3管式加热炉

3管式加热炉
3管式加热炉

单元三管式加热炉仿真

一.单元目标

1.掌握管式加热炉系统构成,了解各部分的作用。

2.掌握管式加热炉正确的开车停车的操作方法。

3.掌握管式加热炉正常运行的工艺指标及相互影响关系。

4.能正确判断事故的原因且掌握正确的处理方法。

5.熟悉各种设备测量仪表的名称及其作用,能识读带控制点工艺

流程图。

二.单元内容

本单元选择的是石油化工生产中最常用的管式加热炉。

1、工艺物料系统

某烃类化工原料在流量调节器FIC101的控制下先进入加热炉F-101的对流段,经对流的加热升温后,再进入F-101的辐射段,被加热至420℃后,送至下一工序,其炉出口温度由调节器TIC106通过调节燃料气流量或燃料油压力来控制。

采暖水在调节器FIC102控制下,经与F-101的烟气换热,回收余热后,返回采暖水系统。

2、燃料系统

燃料气管网的燃料气在调节器PIC101的控制下进入燃料气罐V-105,燃料气在V-105中脱油脱水后,分两路送入加热炉,一路在PCV01控制下送入常明线;一路在TV106调节阀控制下送入油—气联合燃烧器。

来自燃料油罐V-108的燃料油经P101A/B升压后,在PIC109控制压送至燃烧器火嘴前,用于维持火嘴前的油压,多余燃料油返回V-108。来自管网的雾化蒸汽在PDIC112的控制压与燃料油保持一定压差情况下送入燃料器。来自管网的吹热蒸汽直接进入炉膛底部。

主要设备:V-105:燃料气分液罐

V-108:燃料油贮罐

F-101:管式加热炉

P-101A:燃料油A泵

P-101B:燃料油B泵

流程图:管式加热炉带控制点工艺流程图

雾化蒸汽

P101A P101B

管式加热炉DCS界面

管式加热炉现场界面

三.操作步骤

1.正常运行

正常工况下工艺参数

(1)炉出口温度TIC106:420℃。

(2)炉膛温度TI104:640℃。

(3)烟道气温度TI105:210℃。

(4)烟道氧含量AR101:4%。

(5)炉膛负压PI107:-2.0mmH2O。

(6)工艺物料量FIC101:3072.5kg/h。

(7)采暖水流量FIC102:9584kg/h。

(8)V-105压力PIC101:2atm。

(9)燃料油压力PIC109:6atm。

(10)雾化蒸汽压差PDIC112:4atm。

2.冷态开车

装置的开车状态为氨置换的常温常压氨封状态。

2.1、开车前的准备

(1)公用工程启用(现场图“UTILITY”按钮置“ON”)。

(2)摘除联锁(现场图“BYPASS”按钮置“ON”)。

(3)联锁复位(现场图“RESET”按钮置“ON”)。

2.2、点火准备工作

(1)全开加热炉的烟道挡板MI102。

(2)打开吹扫蒸汽阀D03,吹扫炉膛内的可燃气体(实际约需10

分钟)。

(3)待可燃气体的含量低于0.5%后,关闭吹扫蒸汽阀D03。

(4)将MI101调节至30%。

(5)调节MI102在一定的开度(30%左右)。

2.3、燃料气准备

(1)手动打开PIC101的调节阀,向V-105充燃料气。

(2)控制V-105的压力不超过2atm,在2atm处将PIC101投自动。

2.4、点火操作

(1)当V-105压力大于0.5atm后,启动点火棒(“IGNITION”按钮置

“ON”),开常明线上的根部阀门D05。

(2)确认点火成功(火焰显示)。

(3)若点火不成功,需重新进行吹扫和再点火。

2.5、升温操作

(1)确认点火成功后,先进燃料气线上的调节阀的前后阀(B03、B04),再稍开调节阀(<10%)(TV106),再全开根部阀D10,引燃料气入加热炉火咀。

(2)用调节阀TV106控制燃料气量,来控制升温速度。

(3)当炉膛温度升至100℃时恒温30秒(实际生产恒温1小时)烘炉,当炉膛温度升至180℃时恒温30秒(实际生产恒温1小时)暖炉。

2.6、引工艺物料

当炉膛温度升至180℃后,引工艺物料:

(1)先开进料调节阀的前后阀B01、B02,再稍开调节阀FV101

(<10%)。引进工艺物料进加热炉。

(2)先开采暖水线上调节阀的前后阀B13、B12,再稍开调节阀

FV102(<10%),引采暖水进加热炉。

2.7、启动燃料油系统

待炉膛温度升至200℃左右时,开启燃料油系统:

(1)开雾化蒸汽调节阀的前后阀B15、B14,再微开调节阀PDIC112(<10%)。

(2)全开雾化蒸汽的根部阀D09。

(3)开燃料油压力调节阀PV109的前后阀B09、B08。

(4)开燃料油返回V-108管线阀D06。

(5)启动燃料油泵P101A。

(6)微开燃料油调节阀PV109(<10%),建立燃料油循环。

(7)全开燃料油根部阀D12,引燃料油入火咀。

(8)打开V-108进料阀D08,保持贮罐液位为50%。

(9)按升温需要逐步开大燃料油调节阀,通过控制燃料油升压(最后到6atm左右)来控制进入火咀的燃料油量,同时控制PDIC112在4atm左右。

2.8、调整至正常

(1)逐步升温使炉出口温度至正常(420℃)。

(2)在升温过程中,逐步开大工艺物料线的调节阀,使之流量调整至正常。

(3)在升温过程中,逐步采暖水流量调至正常。

(4)在升温过程中,逐步调整风门使烟气氧含量正常。

(5)逐步调节档板开度使炉膛负压正常。

(6)逐步调整其它参数至正常。

(7)将联锁系统投用(“INTERLOCK”按钮置“ON”)。

3.正常停车

3.1、停车准备

摘除联锁系统(现场图上按下“联锁不投用”)。

3.2、降量

(1)通过FIC101逐步降低工艺物料进料量至正常的70%。

(2)在FIC101降量过程中,逐步通过减少燃料油压力或燃料气流量,来维持炉出口温度TIC106稳定在420℃左右。

(3)在FIC101降量过程中,逐步降低采暖水FIC102的流量。

(4)在降量过程中,适当调节风门和档板,维持烟气氧含量和炉膛负压。

3.3、降温及停燃料油系统

(1)当FIC101降至正常量的70%后,逐步开大燃料油的V-108返回阀来降低燃料油压力,降温。

(2)待V-108返回阀全开后,可逐步关闭燃料油调节阀,再停燃料油泵(P101A/B)。

(3)在降低燃料油压力的同时,降低雾化蒸汽流量,最终关闭雾化蒸汽调节阀。

(4)在以上降温过程中,可适当降低工艺物料进料量,但不可使炉出口温度高于420℃。

3.4、停燃料气及工艺物料

(1)待燃料油系统停完后,关闭V-105燃料气入口调节阀(PIC101调节阀),停止向V-105供燃料气。

(2)待V-105压力下降至0.3atm时,关燃料气调节阀TV106。

(3)待V-105压力降至0.1atm时,关长明灯根部阀D05,灭火。

(4)待炉膛温度低于150℃时,关FIC101调节阀停工艺进料,关FIC102调节阀,停采暖水。

3.5、炉膛吹扫

(1)灭火后,开吹扫蒸汽,吹扫炉膛5秒(实际10分钟)。

(2)停吹扫蒸汽后,保持风门、档板一定开度,使炉膛正常通风。

4.事故处理

【考证习题】

1.油气混合燃烧管式加热炉开车时,要先对炉膛进行。并先烧,再烧。而停车时,应先停,后停。

2.在加热炉稳定运行时,炉出口工艺物料的温度应保持在。

3.本单元工艺物料温度TIC106,有两种控制方案其一是,其二是。

4.本流程中为保证安全正常运行共设有个联锁。

5. 燃料气压力低主要现象是()。

A、燃料气分液罐压力低

B、炉膛温度降低

C、炉出口温度升高

D、燃料气流量急剧增大

6.燃料气带液的主要现象有()。

A、产生联锁

B、炉膛和炉出口温度降低

C、燃料气流量增大

D、燃料气分液罐液位上升

网带式钎焊炉技术方案书(

QHL-125-12Q 网带式保护气氛钎焊炉 技术方案书

日期:2010年11月17日 1、设备主要用途及特点: 网带式保护气氛光亮钎焊炉(以下简称网带炉)该炉适用于:航空、电子、家电、汽车行业各种零件在保护气氛中光亮退火或光亮钎焊处理。该炉最大特点:适用大批量生产,能确保零件品质一致和重复性。有性能优越、安全可靠、操作简便、节能等优点。 一、有关技术参数: 1.额定温度: 1150℃ 2.工作温度750-1050℃ 3.钎焊炉膛工作空间: 长4000×宽375×高200mm 4.加热功率: 125KW 5.控制温区: 3区 6.控制方式: 可控硅控制+PID调节 7.网带变频传动电机: 1.5KW 8.传动速度: 变频调速50-500mm/min 9.冷却方式: 7.5M水套冷却 10.氨分解保护气体: 20M3/h(3H2+N2混合气),露点≤-60℃ 氨分解炉加热用功率: 25KW 11.安全扫炉气体: 2-4瓶工业普氮(纯度99.5%)

12.马弗材料: 10mmSUS310S(南非进口板) 13.网带材料: SUS314S/350mm宽(日本进口丝) 14.生产线总用电功率: 380V(三相四线制) ≤90KW 15.高温加热元件: 0Cr27A17Mo2电阻丝 16.冷却水: >5M3/h循环水水温≤28℃ 17.液氨消耗: 6-8㎏/h 18.氮气消耗:1-2瓶/炉 19. 钎焊工装料架(特殊焊接时需要辅助支架) 用户自备 20.设备总占地:长16000×宽1650×高2000mm 21.设备总供电: ∽380V(3相4线) 150KW 二、生产线结构具体要求: 网带炉由:进料前室、加热炉体、水冷却套、网带传动机构、电器控制柜、氨(NH3)分解保护气供给装置等组成。 炉体:外壳由4-10mmA3普碳钢板和8#型钢焊接而成,水套分别由内壁4mm不锈钢板和外套3mmA3板密封焊接制造。 炉衬:炉底采用高铝砖砌成,炉子顶部采用吊顶式全纤维结构,保温层厚度≥400mm, 加热元件:材质:0Cr27Al7Mo2,炉体长度方向分多支炉膛上下布置,以螺旋状搁放于刚玉套管上,拆装方便可不停炉更换。 马弗:采用优质10mm(SUS310S)0Cr25Ni20Si2南非进口耐热钢板,经压制焊接而成,马弗顶部呈拱形,底部压筋,以确保高温少变形和高强度作用。前后炉口各设多道隔气帘采用高温陶瓷纤维制作。

管式加热炉串级系统控制过控课设解析

学号1422060213 天津城建大学 过程控制课程设计 设计说明书 串级温度控制系统设计 起止日期:2017 年7 月 3 日至2017 年7 月7 日 学生姓名侯亚东 班级14自动化2班 成绩 指导教师(签字) 控制与机械工程学院 2017年7月7日

天津城建大学 课程设计任务书 2016 -2017学年第 2学期 控制与机械工程 学院 自动化专业 班级 14自动化2班 姓名 侯亚东 学号 1422060213 课程设计名称: 过程控制 设计题目: 串级温度控制系统设计 完成期限:自 2017 年 7 月 3 日至 2017 年 7 月 7 日共 1 周 设计依据、要求及主要内容: 一、设计任务 管式加热炉系统,考虑将燃烧室温度作为副变量,烧成温度作为主变量,主、副对象的传递函数分别为: 2017()81 s G s e s -=+,021()(101)(201)G s s s =++ 试采用串级控制设计温度控制系统,具体要求如下: 1) 进行控制方案设计,包括调节阀的选择、控制器参数整定,给出相应的闭环系统原理图; 2) 进行仿真实验,给出系统的跟踪性能和抗干扰性能; 3)说明不同控制方案对系统的影响。 二、设计要求 采用MATLAB 仿真;需要做出以下结果: (1) 超调量 (2) 峰值时间 (3) 过渡过程时间 (4) 余差 (5) 第一个波峰值 (6) 第二个波峰值 (7) 衰减比 (8) 衰减率 (9) 振荡频率 (10)全部P 、I 、D 的参数 (11)PID 的模型 (12)设计思路 三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。

网带炉产品生产工艺规范

网带炉产品生产工艺规 范 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

网带炉热处理工艺规范 网带炉热处理工艺规范 1 适用范围 本标准规定了GCr15、GCr15SiMn、65Mn等钢制轴承零件的淬回火及SPCC、 St14、SCM415、20#、10#、08F、20CrMo、20Cr、15CrMo等低碳钢制轴承零件的渗碳淬回火工艺规范。 本标准适用于上述钢制轴承零件的热处理。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。所引用标准的最新版本适用于本标准。 GB/T338-1992 工业甲醇 SHO553-1993 工业丙烷 GB/T536-1998 液氨 3 要求 进入托辊炉内的各类零件应清洁、干燥(即无锈、无水、无油、及其它污物、杂物)。 GCr15钢制套圈和滚针(子)淬火后硬度不小于HRC63,GCr15SiMn钢制套圈和滚针(子)淬火后硬度不小于HRC62;回火后硬度应符合产品图要求; 65Mn钢制推力垫片淬火后硬度不小于HRC62;回火后硬度应符合产品图要求;内径20mm以上的推力垫片,必须用专用夹具夹平整后回火。 低碳钢制轴承零件渗碳淬火后硬度应不小于HV700;回火后硬度应符合产品图要求。 4 工艺过程 准备工作 每周一生产作业前,用直流电子电位差计校验炉温;停炉或大修后开炉时必须校验。

每半年清理炉膛一次。 每天每班检查下列项目: —100℃) 温度设定 根据不同材料、不同的零件、不同的热处理方式,参照炉温校验记录,进行炉温设定(详见表1) 表1 网带炉温度设定 气氛流量(详见表2) 表2 通入网带炉炉内的气氛流量

网带炉技术方案

托辊网带式控温冷却热处理生产线 技 术 方 案 湖北十堰华美炉业有限公司 二0一二年四月 托辊网带炉控温冷却生产线技术方案 一.基本要求: 1.工件名称:曲轴件锻造后余热利用热处理生产线 2.工件尺寸: 最大工件长:450mm; 直径:42mm; 重量:15kg 3.工作区尺寸:快冷部分: 网带宽720mm; 控温区长:5000mm; 缓冷部分: 网带宽720mm; 加热区长:10000mm; 低温快冷部分: 网带宽720mm; 加热区长:8000mm; 4.热处理要求:正火,热处理后表面光洁, 硬度均匀, 金相组织 符合国家行业标准。 二.设备组成: 本生产线主要由托辊网带式正火炉、网带式回火炉、前后工作台等部分组合。

1.正火炉快冷段网带运行采用托辊同步传动, 使网带运行承受 最小张力, 提高使用寿命; 网带运行连续均匀, 和间断进给 的传动相比, 消除了网带返退缺陷和工作经过落料口因时间 不同而引起硬度不均匀的现象。 2.炉顶部装有强力循环风机, 确保炉膛内温度和气氛均匀达到 快速均勻冷却效杲。 3.生产线具备完整可靠的电气自控、安全连锁和报警等功能。生 产线也可单机手动控制,便于调试和维护。 三.设备主要技术参: 1.托辊网带式正火加热炉: (1)电源内客:3N 380V 50Hz (2)额定加热功率:100kw (3)有效快冷区尺寸:720x5000x100mm(宽x长x高) 有效缓冷区尺寸:10000mm (4)最大生产率:3000kg/h (5)控温区数:4区+4区 (6)控温元件: 希曼顿产功率模块(固态继电器), 特 点:4-20mA输入, 具有过热, 缺相, 过流保护, 报警功 能。自动调功。温控仪表: 日本导电, 具有PID自整定, 具有超温断偶保护、报警等功能。 (7)控温精度:≤1℃ (8)炉温均匀度: ≤±3℃(同一区段)

管式加热炉温度前馈-反馈控制系统设计解析

过程控制课程设计报告 管式加热炉温度前馈-反馈控制系统设计 学生: 专业:自动化 班级: 重庆大学自动化学院 2012年10

目录 前言 (1) 1 管式加热炉系统描述 (1) 1.1 管式加热炉的一般结构 (1) 1.2 管式加热炉传热方式 (2) 1.3 管式加热炉工艺流程 (2) 1.4 主要控制参数、操作参数及影响因素 (2) 2 方案设计 (3) 2.1 方案一 (3) 2.2 方案二 (4) 3 管式加热炉温度控制系统模型的建立 (4) 3.1 前馈-反馈控制系统传递函数 (4) 3.2 过程响应分析 (6) 3.3 PID控制算法 (7) 3.4 PID 控制各参数的作用 (8) 4 MATLAB/Simulink仿真 (8) 4.1 用ITAE 方法设计控制器 (8) 4.2 用Ziegler-Nichols方法设计控制器 (10) 5 基于MATLAB/Simulink的仿真 (12) 5.1 前馈-反馈控制与单回路控制模型的比较 (12) 5.2 基于ITAE方法的仿真模型 (13) 5.2.1 ITAE的PI控制模型仿真 (13) 5.2.2 ITAE的PID控制模型仿真 (14) 5.3基于Ziegler-Nichols方法的仿真模型 (14) 5.3.1 Ziegler-Nichols的PI控制仿真模型 (14) 5.3.2 Ziegler-Nichols的PID控制仿真模型 (15) 6 报告总结 (15) 参考文献 (16)

前言 管式加热炉是石油炼制、化纤工业、石油化工和化学行业主要的工艺设备之一,作用是将物料加热至工艺所要求的温度,具有操作方便, 自动化水平高, 加工成本低, 传热效率高等优点。 1967年4月,世界上第一台步进梁式加热炉由美国米兰德公司设计而成,之后,日本中外炉公司设计的世界上第二座步进梁式加热炉于1967年5月投产。70年代末,发达工业国家己经进入大型连续加热炉计算机控制的实用阶段,但控制策略还主要局限于燃烧控制。目前,加热炉的模型化及计算机最优控制的研究不断深入,并且己经取得了很多成果,发达工业国家利用这些成果已经实现了加热炉的模型化和计算机最优控制,取得了良好的控制效果,获得了巨大的生产效益。 最近几年来,随着工业的快速发展,需要消耗大量的能源,并且环境污染问题越来越突出,节省能源、保护环境已被人们所接受,成为今后科学技术发展的方向。因此,通过国内加热技术在工业行业的应用情况的总结及对比分析,可以预见出国内加热炉的发展方向及趋势。 对于现在讲品种、讲效益的时代,一个加热炉的自动化水平的高低和加热形式的多样性,决定了该加热炉适应的生产行业。但是随着计算机控制技术和电子技术的发展,用计算机来控制加热炉的智能控制系统进行加热已成为一个新的发展方向。 目前,国外已研究出多种加热炉控制模式,实际应用各有所长。我国加热炉微机自动控制起步较晚,但也取得了很大的进展,但迄今为止,国内加热炉的控制(常规仪表控制或计算机控制)大多还处于人工经验、单值设定值控制阶段。为此,鞍山市戴维冶金科技开发有限公司经过长期的现场实践,通过对加热炉加热过程分析,组成了一支由热工、计算机、自动控制工程师和专家为主体的攻关队伍,并与清华大学、哈尔滨工业大学计算机与自动控制方面的教授、专家合作,开发出了“轧钢加热炉加热过程优化与智能控制系统”,该系统在鞍钢新轧线材厂、天钢高速线材厂和唐钢棒线材厂的生产实践中得到了应用,经过长期现场生产实践的检验与考核,通过企业的验收与鉴定,给企业带来了巨大的经济效益,受到有关企业领导,冶金炉热工、冶金自动化、计算机、轧钢专业专家及加热工人的好评。 国内各种形式的加热炉发展到现在,还不能讲那一种形式是最先进、最成熟的,都多多少少存在一些问题,还有待我们去探索,如各热工参数之间和设计结构之间的定量关系,控制系统和调节系统的最优化,但计算机控制加热炉系统是一种发展方向。 1 管式加热炉系统描述 1.1管式加热炉的一般结构 管式加热炉包括5部分,分别是:对流室、辐射室、通风系统、燃烧系统及余热回收系统,结构中包括:钢结构、炉管、炉墙(内衬)、燃烧器、孔类配 件等。 通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。 对流室:对流室是由辐射室出来的烟气进行对流传热的部分,对流室热负荷

600度连续式隧道炉说明书

深圳市中达电炉厂产品使用说明书 连 续 式 隧 道 炉 说 明 书 电话: 0755— 33353798 4008 – 163 - 588 传真: 0755— 81700525 网址: https://www.360docs.net/doc/7918501793.html,

一、公司介绍 深圳市中达电炉厂于2008年通过ISO9001质量管理体系认证。是一家集专业设计、生产非标环保节能工业电炉,控制软件开发及生产于一体的专业电炉厂,尤其在高温电炉领域有着丰富的经验,并有过很多成功案例。我们长期着力于改变生产和工艺存在的难题,不断学习、研发以满足客户的需要。改变了传统电炉设计对电网造成的干扰和损耗。在原有的基础上节约了能源。我厂通过引进国际先进电炉设计技术、采用正规厂家生产的优质新型耐火、隔热及发热材料,从而使产品具有使用寿命长、性能可靠、高效节能、升温快、控温精度高等优点。 主要生产:硅钼棒、硅碳棒高温箱式电阻炉,陶瓷推板窑,隧道窑、网带炉、真空烧结炉、真空回火炉、真空热处理炉、台车炉、铝合金炉,蒸气炉、实验炉、高低温烘箱、烘房、ED 涂装线、熔金炉、金属熔练炉,温度可达范围:室温——2500℃。 产品适应范围和用途:中达电炉广泛应用于加工热处理等作业上,如各类陶瓷、玻璃、琉璃、氮化硅、纳米材料、氧化铝等烧结及脱蜡;五金塑胶模具、特殊金属等淬火、回火及热处理;丝印、电镀、金银珠宝、五金塑胶、纳米、变压器、电机、线路板、电器等烘烤脱水及老化测试;铝合金、固溶及时效热处理;碳纤维复合材料二次烧结、ED途装及精细烘干。 技术支持:我厂特请经验丰富的电炉专家吉林工大研究生赵宏哲先生任总工程师,拥有一批经验丰富的设计技术人才、先进的生产检测设备及完善的管理体系,结合深圳特区效率高、速度快、公平、公正、公开的经营模式、资源齐等特点及完善的售后服务体系,产品远销国内外。

推钢式连续加热炉设计毕业设计说明书

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊前言 高产、优质、低耗、低成本、低污染反映了轧钢加热炉的综合技术经济指标,用少投入实现产能的最大化,是企业和热工工作者的追求目标,亦是轧钢加热炉的发展趋向。目前,国内的连续式加热炉正在经历从推钢式到步进式的转变过程,虽然步进式加热炉有其优点,但是推钢式加热炉也有很多可取之处,推钢式炉和步进式炉有同等的效果,并且推钢式加热炉一次性投资少,维护运行费用低。本文对加热炉的结构,附件的技术概况进行分析,借此找到改进的方案。 1.1.工业炉的发展史 工业炉是在工业生产中,利用燃料燃烧或电能转化的热量,将物料或工件加热的热工设备。 中国在商代出现了较为完善的炼铜炉,在春秋战国时期,人们在熔铜炉的基础上进一步掌握了提高炉温的技术,从而生产出了铸铁。1794年,世界上出现了熔炼铸铁的直筒形冲天炉。后到1864年,法国人马丁运用英国人西门子的蓄热式炉原理,建造了用气体燃料加热的第一台炼钢平炉。他利用蓄热室对空气和煤气进行高温预热,从而保证了炼钢所需的1600℃以上的温度。1900年前后,电能供应逐渐充足,开始使用各种电阻炉、电弧炉和有芯感应炉。20世纪20年代后又出现了能够提高炉子生产率和改善劳动条件的各种机械化、自动化炉型。工业炉的燃料也随着燃料资源的开发和燃料转换技术的进步,而由采用块煤、焦炭、煤粉等固体燃料逐步改用发生炉煤气、城市煤气、天然气、柴油、燃料油等气体和液体燃料,并且研制出了与所用燃料相适应的各种燃烧装置。二十世纪50年代,无芯感应炉得到迅速发展。后来又出现了电子束炉,利用电子束来冲击固态燃料,能强化表面加热和熔化高熔点的材料。为便于加热大型工件,又出现了适于加热钢锭和大钢坯的台车式炉,为了加热长形杆件还出现了井式炉。随着现代化管理水平的提高,计算机控制系统的不断完善,现代连续加热炉也应运而生. 现代连续加热炉炉型可以归入两大类:推钢式炉和步进式炉。两类炉型的根本区别,仅在于炉内的输料方式。 1.2.工业炉的基本类型 工业炉按供热方式分为两类:一类是火焰炉(或称燃料炉),用固体、液体或气体燃料在炉内的燃烧热量对工件进行加热;第二类是电炉,在炉内将电能转化为热量进行加热。大型台车式炉火焰炉的燃料来源广,价格低,便于因地制宜采取不同的结构,有利于降低生产费用,但火焰炉难于实现精确控制,对环境污染严重,热效率较低。电炉的特点是炉温均匀和便于实现自动控制,加热质量好。按能量转换方式,电炉又可分为电阻炉、感应炉和电弧炉。 工业炉按热工制度又可分为两类:一类是间断式炉又称周期式炉,其特点是炉子间断生产,在每一加热周期内炉温是变化的,如室式炉、台车式炉、井式炉等;第二类是连续式炉,其特点是炉子连续生产,炉膛内划分温度区段。在加热过程中每一区段的温度是不变的,工件由低温的预热区逐步进入高温的加热区,如连续式加热炉和热处理炉、环形炉、步进式炉、振底式炉等。

管式加热炉温度控制与分析

管式加热炉温度-温度串级控制系统 1设计意义及要求 1.1设计意义 管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。 1.2设计要求 1)本课程设计题目为加热炉温度-温度串级控制系统设计,课程设计时间为2周;学生对选定的设计题目所涉及的生产工艺和控制原理进行介绍,针对具体设计选择相应的控制参数、被控参数以及过程检测控制仪表,并画出控制流程图及控制系统方框图。 2)课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括: ① 目录; ② 摘要; ③ 生产工艺和控制原理介绍; ④ 控制参数和被控参数选择; ⑤ 控制仪表及技术参数; ⑥ 控制流程图及控制系统方框图; ⑦ 总结与展望;(设计过程的总结,还有没有改进和完善的地方); ⑧ 课程设计的心得体会(至少500字); ⑨ 参考文献(不少于5篇); ⑩ 其它必要内容等。 2方案论证 2.1方案选择 管式加热炉加热炉的工作原理如图1所示。要加热的冷物料从左端的管口流入管式加热炉,而燃料从右端的管口流入管式加热炉的燃烧部分,以供热。经加热的物料从右上端的管口流出,物料出口温度1()t θ为被控参数。 图1 管式加热炉工作原理图 分析管式加热炉的工作过程可知,物料出口温度1()t θ受进入管式加热炉的物料初始温度,物料进入的流量(即物料入口的压强),进入管式加热炉的燃料的流量(也即燃料入口压强),燃料的燃烧值等因素的影响。其中物料进入的流量(即物料入口的压强)和进入管式加热炉的燃料的流量(也即燃料入口压强)是影响物料出口温度1()t θ的主要因素。如果采用单回路控制系统,根据操作量的选取原则,我们可以在物料入口处装上一个调节阀,以控制物料进入的流量;对于进入管式加热炉的燃料的流量,可以使它保持某一恒定值。或在燃料的入口处安装一个调节阀,以控制进入管式加热炉的燃料的流量;对于进入管式加热炉的物料的流量,则可以使它保持某一恒定值。而调节阀的开度大小由安装在物料出口处的温度传感器输出的大小间接控制。它虽然结构简单,实现方便;但不符合生产工艺的要求。因为如果将物料的进入流量进行限定后,则日生产总量也被限定。这显然不符合实际的工业生产情况。在此基础上进行一点改进——不对另一个量进行限制。基于对燃料进入量进行控制的管式加热炉单回路温度控制系统原理图如图2 所示。 图2 管式加热炉单回路温度控制系统原理图 如图2所示的单回路温度控制系统初看起来是可行的。而且它的结构简单,所需的器材少,投入小。也符合工业设 物料出口温度1 ()t θ 1T C 物料入口 燃料 物料出口温度1()t θ

两段推钢式连续加热炉说明书

东北大学毕业设计(论文) 第三章燃烧计算 100 3.1设计计算基本技术数据 以碳素钢标准坯尺寸,20€冷装,天然气不预热为标准计算 3.1.1加热金属 料坯种类:普碳钢(20#钢) 尺寸规格:90 X 90 X 2400mm 金屈开始加热(入炉时)平均温度:20比 金屈加热终了(出炉时)表面温度:1250T 金屈加热终了(出炉时)横断面温差:S35OC 3.1.2炉子生产率: P=22t/h 3-1.3燃料 燃料种类:天然气: 成分(干): 表3.1天然气干成分(%) 夭然气预热温度:t 燃=20比O 3.1.4出炉膛烟气温度: t 烟气=650°C 3.1.5助燃空气预热温度(烧嘴前): t 空=300°C 3.2燃料燃烧计算 321天然气的干、湿成分换算 根据热发生炉煤气温度t 混=400-C 时, 査表得g ; = 35g/Nm3(干气体),干湿煤气的转换系数为: 100 K d0 + 0?g 「S0 + gx35?584

东北大学毕业设计(论文)第三章燃烧计算&= 0.9584,代入"漫=kxM干,结果见下表: 100

表3. 2天然气湿成分(%) 322计算天然气湿成分 计算天然气低位发热值 Q 低=126.15C0湿 + 107.26H2湿 + 356.51CH4湿 + 233.45H2S 湿 + 634.73C2H6湿 =126.15 X 0.01 + 107.26 X 0.086 + 356.51 X 93.119 + 634.73 X 0.460 =33500.3KJ/Nm3 323理论空气需要B Lo : 21- 0.5 X 0.086 + 0.5 X 0.01 +2 X 93.119 + 1.5 x0 + 3.5 X 0460 - 0 21 - =8?95Nm3/Nm3 324实际空气需要量Ln : 取 n=L05 ,有: Ln = nLo = 1.05 X 8.95 = 940Nm3/Nm3 耳湿=(1+ 0?00124x35) X940 = 9?81Nm3/Nm3 325计算燃烧产物生成量及成分 = 0.01(CO 湿 + CO2 湿 + CH4 湿 + 2C2H6 湿) =0.01 X (0.01 + 0.297 + 93.119 + 2X 0460) =0?943Nm3/Nm3 4 巧 2 =O.21(n-l)Lo = 0.21X(1.05-1)X8.95 =0?094Nm3/Nm3 V 屮=(N2 + 79LJ X0.01 = (1.869 + 79x 9,81)x 0.01 _ 0.5CO 湿 + 0.5H2湿 + 2CH4湿 + I.5H2S 湿 + 3.5(2卅6湿-O?湿 L 0 = C02

加热炉的工作原理及分类

这个设备的工作原理其实也不是特别的复杂,主要是钢坯不断由炉温较低的一端(连续式加热炉炉尾)装入,以一定的速度向炉温较高的一端(加热炉炉头)移动,在炉内与炉气反向而行,当被加热钢坯达到所需温度时,便不断从炉内排出。在炉子稳定工作的条件下,一般炉气沿着炉膛长度方向由炉头向炉尾流动,沿流动方向炉膛温度和炉气温度逐渐降低,但炉内各点的温度基本上不随时间而变化。 加热炉中的热工过程将直接影响到整个热加工生产过程,直至影响到产品的质量,所以对加热炉的产量、加热质量和燃耗等技术经济指标都有一定的要求,为实现炉子的技术经济指标,要求炉窑有合理的结构、合理的加热工艺和合理的操作制度。炉子结构,炉子高产量、优质量、低燃耗。由于炉体结构缺陷,造成炉窑先天不足,但会直接影响炉窑热工过程、制约炉窑的生产技术指标。 当然,这个设备的种类也不少,具体有这些可供消费者选择:1、从结构、热工制度等方面看,加热炉可按下列特征进行分类。如推钢式炉加热炉、步进式炉加热炉、链带式、环形加热炉等

2、按温度制度可分为:两段式、三段式和强化加热式加热炉。 3、按所用燃料种类加热炉可分为:使用固体燃料的、使用重油的、使用气体燃料的、使用混合燃料的。 4、按空气和煤气的预热方式可分为:换热式的、蓄热式的、不预热加热炉。 5、按出料方式可分为:端出料的和侧出料的。 6、按钢料在炉内运动的方式可分为:推钢式加热炉、步进式加热炉等。 7、此外连续式加热炉还可以按其他特征进行分类,加热制度是确定炉子结构、供热方式及布置的主要依据。 以上就是河南恒睿热能科技有限公司分享的全部内容,希望对大家的生活和工作有所帮助。

加热炉操作说明

1概述 1.1前言 本操作手册为整个系统的操作说明,上岗操作人员上岗前请详细阅读本手册及有关仪表说明书。 1.2系统简介 加热炉系统包括加热炉炉体、燃烧器等设备和燃烧系统、自动控制系统等部分。 加热炉本体由多根立柱支撑,炉本体自挪娥、塑垂段及逛堕度城。下部辐射段为圆筒形,炉管采用多头并联立管;中部对流段采用横向列管结构,靠近 辐射段的换热管采用光管,其余选用翅片管结构;对流段上方设计带翻板的烟囱,通过控制翻板可调节炉膛压力。辐射段底部炉底安装三台燃烧器。 燃烧系统由燃烧器、燃料管线、燃气放空管线、灭火管线、氮气置换吹扫管线组成。燃烧器为自然通风型燃气燃烧器;燃料管线分为主燃料输送管线和长明灯燃料输送管线;烟风系统采用自然通风给燃烧器供风。 加热炉自动控制系统包括点火控制、负荷调节控制、炉膛负压控制及安保联锁控制等。通过控制点火步骤保证加热炉安全点炉,通过物料出口温度控制 燃料流量实现加热炉负荷自动调节,通过炉膛负压测点和烟囱翻板阀实现炉膛 负压调节,在点炉及运行中可以通过操作画面实现直观显示相关参数,通过对 敏感测点监控实现安保联锁控制保证加热炉设备安全。 2功能及技术特征 2.1工艺系统 2.1.1工艺系统简介 加热炉燃烧工艺系统流程详见随机资料之“系统流程图P&ID'。燃烧系统 主要包括主燃气管线、点火燃气管线、氮气置换吹扫管线和灭火管线。主燃料气管线的燃料供应及调节阀组内设置有带温压补偿的流量计、流量调节阀、双切断加放空阀组,在燃烧器前设置手阀、阻火器和金属软管,在燃气进入界区处设置氮气置换管线,主燃气切断阀后设氮气吹扫管线。系统可实现对燃料气的流量控制和切断,阻火器可保证燃料气管道的安全,当燃气系统停止工作时可以通过氮气管线对燃气管线进行安全置换。长明灯燃料气管线为燃烧器的长明灯提供燃气,气源来自主燃气管线,长明灯火焰稳定燃烧,从而保证主火焰被可靠引燃,长明灯管线设置双切断加放空阀组可通过程序控制燃料气的供应,并在长明灯火焰熄灭时及时切断燃气,保证系统安全。 燃料气燃烧需要的助燃风靠炉膛负压形成的自然通风提供,通过烟囱的烟道挡板阀

蓄热式连续加热炉的基本结构组成

蓄热室连续加热炉的基本结构组成 连续式加热炉由以下几个基本部分组成:炉子基础和钢结构、炉膛与炉衬、燃料燃烧系统、排烟系统、余热利用装置、冷却系统、装出料设备、检测及调节装置、计算机控制系统等。 1炉子基础和钢结构 炉子基础将炉膛、钢结构和被加热钢坯的重量所构成的全部载荷传到地面上。一般采用混凝土基础。 炉子钢结构是由炉顶钢结构、炉墙钢结构和炉底钢结构的一个箱形框架结构,用以保护炉衬和安装烧嘴。水梁、立柱及各种炉子附件的固定主要由型钢和钢板组成。 (1)炉膛与炉衬 炉膛是由炉墙、炉顶和炉底围成的空间,是对钢坯进行加热的 地方。炉墙、炉顶和炉底通称为炉衬,炉衬是加热炉的一个关 键技术条件。再加热炉的运行过程中,不仅要求炉衬能够在高 温和载荷条件下保持足够的温度和稳定性,要求炉衬能够耐受 炉气的冲刷和炉渣的侵蚀,而且要求有足够的绝热保温和气密 性能。为此,炉衬通常耐火层、保温层、防护层和钢结构几部 分组成。其中耐火层直接承受炉膛内的高温气流冲刷和炉渣侵 蚀,通常采用各种耐火材料经砌筑、捣打或浇筑而成;保温层 通常采用各种多孔的保温材料经砌筑、敷设、充填或粘贴形成,其功能在于最大限度地减少炉衬的散热损失,改善现场操作条 件;防护层通常采用建筑砖或钢板,其功能在于保持炉衬的气

密性,保持多孔保温材料形成的保温层免于损坏。钢结构是位于炉衬最外层的由各种钢材拼焊、装配成的承载框架,其功能在于承担炉衬、燃烧设备、检测设施、检测仪器、炉门、炉前管道以及检测、操作人员所形成的载荷,提供有关设施的安装框架。 A炉墙 炉墙分为侧墙和端墙,沿炉子长度方向上的炉墙成为侧墙,炉子两端的炉墙。整体捣打、浇注的炉墙尺寸可以根据需要设计。炉墙采用可塑料或浇注料内衬和绝热层组成的复合砌体结构。为了使炉子具有一定的强度和良好的气密性,炉墙外壁为5mm或6mm厚的钢板外壳。 蓄热式连续加热炉的炉墙上除了设有炉门、窥视门、烧嘴孔、测温孔等孔洞,还有蓄热室和高温通道(蓄热式烧嘴的蓄热室一再少嘴里),所以炉墙要能够承受高温。为了防止砌体受损,炉墙应尽可能避免直接承受附加载荷,所以炉门,冷却水管等构件通常都直接安装在钢材上。 B炉顶 加热炉的炉顶按其结构分为拱顶和吊顶两种。现在大多采用可塑料或浇注料内衬和绝热层组成的符合砌体吊顶结构。这种吊顶结构不受炉子跨度的影响且使用寿命长。 C炉底 炉底一般采用砖砌复合结构,高温炉底还要承受炉渣的化学侵

加热炉

11、窑炉 1.隧道窑包括预热带、烧成带、冷却带,设备窑体、燃烧设备和通风设备组成 2.隧道窑没有固定的窑底,活动在轨道上用耐火材料砌筑的窑车底面就是窑底,在窑墙与 窑车之间和窑车与窑车之间都设有密封装置 3.采用分散排烟的目的是为了控制各点的排烟量,以便灵活地控制制品在预热带的升温 曲线,并迫使烟气多次向下流动,以减小窑内上下的温度差。 4.排烟方式有地下烟道、金属烟道、墙内烟道三种 5.为了消除或减少预热带窑内上下的温度差,在预热带通常采用气幕装置。气幕分为搅动 气幕(阻碍窑内上部气流流动,迫使窑内热气体向下流动,产生搅动,使气流沿整个窑内断面上分布均匀)和循环式气幕(利用轴流风机或喷射器使窑内烟气循环流动,以达到均匀窑温的目的)。 6.燃烧室的拱顶必须与窑墙厚度和烧嘴流股张角相适应,以避免火焰直接冲刷拱顶和窑 墙。 7.向冷却带送风方式有分散式送风和集中送风两种。抽风口的位置不宜设在太靠近烧成 带,以防止烧成带炉气向冷却带倒流。 8.窑车与窑墙的密封油砂封和曲封,窑车之间的密封曲封、胶封和砂封、水封 9.隧道窑设检查廊作用1检查窑车底部工作情况2清扫漏到廊道的窑砂3处理倒窑事故 4冷却窑车底部 10.各带的操作要点预热带保证制品能按升温曲线均匀地进行加热;烧成带保证制品能 按规定的烧成曲线进行升温和保温;冷却带保证制品能按冷却曲线要求均匀冷冷却。 11.为了改善和消除预热带的气体分层和上下温差,可采取一下措施:采用循环气幕和扰 动气幕合理码砖采用窑底压力平衡装置加强窑体和窑门的密封采用低蓄热窑车 12.零压面位置一般控制在烧成带和预热带的交界面附近,使烧成带全带处于微正压操作。 13.窑内气氛包括氧化性气氛、还原性气氛、中性气氛 14.采用强氧化性火焰操作易造成局部过烧。弱氧化性火焰。 15.为了在隧道窑中获得高温而又节约燃料采用高发热量燃料高温预热助燃空气减 少窑体的热损失 10干燥炉 通过加热将固体物料中的水分蒸发并排除的过程称为干燥过程 1.对流干燥过程包括传热过程外扩散过程内扩散过程(湿扩散和热扩散) 2.自由水物料直接与水接触而吸收的水分,存在于物料的大毛细管和颗粒的空隙中,它 与物料结合松弛,自由水在干燥过程中极易去除 3.大气吸附水物料由空气中吸附的水分,存在于物料的微毛细管中及细小颗粒的表面, 与物料结合牢固。大气吸附水排除时,物料不发生收缩,不产生盈利,加大干燥速度物料不会开裂 4.干燥方法对流干燥辐射干燥工频电干燥高频电干燥微波干燥 5.干燥过程包括加热阶段等速干燥阶段降速干燥阶段平衡阶段

红外线加热炉解析

★红外线加热炉(烘干线) 大部分宣传词条遵循以下编辑原则: 地域(很多时候不用添加)+主语(主要是工件、涂料等)+主技术词(比如红外线等类似词汇,目前主技术词有十几个)+主词(如烘房、喷涂设备等,目前有近百个) 主词和主技术词一定要有,主语和地域根据情况添加。1红外线烘干炉(搜不到) 传统宣传标题 山东红外线烘干炉 河南红外线烘干炉 广东红外线烘干炉 氟碳漆远红外线烘干炉 电机转子红外线烘干炉 电镀红外线烘干炉 蜂窝陶瓷红外线烘干炉 瓦楞纸红外线烘干炉 建材红外线烘干炉 东营4回路红外线烘干炉,用于直径2.5米不锈钢罐体特种涂层烘干 红外线烘干炉---涂装生产线的重要节能设备,高能耗占总线的一半 红外线烘干炉非领导品牌---新远,技术特点—节能,三十年技术积累 红外线烘干炉比热风炉节能20-30%,5-10分钟内完成干燥 订购红外线烘干炉,首选锦州新远,省内批发,省外免安装费。 涿州仿进口红外线烘干炉,铝箔涂层2秒快速烘干,一次试车成功。 新远涂装公司是国内红外线加热技术的开创者,30年红外线烘干炉设计制作经验,为客户提供了数百台套的红外线烘干炉设备,技术领先,用高红外技术设计的隧道炉更是独步国内。 铝轮毂面漆烘干红外线烘干炉实例: 烘干系统构成 由红外线加热器、反射板、引出线、加热器支架、绝缘支架、铜排、炉外桥架、接线箱、plc控制柜等组成。 加热器和分组:加热功率***KW,由***支红外线加热器组成,分为双侧12组,分2区。 反射板:不锈钢板制做,模具加工,点焊固定。三种规格。 引出线:镀镍耐高温线,可耐500℃。 plc控制柜:2回路控制,精度2度,80-100度。

网带炉发展和特点

网带炉详细说明 网带炉介绍和特点:经过半个多世纪的发展,第一代网带炉从氧化气氛下加热逐步发展到第二代保护气氛、少无氧化加热,又进步到第三代可控气氛加热,第四代计算机管理,在廿一世纪的今天,网带炉是如何发展的网带炉的特点 今天热处理网带炉发展的动力和其它产品一样源自市场的需求,发展的成果来自技术的进步。我国改革开放政策正大大地推动并加速了热处理行业发展过程。 廿一世纪的网带炉技术将带有鲜明的时代特征,具有四大特点:智能化热处理、高质量热处理、低成本热处理、清洁的热处理 ■网带炉的发展方向: 网带炉生产线采用无污染DX气体回火发黑技术、无污染利用回火余热染黑技术取代了传统有污染的发黑工艺。网带炉热污染为零。 ■网带炉的详细介绍: 经过半个多世纪的发展,第一代网带炉从氧化气氛下加热逐步发展到第二代保护气氛、少无氧化加热,又进步到第三代可控气氛加热,第四代计算机管理,在廿一世纪的今天,网带炉是如何发展的网带炉的特点? 今天热处理网带炉发展的动力和其它产品一样源自市场的需求,发展的成果来自技术的进步。我国改革开放政策正大大地推动并加速了热处理行业发展过程。 廿一世纪的网带炉技术将带有鲜明的时代特征,具有四大特点:智能化热处理、高质量热处理、低成本热处理、清洁的热处理. 1智能化热处理 研究发展人员运用最新CAD程序和热处理数据库,计算机模拟仿真技术和控制技术,采用高度柔性化、智能化的综合控制和管理系统于网带炉及其生产线。 未来的网带炉操作者仅需将待处理的工件数量、图纸输入计算机,整套设备将自行处理出高质量的产品。 目前已实现了整个系统实时多项目操作控制。如控制装料厚度、网带速度、温度、碳势等。可全屏幕监视及控制分批进料之移动。能完全工艺程序控制,可储存9999个工艺。能完全记录设备运行状况中所检测到的工艺参数(零件号、材料、温度、碳势等)送计算机进行处理并存储记录。可随时调阅和打印。可贮存十年的记录。密码分层控制,完全分层。含有新炉升温程序,停炉升温程序可有效执行升温过程等. 2高质量的热处理 质量分散率为零,热处理畸变为零。质量控制措施: 上料控制系统:重量、数量、均匀性可控。实现翻斗式、吸盘式、磁带性、阶梯式、震动式料系统普遍推广采用。上料节奏自动控制、变频调速。零件方向自动排列。加料厚度实现实时监控。从源头上为热处理工艺的准确执行提供保证。 设备温度控制:炉温稳定性±1℃、炉温均匀性±10℃,冷处理温度均匀性±5℃,开关式温控将被淘汰。

石油化工管式工艺加热炉简介

石油化工管式工艺加热炉简介 郑战利

管式加热炉 在一个有衬里的密闭体内设置有大量的相互连接的优质或合金无缝钢管,被加热介质在一连串的无缝钢管内以很高流速通过,燃料在密闭体内燃烧产生高温烟气,高温烟气通过辐射、对流和传导把热量传给被加热介质,把被加热介质加热到生产工艺规定的温度或完成一定的化学反应深度;这类设备统称为管式加热炉。管式加热炉的范畴包含热水和蒸汽锅炉、热载体加热炉、油田水套炉、输油管道加热炉、炼油和石化生产装置的工艺加热炉等。今天我们所讲的管式加热炉是炼油和石油化工生产装置的工艺加热炉,简称为石化工艺加热炉。

石化工艺加热炉的主要特点是 1.被加热介质为易燃、易爆的液体或气体,且温度和压力较高。 操作条件苛刻。安全运行要求高。 2.加热方式为明火加热。 3.长周期连续生产。 4.所用燃料为液体或气体燃料。

管式加热炉应满足的要求 1.完成一定的传热任务,燃料耗量少、需要的传热面积小。 2.被加热介质不受局部过热。 3.在纯加热型管式加热炉中,被加热介质无分解或仅有极少量分解。 4. 在加热—反应型管式加热炉中,保证被加热介质的反应深度达到生产工 艺要求,且炉管中结焦量最少。 5.安全、稳定、连续运行周期在3~5年。 6. 排烟中的有害物含量和噪声必须符合国家标准规定。

管式加热炉的主要操作参数 1、有效热负荷:为各种被加热介质从体系入口状态到出口状态所吸收的能量之和,它等于供给能量与损失能量之差,Kw 2、排烟损失热量:排出体系的烟气带走的热量。Kw 3、燃料不完全燃烧损失热量:由于燃烧设备及燃烧工况等原因造成燃料没有完全燃烧而未能释放出的反应热。Kw 4、散热损失热量:体系内所有设备及管线表面向周围环境中散失的热量。Kw 5、附属设备能耗:鼓风机、引风机、吹灰器、热载体循环泵等辅助设备所耗掉的能量,按供给这些设备的能量计算。Kw 6、燃料效率:有效吸能量占供给燃料燃烧放出热量的百分数,其数值可能大于l00%。% 7、全炉热效率:有效吸能量占供给炉子总热量(不含附属设备损失)的百分数。% 8、综合效率:是体系供给能量利用的有效程度在数量上的表示,它等于有效能量对供给能量的百分数。% 9、炉膛热强度:指单位时间内单位炉膛体积所传递的热量,单位为kw/m3。 10、炉管平均表面热强度:指单位时间内单位炉管表面积所传递的热量,单位为kw/m2。 11、排烟温度:烟气离开被加热介质加热段的最终温度。℃ 12、排烟氧含量:烟气最终离开被加热介质加热段时中的氧含量。V% 13、炉膛Tp温度:烟气出辐射室时的温度。℃ 14、燃烧过剩空气系数:燃料燃烧理论空气量与供风量的比值。 15、燃料耗量:单位时间内,加热炉消耗燃料总和(Kg/h或Nm3/h)。 16、质量流量:单位时间内,流过单位炉管内截面积的加热介质的质量(Kg/m2.h)。 17、全炉压力降:被加热介质流过炉管系统的压力损失。MPa

管式加热炉温度-流量串级控制系统的设计解析

过程控制系统 课程设计 题目:管式加热炉温度-流量串级控制系统的设计

摘要 当今世界,随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境等要求,做为工业自动化重要分支的过程控制的任务也愈来愈繁重,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起着十分重要的作用。为了能将课程中所学理论知识初步尝试应用于实践,本次设计将采用过程控制系统原理来实现工业生产控制问题的解决,通过设计一个温度-流量串级控制系统来实现对管式炉加热原料油的温度控制。 管式加热炉是石油工业中重要的设备之一,它的任务是把原油加热到一定的温度,以保证下一道工序的顺利进行。加热炉的工艺过程为:燃料油经雾化后在炉膛中燃烧,被加热油料流过炉膛四周的排管后,就被加热到出口温度。本此设计内容包括总体方案设计,系统原理阐述,系统框图与结构的搭建,变量检测环节,变量变送环节,控制器,调节阀,联锁保护等环节的具体选择与设计,最终形成一个可行可靠的完整串级过程控制系统方案,力图通过具体应用获得理论知识的进一步提升,并为工业生产提出可行性建议。 关键字:流量温度串级控制

目录 1.管式加热炉温度控制系统的设计意义 (1) 1.1管式加热炉简介 (1) 1.2温度控制系统设计意义 (1) 2.管式加热炉温度控制系统工艺流程及控制要求 (2) 3.总体方案设计 (3) 3.1传统简单控制系统 (3) 3.2串级控制系统 (4) 3.3管式加热炉温度-流量串级控制系统控制原理及调节过程 (5) 4.系统的设计与参数整定 (7) 4.1主回路设计 (7) 4.2副回路设计 (7) 4.3主副调节器调节规律的选择 (7) 4.4主副调节器正反作用方式的确定 (8) 4.5控制系统的参数整定 (8) 5.所需检测元件、执行元件及调节仪表技术参数 (9) 5.1温度变送器 (9) 5.2温度检测元件 (10) 5.3流量检测及变送 (10) 5.4调节阀 (11) 5.5联锁保护 (11) 6.组态软件设计 (12) 6.1 新建工程 (12) 6.2 连接设备及设备测试 (13) 6.3 数据词典 (13) 6.4 建立画面 (14) 6.5 调试执行 (14) 心得体会 (16) 参考文献 (17)

三段推钢式连续加热炉操作规程

三段式推钢连续加热炉操作规程 一、简要介绍: 1、该加热炉分为;预热段、加热一段、加热二段、均热段; 分段方法采用的是将炉膛沿长度方向分成四段,每段供热段由 上加热和下加热共同组成,即对每段炉温进行调节时是将上、 下烧嘴同时进行了调节。 2、根据生产需要(如产量、加热工艺要求等)对加热一段、加热 二段、均热段温度进行调整和控制。 3、该加热炉控制采用的是:通过对控温仪表的温度(或手动调节 开度)设置,由控温仪表自动调节空气总管上的电动蝶阀的开 度,来调节空气压力(同时空气流量也相应进行调节)的大小, 空气压力由铜管取压力信号传到空/燃气比例阀,通过比例阀 作用直接按合理的空/燃比对天然气的流量进行调节,从而实 现炉温的自动控制。 二、点火前的准备: 1、提前与调度及有关人员联系,说明点炉时间。 2、检查电气、炉用仪表、总管电动蝶阀是否运行正常。 3、检查风机运行是否正常。 4、检查炉门升降、推钢机系统是否正常;将所有进出料炉门和能够打开的侧炉门完全打开。 5、检查烟道蝶阀是否转动灵活,同时全部打开烟道上的烟道蝶阀,让烟道完全畅通。 6、检查每个烧嘴前阀门(天然气调节阀门和空气蝶阀)是否开闭

自如,并确保将所有天然气调节阀门(总管调节阀和嘴前调节阀)完全关闭;检查并确保烧嘴前无杂物、无堵塞情况。 7、若为大修后或长时间未用的情况下启炉,需打开炉侧和炉顶天然气放散阀,关闭烧嘴前所有天然气调节阀,然后再打开主管道上的天然气总阀进行放散,并检查放散管是否开始排气,要求对天然气总管放散时间不少于10分钟,在对天然气管道进行放散过程中,现场周围20米范围内严禁有火源,严防爆炸事故发生,吹扫放散完毕后关闭所有放散阀门;若车间有氮气或蒸汽,也可采用氮气和蒸汽对天然气管道进行吹扫,但必须控制氮气和蒸汽压力进行有效控制,保证管道内压力不能超过20Kpa,否则烧嘴前空/燃气比例阀将损坏。 8、确认管路系统正常,天然气密闭良好,无泄露,稳压阀前后压力正常;稳压阀前天然气压力不能超过0.4Mpa,稳压阀后天然气压力将根据炉子总燃耗需要调至10 Kpa左右,但不能超过20Kpa,否则烧嘴前空/燃气比例阀将损坏。 9、在输气时,不准用铁器敲击天然气管道,不准在管道上吊挂任何重物或动火切割、焊接管道,以免产生火花引起爆炸。 10、在生产过程中若发现天然气管道漏气时,必须设法用泥浆或湿麻袋包扎死,并作好记录和标记,同时向检修部门报告,趁停产停炉期间及时安排处理。 三、炉子点火操作: 完成上述所有准备工作并仔细确认无误之后,具备点火条件。 1、天然气管道吹扫完毕后,要指派专人点火,点火操作由2-3人执行,无关人员应离开现场;

相关文档
最新文档