数不同,是深度的函数。子波是在时间记录上一延续 定时间的信号,是时间的概念。在离散化时,通过深度采样完成反射系数的离散 化,通过时间采样完成子波的离散化。如果记录是 Trace (t ),则记录是时间的 函数,以时间采样离散化。时间采样间距以Δt 表示,深度采样间距以Δz 表示。 在做多道的数值模拟时,还有横向Δx 的概念,横向采样间隔以Δx 表示。 离散化的实现:t=It×Δt;x=Ix×Δx;z=Iz×Δz; 或:I t=t/Δt; Ix=x/Δx; Iz=z/Δz (2) 离散序列的褶积 trace(It)=

波动方程的变步长有限差分数值模拟

收稿日期:2007-03-23;修订日期:2007-04-27 作者简介:李胜军,男,在读硕士研究生,研究方向为地震波传播理论。联系电话:(0546)8392055,E-mail:hdpulis@126.com,通讯地址:(257061)中国石油大学(华东)地球资信与信息学院。 *中国石油大学(华东)研究生创新基金资助,编号:S2006—06。 油气地球物理 2007年7月 PETROLEUMGEOPHYSICS 第5卷第3期 在地震资料采集、处理和解释中通常需要进行地震波场数值模拟:假设已知地下的地质情况,应用地震波运动学和动力学的基本原理,计算给定地质模型的地震响应。这种做法对正确认识地震波的运动学和动力学特征,以及准确分析油气藏的反射波场特征有着重要的指导意义。声波在介质中的正演模拟研究为我们精确模拟地震波在复杂介质中的传播提供了理论基础[1]。 傅立叶变换法和高阶有限差分法(FD)已成为计算声波方程空间导数的标准技术[2,3]。虽然常网格步长差分算法比较容易实现,但是它们对大部分模型都增大了不必要的计算量。例如,对存在浅层低速带的沉积盆地模型地面地震记录进行模拟时,由于低速地层阻抗小,地震波传入其中会引起较大的振幅和较长的延续时间(这与深层的高速层完全不同)。由于这些浅层低速层中地震波的波长较短、地层厚度较小,模拟时需要用小网格进行。这样,常网格步长算法就必须用小网格离散整个模型,从而增加了不必要的代价,如内存、计算量的增大。 因而,采用变网格算法将能改进有上覆低速层情况模拟结果的有效性(对地层中间有超薄夹层的情形,必须用精细网格覆盖才能精确的对地层进行模拟)。应用这种变网格算法既能实现对夹层的模拟,又能保障计算量不增加。因此这种通过函数实现在任意深度上网格步长变化的有限差分方法被 推广[4]。为了计算空间导数,在X方向用傅立叶变换法或有限差分算法,在Z方向使用高阶有限差分方法。通过时间积分快速展开法(REM)来保障差分方法的计算精度[6]。这种差分技巧比二阶时间差分有较高的精确度且计算用时短。 1时间积分 均匀介质中的二维声波方程可用下式表示[2] 式中:P=P(x,z,t),代表压力项;c=c(x,z),代表速度;s=s(s,z),代表震源函数;L2为差分算子。在密度!=!(x,z)变化的情况下,常用的是Vidale给出的公式[5] 波动方程的变步长有限差分数值模拟* 李胜军1,2) 孙成禹1) 张玉华1) 倪长宽1) 1)中国石油大学地球资源与信息学院;2)中石油勘探开发研究院西北分院 摘要:有限差分算法是常用的正演模拟方法之一,其包含的地震信息丰富,且实现简单。传统的有限差分方法通常都采用均匀网格步长,在对含低速/高速介质、 薄层/厚层介质的模型进行波场模拟时往往缺乏稳定性。文章介绍了一种可以有效解决上述问题的变网格算法,对常规有限差分法与变网格差分算法在内存需求、计算速率等方面的差别进行了比较,对变网格差分算法中的边界条件、 时间积分的快速展开算法作了阐述,进而总结了变网格算法的优点。关键词:变步长;边界条件;计算时间;快速展开法;数值模拟 !2 P!t2=-L2P+s (1) (2) -L2 =c 2 !2!x2+!2 !z 2" # (3) (4) !2 P!t 2=-L2P!"$ -1!L2P+PL21!+s -L2 =!c 2 2 !2!x2+!2 !z 2% $

地震灾害模拟体验实验报告

地震灾害模拟体验实验报告 吴丽红人文学院历本101班 10020126 一、实验目的 了解地震灾害的成因、分类、危害以及地震的防灾措施等。 二、实验内容 体验模拟地震的震动状况、观看关于地震的影片,了解地震灾害的特征、危害、分布等基本知识以及防灾减灾的对策。 三、实验原理简述 当今人类面临着地震灾害的严重威胁,给各国人民造成了难以估计的生命与财产的巨大损失。目前,预防地震灾害,减轻地震灾害带来的损失已经成为各国政府的重要工作之一。与此同时,认识了解地震灾害发生以及发展的规律,对地震灾害进行科学的评估,以期有朝一日对地震灾害进行准确的预报,制定减轻地震灾害的防御对策等已成为广大科学家们重要的研究课题。 (https://www.360docs.net/doc/2c17458275.html,/i?word=%B5%D8%D5%F0%B4%F8&opt-image=on&cl=2& lm=-1&ct=201326592&ie=gbk) 1、地震灾害的相关概念 大地或地壳的突然震动就是地震。震源是地球内部直接发生震动的地方,震中是震源在地面上垂直投影。震源深度是指震源到地面的垂直距离。震中距是在地面上从震中到任一点的距离。 震级是指地震的大小,是以地震仪测定的每次地震活动释放的能量多少来确定

的。中国目前使用的震级标准,是国际上通用的里氏分级表,共分9个等级,在实际测量中,震级则是根据地震仪多地震波所作的记录计算出来的。地震越大,震级的数字越大,震级每差一级,通过地震被释放的能量相差约32倍。地震按震级大小四类:震级小于3级的地震称为弱震;震级等于或大于3级且小于或等于4.5级的地震称为有感地震;震级大于4.5级且小于6级的地震称为中强震;震级等于或大于6级的地震称为强震,其中震级大于或等于8级的地震又可称为巨大地震。 烈度表示地面受到地震的影响和破坏的程度,它用“度”来表示。一般而言,震级越大,烈度就越高。同一次地震,震中距不一样的地方烈度就不一样。 2、地震波的传播 地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部氛围地壳、地幔和地核三个圈层。地震波按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5-7千米/秒,传播速度较快,可以通过固体、液体和气体传播,又称为P波,它使地面上下振动,破坏性较弱。横波是剪切波,在地壳中的传播速度为3.2-4千米/秒,又称为S波,只能通过固体传播,它使地面发生前后、左右抖动,破坏性较强。面波又称为L波,是由纵波与横伯伯哦字地表相遇后激发产生的混合波,波长大,只能沿地表面传播,是造成建筑物强烈破坏的主要原因。 3、地震的成因及分类 地震的成因到目前为止,仍然是一个有争议性的问题。但是地震的发生大致可以分为人为和自然两方面,其中绝大多数的地震是由自然引起的,成为天然地震,其中天然地震又可以分为构造地震、火山地震和塌陷地震。构造地震是由于地壳深处岩层错动、破裂所造成的地震策划能够为构造地震。这类地震发生的次数最多,破坏力也最大,约占全世界地震的90%以上。火山地震是由于火山作用,如岩浆活动、气体爆炸等引起的地震称为火山地震。只有在火山活动区才可能发生火山地震,这类地震只占全世界地震的7%左右。塌陷地震是由于地下溶洞或矿井顶部塌陷而引起的地震称为塌陷地震。这类地震的规模比较小,影响范围小,不会造成大的破坏。认为地震可分为人工地震和诱发地震两种。人工地震是由于某些人为的原因,如工业爆破,矿山开采,核爆炸等,也能引起地面剧烈振动,但是影响范围小,不会造成大的破坏。 4、地震的分布 世界地震带分布主要包括四个带: 环太平洋地震带:全世界地震释放总能量的80%来自这个带,大约80%的浅源地震和90%的中深源地震都集中在这个地区。 地中海-喜马拉雅山地震带:这个带以浅源地震为主,多位于大陆部分,分布范围较广。 大洋中脊带:地震活动性较弱,均为浅源地震。 东非裂谷带:地震活动较强,均为浅源地震。

地震波数值模拟方法研究综述.

地震波数值模拟方法研究综述 在地学领域,对于许多地球物理问题,人们已经得到了它应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件,但能用解析方法求得精确解的只是少数方程性质比较简单,且几何形状相当规则的问题。对于大多数问题,由于方程的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析解。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但这种方法只是在有限的情况下是可行的,过多的简化可能导致很大的误差甚至错误的解答。因此人们多年来寻找和发展了另一种求解方法——数值模拟方法。 地震数值模拟(SeismicNumericalModeling)是地震勘探和地震学的基础,同时也是地震反演的基础。所谓地震数值模拟,就是在假定地下介质结构模型和相应的物理参数已知的情况下,模拟研究地震波在地下各种介质中的传播规律,并计算在地面或地下各观测点所观测到的数值地震记录的一种地震模拟方法。地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,这种地震数值模拟方法已经在地震勘探和天然地震领域中得到广泛应用。 地震数值模拟的发展非常迅速,现在已经有各种各样的地震数值模拟方法在地震勘探和地震学中得到广泛而有效

的应用。这些地震波场数值模拟方法可以归纳为三大类,即几何射线法、积分方程法和波动方程法。波动方程数值模拟方法实质上是求解地震波动方程,因此模拟的地震波场包含了地震波传播的所有信息,但其计算速度相对于几何射线法要慢。几何射线法也就是射线追踪法,属于几何地震学方法,由于它将地震波波动理论简化为射线理论,主要考虑的是地震波传播的运动学特征,缺少地震波的动力学信息,因此该方法计算速度快。因为波动方程模拟包含了丰富的波动信息,为研究地震波的传播机理和复杂地层的解释提供了更多的佐证,所以波动方程数值模拟方法一直在地震模拟中占有重要地位。 1地震波数值模拟的理论基础 地震波数值模拟是在已知地下介质结构的情况下,研究地震波在地下各种介质中传播规律的一种地震模拟方法,其理论基础就是表征地震波在地下各种介质中传播的地震波传播理论。上述三类地震波数值模拟方法相应的地震波传播理论的数学物理表达方式不尽相同。射线追踪法是建立在以射线理论为基础的波动方程高频近似理论基础上的,其数学表形式为程函方程和传输方程。积分方程法是建立在以惠更斯原理为基础的波叠加原理基础上的,其数学表达形式为波动方程的格林函数域积分方程表达式和边界积分方程表达式。波

地震勘探实验报告记录

地震勘探实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB 口连接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

波动方程正演模型的研究与应用

波动方程正演模型的研究与应用 郑鸿明* 娄 兵 蒋 立 (新疆油田公司勘探开发研究院地物所) 摘要野外采集的地震数据是经过大地滤波后的畸变信号,处理的地震剖面只是间接地反映了地下构造和地质体的特征,虽然目前有很多方法和手段可以分析并提取相关的地质信息,但由于处理对波场的改造和噪声的存在以及方法本身的多解性问题降低了识别地质信息的可靠性。处理中每一步对有效信息的影响有多大,对地震属性解释的影响有多大,没有一个定量的标准,只能凭经验和认识来定性地判断。正演模型在弹性波理论指导下,遵循严格的数学公式,可以最佳模拟地下各种情况。各种处理方法和不同的处理流程所得到的结果能否符合或最佳逼近波动方程建立的数学模型,正演模型是判断处理工作合理性的良好准则。 主题词地质模型波动方程正演模型地震响应模块测试 1 引 言 随着地震勘探的不断深入,地震勘探也由构造型油气藏勘探进入精细的岩性勘探阶段,要求地震勘探能够反映地下地质体岩性变化,以及识别含油、气、水的地震响应特征,分辨薄互层、低幅度构造的能力。地球物理学家们在长期的实践中已经研究开发了很多相关的技术,虽然理论上这些方法都能够成立,这些技术应用成功的实例也很多,但也不乏有失败的教训,往往产生多解性,或与钻探的结论不符。这里除了复杂地表和复杂地下构造形成的复杂地震波场而不满足建立在简单地质模型处理理论的因素外,与处理过程对地震波场的改造也有很大关系。从地震数据的采集到最终处理的地震剖面,整个过程是一个系统工程,地下地质结构、地质体的岩性变化以及含流体的性质,对处理人员来说是看不见、摸不着的“黑匣子”,我们所看到的只是经过大地滤波后产生畸变的地震波场,如何从这个畸变的地震波场中去伪存真、恢复真实的构造形态、提取储层的相关地震属性信息,这是岩性处理的最终目标。处理中的每一步环环相扣、相互影响、相互制约,而我们对处理中的每一步产生的中间结果所应达到的标准只是凭经验、感觉进行定性判定,加入了很多人为因素,这些因素或多或少影响着我们对解释成果的正确认识。另外,处理技术发展很快,相应的地震处理软件越来越多,应用这些模块之前对各模块所起的作用以及它们所产生的结果都需要有一个定量的认识,以及验证处理流程的合理性是当前迫切需要解决的问题。究竟什么样的结果满足岩性解释的要求、什么样的结果反映的是真正地下地质体的响应、什么样的处理方法满足保振幅处理和地震属性分析的应用等等一系列问题,这都是当前岩性处理中迫切需要解决的主要问题。它直接关联着处理成果的真伪及后续解释的可靠性,关联着勘探的投资风险。 随着计算机运算能力发展迅猛,特别是微机群的出现,为波动方程算法提供了硬件环境,开展此项技术的研究与应用已成为可能。此次模型的设计全面考虑了地表和地下的典型地质特征并将这些特征容入到模型中,真实模拟了实际地质结构。应用该地质模型正演叠前炮集的地震响应。 2 模型的建立 模型分物理模型和数学模型两种,目前的物理模型只能做非常简单的模拟,只有用数学模型才能模拟各种复杂的地质现象。20世纪70年代,美国哥伦比亚大学在郭宗汾

折射波勘探实验报告全解

《浅层折射波勘探》实验报告

《浅层折射波勘探》实验成绩评定表班级姓名学号

一、实验名称:浅层折射波勘探 二、实验目的 加深对地震勘探基本概念的理解,巩固已学的理论知识,了解数字地震仪的使用和仪器工作参数的选择;了解地震勘探人工震源激发,检波器的安置条件;地震折射波法野外资料的采集技术及方法,并进行资料的整理与解释;了解地震勘探野外工作施工的过程以及组织管理工作。 三、实验原理 1、折射波法基本原理 以水平界面的两层介质进行简要的说明,假设地下深度为h ,有一个水平的速度分界面R ,上、下两层的速度分别为V 1和V 2,且V 2>V 1。 如图1所示。从激发点O 至地面某一接收点D 的距离为X ,折射波旅行的路程为OK 、KE 、ED 之和,则它的旅行时t 为: 图1 水平两层介质折射波时距曲线 1 21V ED V KE V OK t ++= 式1 为了简便起见,先作如下证明:从O ,D 两点分别作界面R 的垂线,则OA =DG =h ,再自A 、G 分别作OK ,ED 的垂线,几何上不难证明∠BAK =∠EGF =i ,因

已知2 1 sin V V i = ,所以: 2 1 V V EG EF AK BK == 式2 即 21V AK V BK = 和 2 1V EG V EF = 式3 上式说明,波以速度V 1旅行BK (或EF )路程与以速度V 2旅行AK (或EC )路程所需的时间是相等的。将式3的关系和式1作等效置换,并经变换后可得: 2 121222122cos 2V V V V h V x V i h V x t -+=+= 式4 这就是水平两层介质的折射波时距曲线方程。它表示时距曲线是一条直线,若令x =0,则可得时距曲线的截距时间t 0(时距曲线延长与t 轴相交处的时间值) 2 12122102cos 2V V V V h V i h t -== 式5 式5表示出界面深度h 和截距时间t0之间的关系,当已知V 1和V 2时,可以求出界面的深度h 。 2、折射波分层解释的t 0法 折射波t 0解释法是常用的地震折射波解释方法,它是针相遇时距曲线观测系统采集发展起来的解释方法。 t 0法解释的主要原理与方法如下: t 0法又称为t 0差数时距曲线法,是解释折射波相遇时距曲线最常用的方法之一。当折射界面的曲率半径比其埋深大得很多的情况下,t 0法通常能取得很好的效果,且具有简便快速的优点。 如图2所示,设有折射波相遇的时距曲线S 1和S 2,两者的激发点分别是O 1 和O 2,

地震勘探资料处理

本科生实验报告 实验课程基于 Vista 系统的地震资料处理学院名称地球物理学院 专业名称勘查技术与工程(石油物探)学生姓名 学生学号 指导教师唐湘蓉 实验地点5417 实验成绩 2015年3月- 2015年5月

基于 Vista 系统的地震资料处理 一、实验目的及要求 1)认知熟悉地震资料处理软件系统--vista软件的基本功能,了解其并熟练掌握vista软件运行的基本操作; 2)了解并掌握地震数据处理的基本流程,掌握地震数据处理的流程和基本方法,选择合适的处理参数以提高地震数据处理的精度; 3)对比地震资料处理与解释的理论与实际资料处理的结果,深入理解理论,并在理论指导下提高处理解释的水平、提高资料处理的质量; 4)提高综合分析问题的能力与编写实验报告或生产报告的能力。 二、实验内容 总流程 图1 总流程图 1)加载数据 打开Vista软件后选择加入2D的SEG-Y格式的原始地震数据,本实验

所用数据为给定的SHOT-20。加载后的原始地震数据如图2: 图2 原始地震数据显示 2)道均衡 各个道由于炮检距的不同,导致的反射波的振幅的变化,因为在共反射点叠加中,要求每一个叠加道的振幅都应该相等,每一道对叠加所做的贡献是等价的,无特殊情况,一般就以记录图中间的振幅为基准,使近激发点的地震道振幅减少,增加远离激发点的地震道记录的振幅。道均衡流程模块如图3,道均衡结果如图4: 图3 道均衡流程模块

3)建立观测系统 图5 观测系统显示4)初至拾取 初至拾取结果显示如图6:

图6 初至拾取结果显示 5)初至切除 地震记录上的初至波包括直达波和浅层折射波,它们能量强且有一定延续时间,对紧接而来的浅层反射波有干涉和破坏作用。另外,动校正后会引起波形畸变,浅层尤其厉害。对这些强能量初至波和动校正畸变引起的处理办法是“切除”,即将这些波的采样值全部变为零值(充零)。初至切除流程模块如图7,初至切 除结果如图8: 图7 初至切除流程模块

-地震勘探实验报告

中国地 质大学 (武汉) 地空学 院 地震实 验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师: 张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器与高速过采样技术达到了24位地震仪的精度。频带从1、75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4、1公斤,用12V的外接电池可以连续工作10个小时。(如下图) 2、主要操作功能键及快捷键

注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB口连接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的就是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须就是英语(美国)。 三、实验内容 1、浅层地震装备认识及地震波认识:第一周上午主要就是老师介绍检波器、地震仪以及实验装备,认识设备后进行采集装置的连接,全班同学轮流当做指挥员与爆破员; 2、浅层地震数据采集实验:隔一周之后的上午全体同学使用地震仪进行浅层地震数据的采集及简单的分析,并对干扰波进行识别。

声波波动方程正演模拟程序总结

声波波动方程正演模拟程序 程序介绍: 第一部分:加载震源,此处选用雷克子波当作震源。 编写震源程序后,我将输出的数据复制,然后我用excel做成了图片,以检验程序编写是否正确。以下为雷克子波公式部分的程序: for(it=0;it

模型构建与试算: 1、我首先建立了一个均匀介质模型,首先利用不同时间,进行了数值模拟,得到波场快照如图所示: 100ms 200ms 300ms 此处,纵波速度为v=3000m/s。模型大小为200×200,空间采样间隔为dx=dz=10m。采用30Hz的雷克子波作为震源子波,时间采样间隔为1ms,图中可以看出,波场快照中的同相轴是圆形的,说明在均匀各向同性介质中,点源激发的波前面是一个圆,这与理论也是吻合的。并且随着时间的增大,波前面的面积逐渐增大,说明地震波从震源中心向外传播。 2、我在建立的均匀模型的基础上,改变差分算子的精度,分别采用2阶、6阶、12阶精度进行试算。时间统一采用300ms的时候。得到的波长快照如下: 2阶精度6阶精度12阶精度

相关文档
最新文档