新型农药分散剂聚羧酸盐合成的国内外研究进展

新型农药分散剂聚羧酸盐合成的国内外研究进展
新型农药分散剂聚羧酸盐合成的国内外研究进展

新型农药分散剂聚羧酸盐合成的国内外研究进展

农药剂型中水分散粒剂( Water Dispersible Granule,剂型代码WG)是指入水后能迅速崩解、分散,形成高悬浮液的粒状制剂。该剂型兼具可湿性粉剂(WP)的物理稳定性和悬浮剂(SC)的高悬浮分散性的优点,是一种理想的环保剂型。

农药分散剂是水分散粒剂(WG)的关键组分之一,它吸附于油冰界面或固体粒子表面,阻碍和防止分散体系中固体或液体粒子的聚集,并使其在较长时间内保持均匀分散。传统的农药分散剂一般是具有多环的阴离子表面活性剂,如烷基萘磺酸盐、萘磺酸甲醛缩合物的钠盐、木质素磺酸盐等。

新型的农药分散剂聚羧酸盐是一种高分子类阴离子表面活性剂。与传统的农药分散剂相比,它不含萘、甲醛等有害物质,可减少环境污染;在低掺量条件下赋予农药高分散性与稳定性。国内这类农药分散剂目前主要靠进口。

1 新型农药分散剂聚羧酸盐概况

1.1 分散剂聚羧酸盐的一般合成

聚羧酸盐高性能分散剂是带有羧基、磺酸基、氨基以及含有聚氧乙烯侧链等的大分子化合物。是在水溶液中,通过自由基共聚原理合成的具有梳型结构的高分子表面活性剂。

合成聚羧酸盐高性能分散剂所需要的主要原料有:丙烯酸、甲基丙烯酸、马来酸、苯乙烯磺酸钠、烯丙基磺酸钠、丙烯酸羟乙酯等。

在聚合过程中可采用的引发剂为:过硫酸盐水性引发剂、过氧化苯甲酰、偶氮二异丁腈等;链转移剂有:3一巯基丙酸、巯基乙酸、巯基乙醇及异丙醇等。

1.2农药分散剂聚羧酸盐的国外开发概况

目前,国外公司在国内销售的聚羧酸盐农药分散剂主要是亨斯曼(HUNTSMAN)公司的TER- SPERSE 2700和索尔维(SOLVAY)旗下的罗地亚(Rhodia)公司的GEROPON T/368]。

1.2.1 亨斯曼(HUNTSMAN)公司的TER- SPERSE 2700

设在上海的亨斯曼功能化学品农化部曾专门撰文介绍TERSPERS E 2700。指出,目前在农药水分散颗粒剂中应用较多的聚合型分散剂为聚丙烯酸盐,而TERSPERSE 2700作为此类阴离子聚丙烯酸盐类分散剂的杰出品种,受到广大剂型开发工作者及生产厂商的广泛关注与青睐。TERSPERSE2700是亨斯曼功能化学品农化部研究人员专门针对农药水分散颗粒剂型特点而开发并拥有专利的专用分散剂,其结构同样是由强疏水性骨架长链与亲水性的阴离子低分子聚合所形成的具有“梳型”结构的高分子化合物。由于在开发过程中,其结构经过骨架链长、侧链基团密度及分布等筛选优化,并经多种农药有效成分的配方验证,TERSPERSE2700已成为全球范围内农药厂商加工水分散颗粒剂产品所广泛采用的重要品牌产品之一。

TERSPERSE 2700的分子结构如图1所示。其中疏水性的骨架长链能对农药有效成分微粒产生不可逆的充分包覆,而大量亲水性的低分子梳齿型侧链结构及其所带的电荷能在悬浮液中形成可靠的“双电

层”排斥效应,从而有效地阻止颗粒间因团聚或絮凝作用而导致的沉降,并使产品获得稳定可靠的悬浮性能。

TERSPERSE 2700的基本参数:100G纯聚丙烯酸盐类,系纯白色流动性无尘粉末,为脆性固体,易于粉碎和加工。本品溶于水(400g /L),不溶于有机溶剂。其pH值为8.0~10.O(5%水溶液);堆积密度:0. 4g/cm3(典型值);熔点:>250℃;挥发份:<5%。

亨斯曼表面活性剂技术公司( Huntsman Sur- factants Techno logy Corporation)还特申请了两件专利(,提供了分散剂在各种农药上的应用配方。

1.2.2 罗地亚(Rhodia)公司的GEROPON T/36和GEROPON T/3 6-DF

索尔维(SOLVAY)旗下的罗地亚(Rhodia)公司在其产品说明书中给出了两种聚羧酸盐分散剂 GEROPON T/36和GEROPON T/3 6-DF的技术指标,见表1。

GEROPON T/36的应用见参考文献[8]。曾有文献披露GEROPON T /36的主要成分是丙烯酸与马来酸酐的共聚物。

1.3 农药分散剂聚羧酸盐的国内研究概况

目前我国还没有水分散粒剂(WG)专用丙烯酸系共聚物盐产品生产,这种情况已经严重制约了我国新农药制剂的开发及农药工业的发展。因此研究、开发新型、高效的专用助剂及共性技术是我国农药剂型加工领域亟待解决的课题。

虽然TERSPERSE 2700和GEROPON T/36都没有公布化学组成,只笼统地取名聚羧酸钠盐(sodium polycarboxylate),然而根据已有

的文献资料报道,其化学组成有三种可能:一是丙烯酸的一元均聚物;二是丙烯酸与第二单体的二元共聚物;三是丙烯酸与第二、第三单体的三元共聚物。以下分别对这三种化学组成进行讨论。

2 丙烯酸一元均聚物

2.1 聚丙烯酸钠盐的分子量与用途

聚丙烯酸钠是一类高分子电解质,是一种新型功能高分子材料,用途广泛,可用于食品、饲料、纺织、造纸、水处理、涂料、石油化工、冶金等。聚丙烯酸钠的用途与其分子量有很大关系,一般来说,低分子量(500~5000)产品主要用做分散剂、水处理剂等;中等分子量(101~10G)主要用做增稠剂、黏度稳定剂、保水剂等;高分子量主要用做絮凝剂、增稠剂等。

2.2 丙烯酸类聚合物分散剂的制备

制备聚丙烯酸钠盐分散剂的实验原理符合一般自由基聚合反应规律,采用溶液聚合法,控制引发剂和链转移剂用量,合成低相对分子量的聚丙烯酸。在制成的聚丙烯酸水溶液中,加入浓氢氧化钠溶液,获得聚丙烯酸钠盐。

制备聚丙烯酸钠盐分散剂一般采用过硫酸铵作引发剂,亚硫酸氢钠或异丙醇作链转移剂,将丙烯酸单体在温度较高的水溶液中进行聚合。聚合完成后,用氢氧化钠中和。制备过程如下:在带有回流冷凝管和两个滴液漏斗的三口烧瓶中,加入去离子水和链转移剂,搅拌溶解,升温至80~90℃左右,缓慢滴加丙烯酸单体和引发剂溶液。滴加完成后,保温反应一段时间后冷却,滴加浓氢氧化钠中和,使溶液

pH值达8~10,即得到聚丙烯酸钠溶液。采用喷雾干燥或真空干燥加机械粉碎,可得到粉末状聚丙烯酸钠分散剂。

早期的美国专利报道了类似的聚丙烯酸的合成方法,其中也有采用巯基乙醇作为链转移剂的,美国联合碳化物公司采用的是30%双氧水加次磷酸钠作为引发剂。

2.3 丙烯酸聚合的引发剂

用于丙烯酸水溶液聚合的水溶性引发剂主要有双氧水、过硫酸铵、过硫酸钾、过硫酸钠等。其中双氧水必须与水溶性还原剂配合使用,但其活性低且不安全,除早期的聚丙烯酸合成使用外,现在已基本不用。曾有早期文献指出,在同一聚合条件下,用过硫酸钾作引发剂比过硫酸铵所得的聚丙烯酸分子量偏高,聚合液色浅,但两者并无原则差别。也有文献指出,过硫酸钠相比于过硫酸铵和过硫酸钾活性低,必须与还原剂并用。过硫酸铵在碱性条件下会放出氨气,因此不适用于聚丙烯酸钠的合成。

2.4聚丙烯酸钠的合成工艺路线

聚丙烯酸钠的合成工艺路线主要有以下几种:

大部分的研究者是采用路线(1),也有小部分的研究者是采用路线(2)。路线(3)和路线(4)未见报道。

2.5 合成低分子量聚丙烯酸钠的分子量调节剂

在合成低分子量聚丙烯酸钠的过程中,一般都要添加调聚剂、链转移剂或分子量调节剂。主要有以下几种。

2.5.1 异丙醇:

以异丙醇为链转移剂制备低分子量聚丙烯酸钠是传统的、经典的的方法。巴斯夫(BASF)公司在20世纪80年代早期就申请了专利。该专利是这样描述制备过程的:1600kg 58%浓度的异丙醇和96kg 50%浓度的过氧化氢加入到15 m3容积的压力釜中,该压力釜装备有搅拌器、加热夹套、计量和蒸馏装置。物料被加热至130℃,压力为0. 4MPa。当温度升至130℃时,5000kg丙烯酸和3700kg 58%浓度的异丙醇混合物从一个压力适合的贮槽中加入压力釜中。同时,在8h内,总量200kg 50%浓度的过氧化氢通过一个计量泵加入反应器中。在聚合期间,反应混合物被保持在130℃,压力大约0. 4MPa。当所有过氧化氢加入后,反应混合物保持在130℃约2h,然后卸压,在这个过程中约40%浓度的异丙醇/水混合物通过一个冷凝器被蒸出。剩余的异丙醇/水混合物在减压下蒸出。将50%浓度的氢氧化钠溶液加入到蒸馏釜的釜液中,得到能够直接使用的聚丙烯酸钠溶液。该溶液的p H值8.5,含有45%的聚丙烯酸钠。该聚合物溶液是一种分散性能极好的分散剂,可应用于造纸工业中。后期其他以异丙醇为链转移剂的制备分散剂聚丙烯酸钠的文献与该专利大同小异,不同之处有3点:①不再使用压力釜,而采用常压回流反应;②引发剂不再使用过氧化氢,而采用过硫酸盐;③丙烯酸与引发剂同时滴加。

异丙醇法制备聚丙烯酸钠的优点是工艺成熟,分子量控制稳定,产品纯度高。缺点是在生产工艺中必须要有减压蒸馏和溶剂回收系统,工艺相对复杂,生产成本较高。

在异丙醇法制备聚丙烯酸钠的文献中,提到产品应用于农药的有三篇,即作为农药造粒展开剂,粒状农药的载体等。

2.5.2 丙醇

山东轻工业学院化工系的三篇论文报道了以丙醇为链转移剂制备分散剂聚丙烯酸钠的方法。最早的一篇论文只报道了某醇作为链转移剂,后两篇论文都指明链转移剂是丙醇,由此可以推断第一篇论文的某醇就是丙醇。

这三篇论文的聚合反应温度为68℃。滴加单体丙烯酸和引发剂溶液的时间2~3h,保温反应2h。采用的引发剂有过硫酸铵,或过硫酸钾。

2.5.3 焦亚硫酸钠

山东潍坊学院化学系报道了采用焦亚硫酸钠作为链转移剂合成低分子量聚丙烯酸钠。过硫酸铵为引发剂,浓度0. 04%(过硫酸铵占整个体系的百分比),焦亚硫酸钠浓度为 2. 95%(焦亚硫酸钠占整个体系的百分比),反应温度35℃,反应时间6h,单体浓度为25%。

该论文指出,低分子量聚丙烯酸钠可用不同的方法合成,但都是在比较高的温度下进行,并且要蒸馏回收大量的链转移剂,操作费时、耗能。该实验在较低温度下以氧化还原催化剂直接合成低分子量聚丙烯酸钠。添加剂焦亚硫酸钠既是还原剂也是链转移剂,并且其反应产物作为产品的组成部分,不用分离回收。

2.5.4 次磷酸钠

西北工业大学应用化学系∞们报道了采用次磷酸钠为链转移剂合成高效分散剂聚丙烯酸钠的方法。该论文采用过硫酸铵和硫代硫酸钠为复合引发剂,起始温度控制在65℃,滴加丙烯酸和复合引发剂水溶液,lh滴加完毕。之后在65~70℃保温反应3h。反应完毕冷却至室温,加入氢氧化钠中和至pH=7~8得到聚合物溶液。

该论文还指出聚丙烯酸钠是一种新型功能高分子材料,广泛用于日用化学工业、农业、石油工业、工业循环水系统。低分子质量聚丙烯酸钠(约1000~5000)主要起分散作用;中相对分子质量(约104~106)主要起增稠作用;高相对分子质量(约106~107)主要起絮凝作用;超高相对分子质量的聚丙烯酸钠主要用做吸水剂;超低相对分子质量(700以下)的聚丙烯酸钠被用做高效分散剂。

2.5.5 亚硫酸氢钠

早期合成低分子量聚丙烯酸钠大部分都是采用异丙醇为链转移剂,而2008年以后合成低分子量聚丙烯酸钠的文献报道大都采用亚硫酸氢钠为链转移剂,且大都说明是用亚硫酸氢钠替代异丙醇,并指出其优点是省去溶剂回收,简化工艺,降低成本。以上海东升新材料有限公司2012年的专利为例,该专利提供了一种低分子量聚丙烯酸钠分散剂的制备方法,包括如下步骤:分别用5kg水将0. 7kg质量浓度为30%的双氧水、0.38kg硫脲和0. 21kg亚硫酸氢钠溶解形成水溶液。配制的水溶液中:双氧水水溶液的质量浓度为 4.2%,硫脲水溶液的质量浓度为7.6%;亚硫酸氢钠的质量浓度为4.2%。在反应釜中加入60kg水,保持温度在40℃,同时滴加双氧水水溶液、硫脲水

溶液和亚硫酸氢钠水溶液,10kg丙烯酸,滴加时间为2h。加入质量浓度为50%的氢氧化钠溶液调节pH至7.1,并加水调节固含量为41. 6%,即可获得产品。25℃黏度为451mPa"s(NDJ-1旋转黏度计测定),采用凝胶色谱法测定样品重均分子量为5600。该专利指出:采用亚硫酸氢盐代替异丙醇作为分子量调节剂,并使用双氧水、硫脲与其形成三元氧化还原引发体系,降低自由离子引入。采用该发明方法,由于替代了异丙醇,所以能耗低,设备利用率高,降低了生产成本。

另一篇发表在《化学研究》期刊上的标题为“亚硫酸氢钠作为链转移剂合成低分子量聚丙烯酸钠”的论文,给出了比较经典的合成方法:在装有搅拌器、回流冷凝器、滴液漏斗和温度计的250mL四口烧瓶中,加入一定量的去离子水和链转移剂NaHS03(亚硫酸氢钠),搅拌溶解,然后在不断搅拌下加热升温至某一要求温度时开始分别滴加丙烯酸和引发剂过硫酸钾水溶液,并在1~2h内滴加完毕,之后保温反应一定时间。反应完毕,将反应物冷却至40~50℃时缓慢加入3 0%的氢氧化钠水溶液中和至pH=7~9,得到浅黄色透明 PAANa(聚丙烯酸钠)溶液。该论文并指出,低分子量PAANa合成方法主要有聚合法、中和法和皂化法,且一般都在较高的温度下进行,尤其是在反应结束后要蒸馏回收大量的链转移剂(如异丙醇、巯基乙醇等),操作周期长,耗能较高,设备利用率低,生产成本高。而采用K2S。08 N ail- SO。氧化还原体系为引发剂、NaHS03为链转移剂直接合成低分子量PAANa,工艺操作简单、耗能较小、生产成本低。

该论文还考察了NaHS03与K2 $20s(过硫酸钾)质量之比对PA ANa相对分子质量的影响和反应温度对PAANa相对分子质量的影响,分别见表2和表3。

2.5.6 不加分子量调节剂

也有文献报道不采用分子量调节剂制备低分子量聚丙烯酸钠,基本上都是一些早期的文献,以罗门一哈斯(Rohm and Hass)的早期专利为代表。近期也有不加分子量调节剂合成低分子量聚丙烯酸钠的文献报道。该文献的合成方法是:在装有搅拌器、回流冷凝管、温度计、滴液漏斗的500mL四口烧瓶内,加入一定量的去离子水,在不断搅拌下加热至一定温度,开始滴加丙烯酸溶液和引发剂水溶液,并在1~2h内滴加完毕。之后保温反应一段时间。当反应物冷却至40~52℃时,逐渐滴加30%的氢氧化钠溶液,中和至pH处于7~8之间,得到淡黄色黏稠聚丙烯酸钠溶液。用该方法适当筛选工艺参数,可得到黏均相对分子量2000~3000的聚丙烯酸钠溶液。

2.6 羧基中和程度对聚丙烯酸钠分散性能的影响北京化工大学材料科学与工程学院具体报道了羧基中和程度对聚丙烯酸钠分散性能的影响。方法是:在带有回流冷凝管、滴液漏斗和搅拌器的500mL 三颈烧瓶中加入200mL蒸馏水和29过硫酸铵,待过硫酸铵溶解后,加入109丙烯酸单体和1 69异丙醇,开动搅拌,加热使温度达到65~70℃,然后将809丙烯酸单体和59过硫酸铵在40mL水中的溶液混合后由滴液漏斗加入烧瓶内,滴加时间约为0. 5h,其后在94℃回流反应lh。

在冷水浴及搅拌下并由酸度计监测pH值,向已制得的聚丙烯酸溶液中滴加30%的氢氧化钠,边滴加边搅拌,中和使pH值分别为5.

5、7.0、9.4和11.0。

通过检测黏度可得出如下结论:①pH=9时,聚丙烯酸钠溶液自身黏度达到最大值,对应的颜料分散浆为最优分散状态;②当pH-9时,聚丙烯酸钠分散剂能使分散颜料浆的旋转黏度降到最低,减少工业能耗,降低设备磨损以及提高涂料的储藏性能。

2.7 其他低分子量聚丙烯酸盐

河南省精细化工重点实验室∞21报道了低分子量聚丙烯酸铵分散剂的合成。其合成方法为:在装有温度计、电动搅拌器、回流冷凝管和恒压漏斗的250mL四口反应瓶中,先加入水、异丙醇、一定量的丙烯酸和过硫酸铵的混合溶液后,搅拌加热至回流,保持回流反应1 5min后,开始滴加剩余的丙烯酸和过硫酸铵水溶液,lh内滴完,保温反应2h。聚合反应结束后,常压下蒸出异丙醇,冷却至室温,在保持室温下缓慢加入氨水,调整体系 pH=7~8,即得产品聚丙烯酸铵。

2.8 干燥方法

目前,聚丙烯酸钠分散剂的干燥方法主要有两种。

2.8.1 真空干燥粉碎法

上海师范大学一篇题为“一种丙烯酸类聚合物分散剂及其制备工艺和应用”的发明专利∞”报道了制备固体丙烯酸类聚合物分散剂的方法。除了在水溶液中进行聚合得到分散剂的水溶液外,制备工艺的

最后一步,是将制备的液体放入真空干燥箱中于60~90℃进行干燥,即得目标分散剂。

2.8.2 喷雾干燥法

《商品混凝土》期刊近期刊登的一篇题为“一种粉末聚羧酸盐减水剂的制备与性能”的论文报道了将聚羧酸盐溶液进行喷雾干燥得到粉剂的干燥方法。将制得的聚羧酸盐母液通过离心喷雾干燥机进行喷雾干燥等特殊工序,最后经过过筛得到自身流动性能优异,具有滑爽手感的聚羧酸盐粉剂,且长期存放不黏结,不结块。该论文考察了母液浓度、进风温度、抗结块剂加入量等对喷雾干燥工艺和粉剂性能的影响。北京化工大学也报道了聚羧酸盐溶液的干燥方法,采用的是北京化工研究院的WP-- 15微型喷雾干燥机。上海师范大学采用的是济南奥诺能源科技有限公司的WPG-- 220微型实验室喷雾干燥机。

3 丙烯酸与第二单体的二元共聚

3.1 丙烯酸冯来酸酐共聚

为了进一步改善低分子量聚丙烯酸盐分散剂的性能,人们将丙烯酸与第二单体进行二元共聚。在这些丙烯酸的二元共聚物中,研究得较多较成熟的是丙烯酸与马来酸酐的共聚。丙烯酸与马来酸酐共聚物的螯合性能和分散性能要优于丙烯酸的均聚物。马来酸盐易于与高价金属离子形成稳定的五元环结构可能是其共聚物螯合性能好的原因。

由于马来酸的分子结构决定了其聚合活性低,一般很难形成均聚物,所以当马来酸酐在共聚组成中含量足够高时,其共聚物的分子量不可能很高。因此与低分子量聚丙烯酸钠不同,多数研究论文在报道

丙烯酸与马来酸酐共聚工艺时均没有提到要加分子量调节剂,尤其是未见加异丙醇作为分子量调节剂的报道。以近期浙江理工大学材料与纺织学院的一篇题为“丙烯酸—马来酸酐共聚物的合成及其螯合分散性能”的论文为例,该论文的合成方法为:在四口反应烧瓶中加入定量的马来酸酐,再加入适量的去离子水,开动转子使其充分溶解。然后升温至70~95℃,在规定时间内缓慢滴加定量的丙烯酸和定量的1 0%过硫酸铵引发剂水溶液,滴加完后,保温30~110min,冷却至室温,用氢氧化钠溶液调节pH值至6~7。

近期也有文献报道了在丙烯酸冯来酸酐共聚物的合成中加入链转移剂的合成方法。这篇出自太原理工大学应用化学系的合成研究论文指出:丙烯酸冯来酸酐共聚物是一种低分子量的电解质,具有很强的分散作用。目前关于丙烯酸冯来酸酐共聚物制备的文献报道较多,主要从其螯合性能和分散性能来研究其最佳聚合条件,而涉及影响丙烯酸—马来酸酐共聚物相对分子量的详细研究还未见报道。用做分散剂的丙烯酸—马来酸酐共聚物的相对分子量分布较窄,其聚合反应条件较难控制。研究聚合反应条件对其相对分子量的影响,对于优化生产工艺,提高分散性能是非常必要的。该论文重点考察了聚合温度、链转移剂和引发剂配比对丙烯酸—马来酸酐共聚物相对分子量的影响,并研究了其相对分子量与其分散性能之间的关系,及具有最佳分散性能的共聚物的相对分子量。该论文的结论指出:丙烯酸—马来酸酐共聚物的相对分子量与其分散性能之间存在相关关系,相对分子量在2000左右时,共聚物的分散效果最佳。

还有一篇中国科学院长春应用化学研究所的论文也报道了采用S HS(亚硫酸氢钠)为链转移剂合成丙烯酸—马来酸酐共聚物。

3.2丙烯酸-衣康酸共聚

衣康酸含有两个羧基,但为非对称结构,并且有一个羧基通过亚甲基与双键相连,因而聚合活性高。以它为共聚单体,可向聚羧酸链中引入更多的羧基,因而有可能制得助洗性能更好的聚羧酸盐。此外,衣康酸是由可再生资源经过发酵法生产的,其聚合物具有良好的生物降解性。因此以丙烯酸一衣康酸为助洗剂更符合绿色化学的要求。青岛科技大学化工学院的一篇论文报道了丙烯酸与衣康酸共聚物的合成。

该论文的合成方法为:将衣康酸和去离子水加入到装有温度计和冷凝管的250mL三口烧瓶中,在充分搅拌下加热至80~85℃,然后滴加丙烯酸单体和100g/L的过硫酸铵溶液,约2.5h滴完。之后于8 0~85℃反应3.5h,再用氢氧化钠溶液中和至pH=6~7,即得共聚物水溶液(共聚物质量分数约30%)。

该论文有两点结论:①以水为溶剂合成丙烯酸-衣康酸共聚物的较佳条件是:反应温度为80~85℃,过硫酸铵用量为单体总质量的6. 67%,衣康酸占单体的摩尔分数为22%,丙烯酸和过硫酸铵的滴加时间约为2. 5h,保温时间为3.5h,总反应时间为6h;②影响丙烯酸-衣康酸共聚物性能的主要因素是丙烯酸和衣康酸的配比。

4 丙烯酸与第二、第三单体的三元共聚

4.1 丙烯酸—马来酸酐-廿乙烯磺酸钠共聚

上海师范大学近期的一篇专利和一篇论文报道了丙烯酸—马来酸酐-廿乙烯磺酸钠三元共聚物钠盐分散剂的合成。

上述上海师范大学专利的合成方法是:①加入去离子水、链转移剂和苯乙烯磺酸钠,边搅拌边加热;②当温度升到60~90℃,加入丙烯酸、顺丁烯二酸酐(马来酸酐)及引发剂,保温反应1~3h;③自然冷却到室温,用氢氧化钠水溶液调pH至7~8;④将制备的液体放入真空烘箱中于60~90℃干燥,即得目标分散剂。该专利指出该丙烯酸类分散剂的应用:所述分散剂用于碳酸钙、氧化锌、硫酸钡、二氧化钛、莠去津水分散粒剂、吡虫啉水分散粒剂或阿特拉津水分散粒剂的分散。

上述上海师范大学的论文是直接针对农药剂型的开发,指出:目前聚合物分散剂广泛用于农药剂型的开发,尤其是水分散粒剂(Wate r Dispersible Granule.WDG)。WDG主要由农药有效成分、分散剂、润湿剂、黏结剂、崩解剂和填料组成。入水迅速崩解、分散,形成高悬浮分散体系,分散剂对农药水分散粒剂的稳定、分散、悬浮等起关键作用。因而设计、合成新型的聚合物分散剂,研究其分散性能等,对农药剂型的开发、应用有一定的意义。该论文还将所合成的分散剂与前述的法国罗地亚公司生产的分散剂T36进行了分散效果对比。该论文所采用的制备方法为:将一定量的去离子水、亚硫酸氢钠、苯乙烯磺酸钠加入四口烧瓶中,搅拌、加热至预定值,同时逐滴加入丙烯酸/马来酸酐溶液和过硫酸铵溶液,控制滴加时间为1. 5h,保温反

应2h,冷却至室温,用NaOH溶液中和至 pH为7~8,烘干得固体样品。

4.2 丙烯酸-廿乙烯磺酸钠一甲基丙烯酸羟乙酯共聚中国科学院过程工程研究所的一篇论文报道了丙烯酸-廿乙烯磺酸钠一甲基丙烯酸羟乙酯共聚物的合成及应用,并与罗地亚公司生产的T36(主要成分为聚羧酸钠盐及马来酸二钠盐)进行了对比。该论文的合成方法是:将一定量去离子水、亚硫酸氢钠、苯乙烯磺酸钠加入到四口烧瓶中,加热搅拌。称取定量的丙烯酸和甲基丙烯酸羟乙酯加入到恒压滴液漏斗中,另称取定量引发剂过硫酸铵加入另一恒压滴液漏斗中。当烧瓶中温度升到预定温度时,同时滴加丙烯酸/甲基丙烯酸羟乙酯溶液和过硫酸铵溶液,控制溶液滴加速度,保温反应2~5h。冷却后用NaOH水溶液中和,使pH在7~8左右,放入烘箱中干燥得固体。4.3 丙烯酸-廿乙烯磺酸钠—丙烯酸羟丙酯共聚

上海师范大学生命与环境科学学院的一篇论文报道了丙烯酸-廿乙烯磺酸钠-丙烯酸羟丙酯三元共聚物的合成及其分散性能。该论文认为:合成带有亲水性基团为 S03H和 COOH的高分子共聚物钠盐分散剂,引入磺酸基使共聚物既有较好的水溶性,又有高效的抗硬水能力,且磺酸基具有空间位阻作用和静电斥力作用,更能提高共聚物的分散性能,同时共聚物中羧酸基、磺酸基、羟基等基团的协同作用使共聚物分散剂具有高效的分散性能。该论文的合成方法是:将一定量去离子水、亚硫酸氢钠(为过硫酸铵质量的1/3)、苯乙烯磺酸钠加入四口烧瓶中,搅拌加热。称取定量的丙烯酸和丙烯酸羟丙酯加入

恒压滴液漏斗中,另称取定量的引发剂过硫酸铵配成溶液加入另一恒压漏斗中。四口烧瓶内温度升到预定温度时,开始同时滴加丙烯酸/丙烯酸羟丙酯溶液和过硫酸铵溶液,控制溶液滴加速度,保温反应2. 5h。冷却后用NaOH水溶液中和,使pH在7~8之间,放入60℃真空干燥箱中干燥得固体,即为丙烯酸苯乙烯磺酸钠—丙烯酸羟丙酯三元共聚物分散剂。

5 其他聚羧酸盐类

5.1 甲基丙烯酸-廿乙烯磺酸钠二元共聚

河北科技大学理学院的两篇论文79—80}报道甲基丙烯酸和对苯乙烯磺酸钠反应动力学研究以及甲基丙烯酸和对苯乙烯磺酸钠共聚反应单体竞聚率的测定。其中,前者得出的聚合反应动力学关系式为 Rpoc ,聚合表观活化能 Ea为58. 97kJ/mol;后者得到甲基丙烯酸的竞聚率rl一0.06615,对苯乙烯磺酸钠的竞聚率r。一2. 412。

5.2 甲基丙烯酸-衣康酸蝙丙基磺酸钠三元共聚

陕西科技大学化学与化工学院的一篇论文∞”报道了甲基丙烯酸-衣康酸蝙丙基磺酸盐超分子分散剂的合成与性能表征。该论文指出:通过衣康酸、烯丙基磺酸钠和甲基丙烯酸自由基的共聚改性,制备了具有两亲结构的水溶性超分子分散剂。超分子分散剂由于亲水基、疏水基的位置、大小可调,分子结构可呈梳状,又可呈现多支链化,因而对分散微粒表面覆盖及包封效果强,且其分散体系更易趋于稳定、流动,具有更好的分散效果。该论文的制备方法为:将一定量的甲基丙烯酸、衣康酸、烯丙基磺酸钠、引发剂、链转移剂及蒸馏水加入带

搅拌装置的三口烧瓶中,升温至一定温度,控温在氧化还原体系中反应2~4h,得无色黏稠液体。冷却,调节pH值至8,即得淡黄色透明液体。

5.3 甲基丙烯酸-廿乙烯-丙烯酸羟丙酯三元共聚

过程工程学报2012年第2期上的一篇论文报道了羧酸盐类聚电解质润湿分散剂的合成与应用,实际上就是合成了甲基丙烯酸-廿乙烯-丙烯酸羟丙酯三元共聚物。通过改变单体比例,调控聚合物分子的亲/疏水性质和官能化基团分布,改变引发剂量,调控聚合物分子量和溶剂化链长度,经正交实验设计,得到具有不同亲水亲油平衡值和疏水常数的羧酸盐三元共聚物。将其用于制备25%吡蚜酮水悬浮剂,具有优异的分散性能。

6 聚羧酸盐的表征、标准和质量指标

6 1 聚羧酸盐的红外结构表征

部分有关聚羧酸盐合成研究较详细的文献都给出了所合成产品的红外谱图作为结构表征。例如文献等给出了低分子量聚丙烯酸钠均聚物的红外谱图;文献[11,55,59,61,62,64,66,70~71]等给出了丙烯酸一马来酸酐共聚物的红外谱图;文献给出了丙烯酸冯来酸酐-廿乙烯磺酸钠三元共聚物的红外谱图;文献给出了丙烯酸毒乙烯磺酸钠一甲基丙烯酸羟乙酯三元共聚物的红外谱图;文献t783给出了丙烯酸-廿乙烯磺酸钠—丙烯酸羟丙酯三元共聚物的红外谱图;文献给出了甲基丙烯酸一衣康酸蝙丙基磺酸钠三元共聚物的红外谱图。

6.2 聚羧酸盐的分子量测定

6.2.1 端基分析法

端基分析法只适用于低分子量的聚丙烯酸均聚物的数均分子量测定,采用此法测定的有文献 t17,1 9,28,30,35,38,40,44 -45]等,该法的计算公式为:

6.2.2 乌氏黏度计法

乌氏黏度计法使用得比较广泛,在所查阅到的合成文献中,除了上述几篇是端基分析法外,几乎都是乌氏黏度计法。乌氏黏度计法除了可以测丙烯酸的均聚物外,还可以测丙烯酸钠的均聚物、丙烯酸的二元共聚物乃至其三元共聚物。乌氏黏度计法极限黏数[∞](数值单位以dL/g表示)的计算公式为:

6.2.3 凝胶渗透色谱法(GPC)

有个别文献ti76,7g]报道了采用水相凝胶渗透色谱法(GPC)测定丙烯酸三元共聚物分散剂的数均分子量和重均分子量。采用凝胶渗透色谱法测定分子量的好处是同时可以测出分子量分布。以上两篇文献所采用的凝胶渗透色谱仪都是北京温分分析仪器有限公司的LC98Ⅱ-RI型。

6.3 有关产品标准和测试标准

6.3.1有关聚丙烯酸、聚丙烯酸钠、聚马来酸酐的标准

国内目前已有关于聚丙烯酸、聚丙烯酸钠的国家标准和行业标准,聚马来酸酐的国家标准可供进行聚羧酸盐分散剂合成研究检测和制定标准时的参考。

6.3.2 有关分散剂的分散性能测试

有关分散剂的分散性能测试可根据国际农药分析协作委员会( C IPAC)的水分散粒剂分散性测试标准MT174[1]检测方法测定。

7 聚羧酸盐的毒性和环境保护

7.1 聚羧酸盐的毒性

聚丙烯酸钠是无毒的,中州大学化工食品学院2011年的一篇论文报道了其作为食品添加剂的合成工艺,主要用于食品的增稠、增筋和保鲜等。美国FDA及日本厚生劳动省等先后批准其作为食品添加剂使用,我国卫生部在2011年颁布的国家标准中也正式批准其作为食品添加剂,功能是增稠剂。

7.2聚羧酸盐对环境的影响

北京轻工业学院的一篇论文讨论了洗涤剂中聚羧酸盐对环境的影响,在谈到聚羧酸盐的毒性情况时指出:聚羧酸盐的毒性行为研究表明:线性聚羧酸盐是无毒的,大鼠急性口服毒性是很低的,慢性口服高剂量也是安全的。在动物试验中,急性和亚急性都没有发现聚羧酸盐对皮肤的刺激和累积作用,人体皮肤接触试验也没有发现任何刺激性。聚羧酸盐气溶胶吸入的亚急性毒性动物试验研究表明,对肺部有轻微刺激作用,在其人体皮肤接触试验中没有发现过敏反应。此外,

OROTAN731A聚羧酸钠盐水性涂料分散剂

OROTAN 731A(聚羧酸钠盐)水性涂料分散剂 OROTAN 731A是一款标准型的环保聚羧酸钠盐水性涂料分散剂,对所有无机颜料和填料都有优异的分散性,用其分散的浆液贮存稳定性好,长期贮存不沉淀、不返粗;OROTAN 731A低V O C的设计,特别适用于众多的内墙涂料体系中,并能获得良好的分散性、稳定性和漆膜性能;OROTAN 731A虽为钠盐产品,但其耐水性远优于同类钠盐分散剂,同样适用于外墙体系的水性建筑涂料中。 典型参数: 外 观:透明淡黄色液体 主要成份:聚羧酸钠盐水溶液 离子属性:阴离子 固 含 量:25% 酸 碱 值:9.5-10.5 比 重:1.0-1.2K G/L 粘 度:20-130C P S/25℃ 产品特点: (1)超低V O C:OROTAN 731A不含甲醛,以水为载体,可用于配制低V O C环保型内外墙涂料。 (2)平缓的分散性,与体系配套性优异,浆料贮存稳定性优异:OROTAN 731A的分散性相对平缓,但是在使用性、适用性方面更加优越,在一定范围内使用,即使过量添加亦不会影响体系的贮存稳定性。(3)良好展色能力,对颜料的承载力强,防止颜料浮色发花,有利于后期调色。 (4)优越的耐水性:OROTAN 731A采用先进复合技术,对钠盐结构进行改性,减少对漆膜耐水性影响。 其耐水性目前远优于同类钠盐分散。 (5)低泡沫:OROTAN 731A是一种复合钠盐分散剂,对钠盐结构的改性,同样减少在分散过程中产生泡沫的可能性。 (6)可改善体系的流平性。 使用指南: OROTAN 731A分散剂能与水按任何比例混溶,建议在涂料生产的研磨阶段加入,一般先直接将OROTAN 731A加入水中,同时加入消泡剂、纤维素和其他助剂,然后加入颜料、填料等粉料,经高速分散或砂磨,可制成分散均匀、稳定的浆料。 参考用量:0.15-0.6% 应用领域: 广泛应用于纯丙、苯丙和醋丙体系的水性内、外墙建筑涂料中。 适用于色浆生产。 适用于纸浆生产。

缓释剂

几种重要的缓释剂 缓释剂种类繁多,这里仅介绍几种比较成熟的缓释剂剂型及其产品。 (一)微胶囊剂 1.微胶囊剂的组成微胶囊剂是用物理或化学方法使原药分散成几微米到几百微米的微粒,然后用高分子化合物包裹和固定起来,形成具有一定包覆强度的微囊,通过囊皮的半透膜性能或开裂特性控制原药释放。微胶囊剂由囊核(有效成分及溶剂)和囊皮组成。囊核是微胶囊剂的活性组分,通常是单一或混合的液体、固体及各种分散体系。囊皮是影响微胶囊剂性能的关键,是各种高分子化合物,对这种高分子化合物的要求是黏着力强;不与囊核物质发生化学反应;成囊后的囊皮有坚韧性、渗透性和稳定性;有着色、调整修饰的灵活性。另外还要考虑到产品的强度及囊核的释放速度等因素。囊皮常用的高分子化合物有聚酰胺、聚脲、聚酯、纤维素和胶类。 微胶囊剂主要通过渗透扩散和囊皮破裂两种机理释放活性组分,对杀菌剂、除草剂以前者为主,杀虫剂以后者为主。破裂的方式主要有踩踏或咀嚼。 微胶囊剂的药效很大程度上取决于微胶囊剂的强度,也就是说,微胶囊剂的粒径(D)和壁厚(T)影响农药的持效作用。一般来说,D太大或T太小,微胶囊剂在短时间内大量破裂,将造成活性组分的浪费,并缩短持效期;反之,则持效期延长。参数D/T越大,微胶囊剂越易被踏破,其持效期越短;D/T太小,则活性组分释放量太少,难以发挥有效作用。D/T的最佳值取决于害虫的类型和数量。因囊皮材料不同,D/T的最佳值也会相应发生变化。 2、微胶囊的制造方法 制造微胶囊剂可采用物理法(锅式涂层法、空气悬浮涂层法、喷雾干燥涂层法、静电定向沉积法及多孔离心挤压法)、物理化学法(相分离法、液中干燥法、融解分散冷却法及内包物交换法)和化学法(界面聚合法、凝聚相分离法、飞行中成囊法、原位聚合法及液中包覆法)。不同的制造方法得到的微胶囊剂粒径不一样(表11-4)。微胶囊剂较为合适的粒径是小于800μm,通常使用的微胶囊剂粒径为5~400μm。实际生产中应用最多的制造方法是界面聚合法、原位聚合法和凝聚相分离法。 表11-4 微胶囊剂粒径与制造方法的关系 制造方法粒径范围(μm) 囊核为固体或液体 凝聚(相分离) 界面聚合 喷雾干燥 离心挤压 静电沉降 囊核为固体 转盘式包裹 空气悬浮 2~l 200 2~2 000 6~600

什么是聚羧酸类阻垢分散剂,聚羧酸减水剂

什么是聚羧酸类阻垢分散剂、聚羧酸类减水剂 先说聚羧酸类阻垢分散剂,看这个关键词就能明白大概,是什么类?聚羧酸类,什么药剂?水处理阻垢分散剂,它是一种低分子聚电解质,”聚”指是聚合、凝聚这充分说明了他的特有性质是聚合在一起的,其阻垢分散性能与聚合物分子量有关,比较有代表性的聚丙烯酸钠按分子量200万-10000万絮凝剂;分子量10000-20000为分散剂型,分子量800-1000为阻垢剂,聚羧酸的阻垢分散性能,现分子国的羧基数目和间隔也存在着一定的关系,分子量相同时,羧基数目越多,阻垢分散性能越好。 大量的实验证明了,分子量在一定范围内的聚羧酸能有效地阻止水中碳酸钙、硫酸钙结垢,防止腐蚀产物沉积,而且对水中的泥土(砂)、粉尘等无定形不溶性物质起到的分散作用,使其呈分散状态悬浮在水中。聚羧酸具有溶限效应,少量的聚羧酸可抑制几百倍的钙镁离子成垢。 聚羧酸在与有机膦酸水处理剂复配使用时,效果更佳。聚羧酸型水处理剂在常规使用尝试下基本无毒,故对水体基本无污染。 水处理剂中最为神秘的就是阻垢缓蚀剂,一说水处理剂大家都会的到阻垢缓蚀剂、螯合分散剂、抑制钙垢的形成等等,那么这些水处理药剂的作用机是到底是什么,现在我在这里给大家介绍一下,明白了这些,就能间接明白阻垢分散剂和聚羧酸类减水剂的一些原原理。 1、应该提到的是晶格畸变作用 分子量低于10000的聚羧酸的表面电荷对无机物晶体具有影响。聚羧酸是阴离子型聚合物,在碳酸钙晶体形成的早期阶段,它被吸附在结晶表面,便晶体不能正常生长而发生晶格畸变,晶粒变得细小,从而阻止了垢的生成。 2、增溶作用 聚羧酸是阴离子型聚合物,在水溶液中,可离解生成带负电荷的分子键,可与钙离子形成能溶于水的稳定的络合物,增加了成垢物在水中的溶解度,另外,这种络合物混入晶格内,可使沉淀物变为流态化,具有高效分散作用。 3、静电斥力作用 聚羧酸在不中电离生成的带电荷的阴离子具有强烈的吸附作用,它会吸附到水中的一些泥砂、粉尘等杂质的粒子上,使其表面带有相同的负电荷。由于静电斥力作用,这些粒子就不会聚集,而是呈分散状态,成为稳定的悬浮液。 这些就是水处理剂最为神秘的阻垢缓蚀剂和螯合分散剂的作用原理。而聚羧酸类减水剂就是聚羧酸类阻垢分散剂的一个独立分支,他有聚合物的特性,大家都知道建筑使用的仝工车队来回来的混凝土料,里面是已经配比好的混凝土,但是配比地和使用地存在一定的距离,如果配比不添加减水剂直接运输,途中就会出现块状凝结影响施工质量,所以这个减水剂就被应用到开。减水剂主要能提高砂浆的强度,它的定义是在不影响混凝土施工和易性的条件下,具有减水和增强作用的外加剂称为减水剂。 找个简单的减水剂配方大家看一下:将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。这些里有些就是聚羧酸类阻垢分散剂使用配比在一起的效果。 水处理剂使用的方面很广,减水剂只是使用的一个创新的领域。水处理剂不单独的水处理的阻垢缓蚀剂螯合分散剂、纺织印染、钻井缓蚀、玻璃加工等等这些都会多多少作为添加剂使用进。这里只是简单的介绍一下,希望能大家能有所帮助。 以上内容仅代表人个看法,与其他无关。

聚羧酸分散剂的合成性能研究

聚羧酸分散剂的合成性能研究 商品混凝土是当今世界最大宗的建筑工程材料。水泥减水剂是现代商品混凝土不可缺少的组分之一。聚羧酸系减水剂具有高减水率和控制商品混凝土坍落度损失等优点,研究开发新型聚羧酸系减水剂受到广泛关注。国外已有大规模生产,国内仍处于实验室研究阶段。本论文合成了一系列聚氧化乙烯基单丙烯酸酯(Poly(ethylene oxide)monoacrylate,PEA)及聚羧酸系减水剂PCA(polycarboxylic acid water-reducers,PCA),并试验探讨了它们的应用性能。高质量的含聚氧化乙烯基(Poly(ethylene oxide),PEO)的聚乙二醇不饱和羧酸酯大单体,其制备方法是,在无溶剂而有一定量的酸类催化剂浓硫酸或对甲苯磺酸及70-120℃温度的条件下,通过不同分子量的聚乙二醇(PEG200、PEG400、PEG600、PEG1000、PEG3000)与过量的不饱和羧酸-丙烯酸进行酯化反应获得的,通过测定反应物酸值和酯化率来控制聚乙二醇的酯化反应进程,以快速冷却法来终止大单体的酯化反应。新型聚羧酸系减水剂PCA由丙烯酸与不同分子量的聚氧化乙烯基单丙烯酸酯反应,在一定温度的水溶液体系中,经水溶性引发剂过硫酸铵引发共聚反应合成。在掺量为0.45%时,其商品混凝土减水率为24.7%,当掺量为1.0%时,减水率最高可达38.8%。水泥的净浆流动度在2小时内基本无损失,3小时后仍可达到280mm。同时具有较好的抗压强度、缓凝作用。合成的PCA已通过中试实验,具有较好的应用前景。分散剂是染料加工过程上的主要助剂。不论是加工过程还是应用性能,分散剂都起着举足轻重的作用。近年来,有关

农药剂型大全..

中国农药剂型名称及代码 原母药 原药TC 母药TK 液体剂型 水剂AS 微囊悬浮剂CS 可分散液剂DC 乳油EC 水乳剂EW 微乳剂ME 油剂OL 悬浮剂SC 可溶液剂SL 超低容量剂UVL 滴加液MA 固体剂型 干悬浮剂DF 粉剂DP 细粒剂FG 颗粒剂GR 大粒剂GG 微粒剂MG 可溶性粒剂SG 可溶性粉剂SP 水分散粒剂WG 笔剂CA 可湿性粉剂WP 可溶性片剂WT 用于种子处理的剂型干拌种剂DS 悬浮种衣剂FS 种衣剂SD 湿拌种剂WS 其他剂型 气雾剂AE 块剂BF 缓释剂BR 电热蚊香液EL 电热蚊香片EM 电热蚊香浆ET 烟剂FU 乳膏GS 压缩气体制剂GA 丸剂PT 毒饵RB 喷射剂SF 片剂TA 追踪粉TP 熏蒸剂VP

主要剂型 一、乳油EC 二、微乳剂ME 三、水乳剂EW 四、可湿性粉剂WP 五、可溶性粉剂SP 六、水分散粒剂WG 一、乳油 (一)、乳油的概念 乳油是农药基本剂型之一,它是由农药原药按规定比例溶解在有机溶剂(如苯、甲苯)中,再加入一定量的农药专用乳化剂而制成的均相透明油状液体,加水形成稳定的乳状液。 优点:加工过程简单、设备成本低、配制技术容易掌握,有效成分含量高,储存稳定性好,使用方便,药效高。 缺点:使用大量的易燃、有毒有机溶剂,加工储运安全性差,使用时气味大,对环境相容性差。因此乳油的发展方向是高浓度乳油,部分代替有机溶剂的水基型制剂。 (二)、乳油的加工工艺 1、组分及要求:凡是液态或在常用有机溶剂中易溶解的农药原药一般均可加工成乳油;对水溶性较强的原药,加工成乳油较为困难,需使用助溶剂。原则上,乳油含量越高越经济。 溶剂对原药起稀释和溶解作用,要求对原药溶解度大,与原药相容性好,来源丰富成本低,闪点高,常用溶剂如:苯、甲苯、二甲苯等芳烃类化合物。 乳化剂是乳油配方筛选的关键,常用复配乳化剂,多为非离子型与阴离子型十二烷基苯磺酸钙的混合乳化剂。 助剂能提高溶剂对原药的溶解能力,常用的如醇类、酮类、乙酸乙酯。 2、工艺流程及主要设备:

发现毒理学的研究进展

*基金项目:国家高技术研究发展计划(863计划)基金(2002AA2Z342D 和2004A A2Z3774) 综 述 发现毒理学的研究进展 * 王全军,吴纯启,廖明阳 (军事医学科学院毒物药物研究所,国家北京药物安全评价研究中心,北京100850) [摘要] 发现毒理学又称为开发前毒理学(Predevelopmental Toxicology),是指在创新药物的研发早期,对所合成的系列新化合物实体(New Chemical Entities,NCEs)进行毒性筛选,以发现和淘汰因毒性问题而不适于继续研发的化合物,指导合成更安全的同类化合物。发现毒理学的研究既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的定义、必要性、研究内容、研究方法和我国当前的研究现状作一简述。 [关键词] 发现毒理学;新化合物实体(NCEs);毒性筛选 [中图分类号]R994 1;R965 1 [文献标识码]A [文章编号]1003-3734(2005)08-0958-04 Progresses of discovery toxicology research W ANG Quan jun,W U Chun qi,LI AO Ming yang (Institute o f Pharmacology and To xicology ,Academ y o f Military Medical Sciences ,National Beijing Center f o r Drug Sa fety Evaluation and Research ,Beijing 100850,China )[Abstract ] Discovery toxicology,also named predevelopmental toxicology,is to screen toxicities of new che mical entities (NCEs)in the discovery phase of ne w drug research,to discover and eliminate the compounds that are unsuitable for further development due to their toxicity as early as possible,and to optimize the next more safe compounds.Discovery toxicology research can break through the limitation and improve the efficiency of drug research.This article will present the concept of discovery toxicology,the essentiality of discovery toxicology research.The content,methods and current status of discovery toxicology in China are described too. [Key words ] discovery toxicology;new chemical entities(NCEs);toxicity screening 药物研发成功与否部分取决于在研发早期严格淘汰不适合进一步研发的化合物。在药物临床前阶段,毒性问题是研发失败的主要原因。在研发早期尽早发现候选化合物的潜在毒性是毒理学研究的重要问题。 多年来,新药研发越来越多地依赖于生命科学技术的研究进展。在新药设计方面,化学家参考药物作用靶、内源性配体和底物的化学结构特征,应用计算机辅助药物设计手段发现选择性作用于靶位的新药;在新药活性筛选方面,现代药物组合化学与体外高通量筛选的成功结合极大地提高了先导化合物的发现速度;在新药的药动学(ADME)研究方面,多种基于药物代谢酶或转运体的药动学筛选模型已开始应用于新药开发研究。这些新技术的成功运用大 大加快了药物研发早期的药物发现、药物合成、药效筛选的进程,从而产生大量的候选化合物。传统药物毒理学研究在时间、经费、样品消耗量和动物数等方面都花费巨大,在药物毒作用机制研究方面难以阐明一些临床使用药物的毒性机制和理想的应急解毒措施,因此传统药物毒理学无法满足因新的生物技术而产生的海量候选化合物的毒性筛选研究,成为限制整个药物研发的瓶颈。而发现毒理学(Discovery Toxicology)的研究将打破这个瓶颈,既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的含义、必要性、研究内容、研究方法和我国当前的研究现状作一简要综述。1 定义、产生背景和产生的必要性 伴随着科学技术的发展,当代毒理学的发展将 958

新型农药分散剂聚羧酸盐合成的国内外研究进展..

新型农药分散剂聚羧酸盐合成的国内外研究进展 农药剂型中水分散粒剂( Water Dispersible Granule,剂型代码WG)是指入水后能迅速崩解、分散,形成高悬浮液的粒状制剂。该剂型兼具可湿性粉剂(WP)的物理稳定性和悬浮剂(SC)的高悬浮分散性的优点,是一种理想的环保剂型。 农药分散剂是水分散粒剂(WG)的关键组分之一,它吸附于油冰界面或固体粒子表面,阻碍和防止分散体系中固体或液体粒子的聚集,并使其在较长时间内保持均匀分散。传统的农药分散剂一般是具有多环的阴离子表面活性剂,如烷基萘磺酸盐、萘磺酸甲醛缩合物的钠盐、木质素磺酸盐等。 新型的农药分散剂聚羧酸盐是一种高分子类阴离子表面活性剂。与传统的农药分散剂相比,它不含萘、甲醛等有害物质,可减少环境污染;在低掺量条件下赋予农药高分散性与稳定性。国内这类农药分散剂目前主要靠进口。 1 新型农药分散剂聚羧酸盐概况 1.1 分散剂聚羧酸盐的一般合成 聚羧酸盐高性能分散剂是带有羧基、磺酸基、氨基以及含有聚氧乙烯侧链等的大分子化合物。是在水溶液中,通过自由基共聚原理合成的具有梳型结构的高分子表面活性剂。 合成聚羧酸盐高性能分散剂所需要的主要原料有:丙烯酸、甲基丙烯酸、马来酸、苯乙烯磺酸钠、烯丙基磺酸钠、丙烯酸羟乙酯

等。在聚合过程中可采用的引发剂为:过硫酸盐水性引发剂、过氧化苯甲酰、偶氮二异丁腈等;链转移剂有:3一巯基丙酸、巯基乙酸、巯基乙醇及异丙醇等。 1.2农药分散剂聚羧酸盐的国外开发概况 目前,国外公司在国内销售的聚羧酸盐农药分散剂主要是亨斯曼(HUNTSMAN)公司的TER- SPERSE 2700和索尔维(SOLVAY)旗下的罗地亚(Rhodia)公司的GEROPON T/368]。 1.2.1 亨斯曼(HUNTSMAN)公司的TER- SPERSE 2700 设在上海的亨斯曼功能化学品农化部曾专门撰文介绍TERSP ERSE 2700。指出,目前在农药水分散颗粒剂中应用较多的聚合型分散剂为聚丙烯酸盐,而TERSPERSE 2700作为此类阴离子聚丙烯酸盐类分散剂的杰出品种,受到广大剂型开发工作者及生产厂商的广泛关注与青睐。TERSPERSE2700是亨斯曼功能化学品农化部研究人员专门针对农药水分散颗粒剂型特点而开发并拥有专利的专用分散剂,其结构同样是由强疏水性骨架长链与亲水性的阴离子低分子聚合所形成的具有“梳型”结构的高分子化合物。由于在开发过程中,其结构经过骨架链长、侧链基团密度及分布等筛选优化,并经多种农药有效成分的配方验证,TERSPERSE2700已成为全球范围内农药厂商加工水分散颗粒剂产品所广泛采用的重要品牌产品之一。 TERSPERSE 2700的分子结构如图1所示。其中疏水性的骨架长链能对农药有效成分微粒产生不可逆的充分包覆,而大量亲水性的低分子梳齿型侧链结构及其所带的电荷能在悬浮液中形成可靠

农药缓释剂研究进展

农药缓释剂研究进展 农药是一类特殊的商品,其原药大多数需要加工成不同的剂型后才能被应用。因此,农药剂型的研究一直是农药开发应用的一个极为重要的环节。但常规农药剂型利用率只有20%~30%,而且存在有效成分释放速度快、药效持效时间短、生态污染严重等问题。为解决这些问题,人们对农药剂型提出了更高的科学要求。作为一种新兴技术,农药缓释技术可以有效地解决农药活性制剂释放速度快、有效作用时间短的问题,减少或避免农药的不良影响,以延长农药的使用寿命[1- 2]。 1 缓释 缓释技术是利用物理或化学手段,使农药贮存于农药的加工品种中,然后又使之缓慢地释放出来,该制剂就称为缓释剂。按农药有效成分的释放特性分类,农药缓释剂型可分为自由释放的常规型和控制释放剂型两大类。自由释放包括匀速释放和非匀速“S”曲线释放,匀速释放指的是农药活性成分在相同时间从缓释材料释放到环境中的浓度相同;非匀速“S”曲线释放指的是农药活性成分从缓释材料释放到环境中的速度随着时间的推移不断增加,到了最大值后又随着时间的推移不断减少,释放呈“S”型。缓释的技术有物理法和化学法,或者二者兼备。缓释和控释的原理是利用渗透、扩散、析出和解聚而实现。 2 农药缓释剂的特点 农药缓释剂主要是根据病虫害发生规律、特点及环境条件,通过农药加工手段使农药按照需要的剂量、特定的时间持续稳定地释放,以达到经济、安全、有

效地控制病虫害的目的[2]。其主要优点为:(1)药剂释放量和时间得到了控制,使施药到位、到时,原药的功效得到提高;(2)有效降低了环境中光、空气、水和微生物对原药的分解, 减少了挥发、流失的可能性,从而使残效期延长,用药量和用药次数减少;(3)同时使高毒农药低毒化,降低了毒性,减少了农药的漂移,减轻了环境污染和对作物的药害;(4)改善了药剂的物理性能,液体农药固型化,贮存、运输、使用和后处理都很简便。 3 农药缓释剂型 缓释剂可以控制原药在适当长的时间内缓杨淑珍:农药缓释剂研究进展慢释放出来,属于发展迅速的新兴领域[3]。缓释剂通常分为物理型和化学型两大类,物理型缓释剂主要依靠原药与高分子化合物之间的物理作用结合,化学型缓释剂则是利用原药与高分子化合物之间的化学反应结合[4],其中,物理型缓释剂目前发展速度比化学型缓释剂快。 3.1 物理型缓释剂 物理型缓释制剂的形式各不相同,加工方法也不尽相同。根据其加工方法,大致分为4 种。 3.1.1 微胶囊缓释剂微胶囊技术是一种用成膜材料把固体或液体包覆形成微小粒子的技术。包覆所得的微胶囊粒子大小一般在微米至毫米级范围,包在微胶囊内部的物质称为囊心,成膜材料称为壁材,壁材通常由天然或合成的高分子材料形成[4]。研究表明,药物是通过溶解、渗透、扩散等过程透过胶囊壁而缓慢释放出来,可以使瞬间毒性降低,并延长释放周期。药物的释放速度可以通过改变囊壁的组成、壁厚、孔径等因素加以控制。1974 年,美国的Pennwalt 公

系统毒理学及其研究进展

系统毒理学及其研究进展 在总结国内外相关研究的基础上,综述了系统毒理学的原理、诞生背景、研究策略、研究基础及其主要应用。同时,通过介绍系统毒理学的研究实例来阐述其目前的研究进展情况。希望从分子生物学的发展中汲取足够营养并结合传统毒理学的研究成果发展壮大自己。 【Abstract】Based on the foundation of related research at home and abroad,paper summarizes the principle and research strategy,research background,basis and main application of system toxicology. At the same time,to explain its current status a case study of the system is introduced. And we hope to draw sufficient toxicological nutrition from the development of molecular biology and development itself combined with the research of traditional toxicology . 标签:背景;技术;应用;进展 1 系统毒理学及其诞生背景 系统毒理学是近10年来发展起来的一门新兴学科,代表着后基因组时代毒理学发展的新方向。所谓系统毒理学是指通过了解机体暴露后在不同剂量、不同时点的基因表达谱、蛋白质谱和代谢物谱的改变以及传统毒理学的研究参数,借助生物信息学和计算毒理学技术對其进行整合,从而系统地研究外源性化学物和环境应激等与机体相互作用的一门学科[1]。 近年来,生命科学在新理论和新技术上有了突飞猛进的发展,一系列“组学”(omics)应运而生,如基因组学(genomics)、蛋白质组学(proteomics)、细胞组学(cellomics或cytomics),等新学科不断涌现,使人们对基因和基因组的认识,对生命本质的认识和认识生命、健康的手段取得了重要的进展。 另外,传统的毒理学研究依然存在许多不足,相对于飞速发展的分子生物学技术和越来越多的外源性物质,毒理学的研究方法急待革新。 系统毒理学的发展,既有系统生物学发展的外在刺激,又有传统毒理学在发展中克服自身不足的内在需求。 2 生物学基础 2.1 基因组学 基因组学是研究基因组的结构、功能及表达产物的学科。基因组的产物不仅是蛋白质,还有许多复杂功能的RNA。将基因组学的方法与技术应用于毒理学研究领域,称之为毒物基因组学(toxicogenomics)。毒物基因组学的基本方法是通过观察生物在接触毒物后基因表达谱的变化,筛选毒性相关基因、揭示毒作用

农药用聚羧酸盐类分散剂

丙烯酸-(甲基)丙烯酸酯共聚物等高分子分散剂属于均聚物或共聚物,通常在分散体系中可以起到空间稳定作用,有的带电高分子还可以通过静电稳定机制提高分散体系的稳定性,因而高分子分散剂比无机、有机小分子分散剂更为有效。聚羧酸盐类分散剂具有长碳链,较多活性吸附点以及能起到空间排斥作用的支链,由于其特殊的结构而对悬浮体系具有很好的分散性能。 聚羧酸类分散剂与传统木质素磺酸盐、萘磺酸盐甲醛缩合物钠盐分散剂相比有以下特点: ①聚羧酸类分散剂对悬浮体系中的离子,pH值以及温度等敏感程度小,分散稳定性高,不易出现沉降和絮凝; ②聚羧酸类分散剂提高了固体颗粒的含量,显著降低分散体系粘度,在高固含量下具有较好流动性,降低了原料成本,减少设备磨损; ③原材料选择范围广,可选择不同种类的共聚单体,分子结构与性能的可设计性强,易形成系列化产品。 聚羧酸类分散剂采用不同的不饱和单体接枝共聚而成,其代表产物繁多,但结构遵循一定规则,即在重复单元的末端或中间位置带有EO,-COOH,-COO-,-SO3-等活性基团。 聚羧酸类分散剂在分子主链或侧链上引入强极性基团:羧基、磺酸基、聚氧化乙烯基等使分子具有梳形结构,分子量分布范围为10000-100000,比较集中于5000左右。疏水基分子量控制在5000-7000左右,疏水链过长,无法完全吸附于颗粒表面而成环或与相邻颗粒表面结合,导致粒子间桥连絮凝;亲水基分子量控制在3000-5000左右,亲水链过长,分散剂易从农药颗粒表面脱落,且亲水链间易发生缠结导致絮凝。聚羧酸类分散剂链段中亲水部分比例要适宜,一般为20%-40%,如果比例过低,分散剂无法完全溶解,分散效果下降;比例过高,则分散剂溶剂化过强,分散剂与粒子间结合力相对削弱而脱落。 聚羧酸类分散剂分子所带官能团如羧基、磺酸基、聚氧乙烯基的数量、主链聚合度以及侧链链长等影响分散剂对农药颗粒的分散性。分子聚合度(相对分子量)的大小与羧基的含量对农药颗粒的分散效果有很大的影响。由于分子主链的疏水性和侧链的亲水性以及侧链(-OCH2CH2)的存在,也起到了一定的立体稳定作用,以防止无规则凝聚,从而有助于农药颗粒的分散。 聚羧酸类分散剂作用机理:水基性制剂形成的悬浮体系中的原药颗粒很小,与分散介质间存在巨大的相界面,裸露的原药颗粒界面间亲和力很强,吸引能很高,易导致原药颗粒间

镉的毒性和毒理学研究进展

2Chin J Ind Hyg Occup Dis,Febru ary1998,Vol.16,No.1 述 评 镉的毒性和毒理学研究进展 刘杰 镉(Cadmium)是一种重金属,它与氧、氯、硫等元素形成无机化合物分布于自然界中。镉对人体健康的危害主要来源于工农业生产所造成的环境污染。镉对肾、肺、肝、睾丸、脑、骨骼及血液系统均可产生毒性,被美国毒物管理委员会(ATSDR)列为第6位危及人体健康的有毒物质。环境中的镉不能生物降解,随着工农业生产的发展,受污染环境中的镉含量也逐年上升。镉在体内的生物半衰期长达10~30年,为已知的最易在体内蓄积的毒物。镉在肾脏的一般蓄积量与中毒阈值很接近,安全系数很低。在60年代提出了镉污染与日本“痛痛病”的因果关系后,环境中的镉与健康关系的研究日益受到重视。近几年来,有关镉毒理学研究的文献每年超过600篇(Medline检索)。美国目前有大约100个关于镉与健康的研究课题,涉及各个领域。国内对镉的毒性和毒理学的研究开展得也比较广泛,其中一些在中毒机制方面作了较深入的探讨,有的学者甚至进行了长达十几年的研究。 镉的毒性和毒理学研究进展主要包括以下几个方面: 一、镉污染与人类健康 1.环境中的镉:对环境中镉污染的早期关注局限于锌、铜、铅矿的冶炼。后来注意力转为镉在工业中的应用,如电池、电镀、合金、油漆和塑料等工业。经过多年的努力,国内外对职业劳动中接触镉的卫生保护已大大加强。近年来,对环境中的镉通过食物链对一般人群的潜在危害已受到高度重视。随着含镉磷肥的施用、污水灌溉等,土壤中镉含量增加,继而被某些植物摄取而进入食物链。1997年国际地球生化学会在美国加州专门对此问题进行了讨论并出版了专著;国际环境科学委员会(SCOPE)则进一步将土壤中镉的来源、价态、食物链中的转化以及对一般人群健康的影响定为目前镉研究的一个重点方向。 2.镉的摄入及监测:职业人群镉暴露的主要途径是吸入。对作业场所空气中镉的浓度进行监测并控制在容许范围之内,是保护工人健康的一个重要手段。对一般人群来说,镉暴露主要来源于食物和吸烟。人们每日可从食物中摄镉30~50 g,但仅有1%~3%被肠胃吸收。因此,对镉的胃肠吸收、体内分布和排泄的影响因素一直是镉毒理学研究中的一个热点。其中,镉与金属硫蛋白(m etal-lothio nein,MT)的结合,及镉与锌、钙的相互作用是影响镉体内代谢动力学的重要因素。血镉的含量可用来评价近期的镉暴露,尿镉含量则在一定程度上反映了镉性肾损伤和体内的镉负荷。尿中的 2-微球蛋白和尿M T的含量已作为镉暴露的生物标志物。 二、镉的毒性研究进展 1.镉的肾毒性:肾损伤是慢性染镉对人体的主要危害。一般认为镉所致的肾损伤是不可逆的,目前尚无有效的疗法。很多学者认为:镉所致的肾损伤是由在肝脏形成的镉-金属硫蛋白(M T)复合物(CdM T)引起的。因此,一次性大量注射CdMT造成肾损伤的动物模型用来研究镉的肾毒性机制已达20年之久。最近,用删除了M T的转基因动物的实验结果表明:镉所致的肾损伤并不一定依赖于CdM T的形成,无机镉亦能直接造成肾脏损伤。一次性注射CdM T主要造成肾小管细胞的坏死,而慢性染镉造成的病理改变则波及整个肾脏,包括肾小球的损伤和肾间质的炎症。慢性染镉 作者单位:66160美国堪萨斯城,堪萨斯大学医学中心药理毒理系

探讨环保乙蒜素缓释剂的开发

探讨环保乙蒜素缓释剂的开发 郭兵 西南大学植物保护学院,重庆400715 摘要:介绍了乙蒜素防治病害的良好效果及其杀菌机制,论述了符合乙蒜素开发利用的农药缓释剂型,同时分析了农药缓释剂发展存在的问题及乙蒜素的发展前景。 关键词:乙蒜素;缓释剂;微胶囊 烟草根茎病害是威胁烟草生产的毁灭性病害。在我国南方烟区普遍发生,其中以福建、湖南、四川及广西危害严重。然而对根茎病害的防治长期依赖化学防治,导致用药量不断增加即病原抗药性不断增强的恶性循环。它们严重影响着烟叶的产质量,是烟叶生产可持续发展中亟待解决的关键问题之一[1-3]。而植物源农药因具有无残留、低毒、不易产生抗药性,且易与其他药剂混配等优点,已成为近年来国内外研究的热点之一。许多研究发现,大蒜(Allium sativum L.)对多种病原微生物具有较好的抑制或毒杀作用[4-8]。虽然,邓正平等[9]。利用捣碎的大蒜浸液对烟草青枯病进行了防效试验,发现10%大蒜浸液具有明显的防治效果。但经过大田实践发现大蒜素的乙基同系物——乙蒜素的药效并不能有效地控制后期根茎病害的发生,因此本文针对乙蒜素缓释剂的开发与应用展开初步探讨。 1. 乙蒜素产品简介 乙蒜素,是我国五十年代自主开发的老产品,当时主要用于种子处理,由于其PH值偏低,对植物种子、枝叶及人体皮肤刺激强,易出现烧种烧苗和烧伤皮肤,导致乙蒜素面临绝迹,而经过我们历时十几年的潜心研究,1994年以来成功将乙蒜素用于多种作物叶面喷施的多种配方取得了突破性成果,并申请获得了多项发明专利,在我们这些成果的带动下,由原来国内生产乙蒜素的一家发展到今天的数十家,使这个沉睡三十多年面临绝迹的乙蒜素老产品成为目前国内杀菌剂市场的主导产品。商品名有抗菌剂402、菌无菌、正萎舒、康稼、断菌、群科、木春三号等,主要剂型有40.2%、70%、80%乳油,20%高渗乳油,90%乙蒜素原油,30%乙蒜素可湿性粉剂,乙蒜素辣椒专用型等。乙蒜素是大蒜素的乙基同系物,属于植物源仿生型杀菌剂。其杀菌效果优越,易被吸收和降解,不易产生抗药性,还能刺激作物生长,实现增产。 1.1理化性质及其作用特点 工业品原油为微黄色透明液体,有大蒜臭味,PH值2-4,酸性介质中稳定,易溶于乙醚、氯仿、乙醇、甲醇、醋酸等有机溶剂,中等毒性,对皮肤、粘膜有刺激,无致畸、致癌和致突变作用,使用安全。作用特点,本品属内吸性有机硫类杀菌剂,具备预防、治疗作物由真菌、细菌引起的各类常见病害,其分子结构中的二硫氧基团与菌体分子中含-SH基团的物质反应,从而抑制菌体正常代谢,达到杀菌目的。对植物因真菌、细菌引起多种病害有较好的防治效果,尤其对防治土传性病害效果突出。可广泛用于棉花枯、黄萎病、立枯病、水稻稻瘟病、白叶枯、恶苗病、瓜菜枯萎病、霜霉病、青枯病、根腐病;果树叶斑病、炭疽病、麦类赤霉病、条纹病、玉米叶斑病等多种作物的多种病害防治,并能促进作物生长。 环保农药剂型 目前,剂型加工的主要方向是制造具有下列功能的环保型农药制剂:降低毒性。提高安全性;减少污染;减轻对作物的药害;对使用者更安全;便于利用,节约劳动力;节约能源.降低价格;提高生物利用率;向着水性化方向发展[10]。与传统剂型相比,环保制剂主要通过两方面改进而达到环保的目的:1)水基化,利用水代替大量的有机溶剂,减少了因有机溶剂释放而引起的环境污染,代表剂型有水乳剂、微乳剂、悬浮剂等;2)粒剂化,解决了粉剂产品生产和使用过程中易飘移、计量不准的缺点,减少了对环境中的过量排放,代表剂型有水

新药毒理学研究现状和展望——毒理学论文

新药毒理学研究现状和展望 吴远洪 随着医药科技的不断进步发展,人类开发药物的技术越来越成熟,研发新型药物的周期也越来越短,特别是加上巨大的医药市场利润的诱惑,让众多药物研发企业都在日夜不停地开发新药物。虽然研发一种新型药物仍然具有较高的门槛,但是每年上市的新药也并不少,而且很多都是针对现在重大疾病的药物(见表一),然而,“是药三分毒”,药物的上市虽然解决了很多人类疾病,但也同样带来了一系列的不安全因素,近年来,由药物导致事故的报道已是屡见不鲜,每年因为出现重大不良反应或者毒副作用而撤出市面的药物也不在少数,从80年代起,撤药事件就有17起(见表二),因此而造成的经济损失,包括企业经济和社会经济基本上都是天文数字,更重要的是其直接造成的生命和健康的代价更是无可估量。 药物不良反应(adverse drug reaction,ADR)是指合格药品在正常用法用量情况下出现的用药目的无关或意外的有害反应[6]。毒理学是研究毒物与机体交互作用的一门学科,已经为人类提供了重要的以剂量-效应关系为中心的数据资料,为化学物毒性评价和人类危险度量化评估提供了基本数据[7]。所以,毒理学是一种预测临床药物毒性,药物安全性评价的重要手段,为药物上市前做好良好的铺垫,也为以后避免造成不必要的经济浪费提供一个决策点。因此,建立准确性高、可靠的药物毒性研究机制是新药研发过程中迫切希望解决的问题。本文就为毒理学在新药研发的应用做出以下综述。 表一、2008-2009年中国上市新药分类统计

一、 毒理学在药物研发的必要性 众所周知,新药研发是一个长周期、高风险、高投入和高产出的工作和过程。其中在整个药物研发过程,临床前毒理学具有非常重要的参考价值和决策价值,其必要性不仅仅体现在经济效价上,也体现在社会价值上。 1.1 毒理学的经济效价 通常情况下,新药从发现到正式上市需要10年左右的时间,2010年一种新药从研发到进入Ⅲ期临床试验所需的费用增加到19亿[1]。所以研发一种药物是建立在庞大的资金链和漫长的研发周期基础上的,其中所付出的人力物力更是乃以计数,然而就算有多艰难研究出来的药物,因为一个不良反应也照样可以彻底毁掉这个药物,甚至是整个企业。往往一个药物的不良反应不仅仅给人们的生命健康带来强烈的冲击,就连企业本身也难脱劫难,就算是基础坚固的百年商业帝国也一样被摧毁殆尽,这在医药历史上已不是鲜为人知的事。因此,如果因为药物不良反应而撤出市场的话,其浪费的资源和付出的代价是相当惊人的。 新药研发经济学研究表明,新药临床试验成功率从20%提高到33%, 可节表二、历史上FDA 的撤药事件

聚乙烯醇改性及其对农药缓释作用的研究

聚乙烯醇改性及其对农药缓释作用的研究1 台立民 辽宁工程技术大学材料科学与工程系, 辽宁阜新(123000) E-mail:tailimin@https://www.360docs.net/doc/795382060.html, 摘要:采用螺杆挤出机,聚乙烯醇与EV A共混改性,制得一种可生物降解的聚乙烯醇/EV A 复合基材,用作除草剂二氯喹啉酸的控制释放。通过SEM、DSC和UV分析测试,研究了聚乙烯醇/EV A共混物的相容性、结晶度及其对二氯喹啉酸的释放性能。实验结果表明:在25℃,pH=4、7、9的缓冲溶液中,聚乙烯醇/EV A载体对二氯喹啉酸均具有明显的缓释作用。关键词:聚乙烯醇;EV A;共混物;二氯喹啉酸;控制释放 中图分类号: TQ450.6 聚乙烯醇(以下简称PV A)是由聚醋酸乙烯酯醇解而得。其分子链上含有大量侧基——羟基,故具有良好的水溶性。同时PV A具有良好的粘附性、浆膜强韧性和耐磨性,所以被广泛地应用于纺织、印染和化纤等行业[1]。通常根据对PV A不同的需求从两个方面对其进行改性,即增大其水溶性或减小其亲水性。本文采用螺杆挤出机熔融态反应挤出工艺,以低熔点EV A 对水溶性PV A进行共混改性,制备一种PV A/EV A复合基材,用作除草剂二氯喹啉酸缓释的载体,通过其水解和微生物降解来达到控制二氯喹啉酸原药释放之目的。重点分析了(SEM、DSC)不同组分配比对复合基材的结构形态的影响,并用紫外-分光光度法测试了其对活性组分的释放性能。有关研究迄今未见报道。这种应用控制释放技术的高分子农药,改变了单纯农药的作用方式,可以大大提高农药的利用率,降低农药的毒性,减少农药对环境的污染,扩展了农药制剂开发研究的领域,对于降低农业成本和保护环境都具有十分重要的意义[2~5]。 1. 试验部分 1.1 仪器和试剂 XJ-20螺杆挤出机,SSX-550扫描电镜,NETZSCH DSC-204,UV-2450紫外-可见分光光度计。 二氯喹啉酸原药(Quinclorac)为市售工业品,纯度为99%,熔点为274 ℃;PV A为市售工业品PV A-1788,醇解度88%,平均聚合度为1700±100;EV A为市售工业品EV A-420,相对密度0.92~0.95 g/cm3,热分解温度为230 ℃~250 ℃,脆性温度小于-71℃。其余未加注明均为市售化学试剂,不加纯化直接使用。 1.2 操作步骤 1.2.1 PV A/EV A复合基材的制备 分别按照PV A/( PV A+EV A) = 50%、60%、70%和80%的比例,称取总量为100 g的聚合物原料和少量硼酸加入到200 mL烧杯中,然后放入80 ℃恒温水浴锅中搅拌均匀,再放入烘干箱中(100 ℃)干燥20 min后取出,在温度为145~150 ℃左右使用螺杆挤出机挤出,造粒。具体设定为:挤出机压缩段温度145℃、均化段温度150 ℃、口模温度145 ℃,螺杆转速为20 r/min。 1.2.2 10%的二氯喹啉酸高分子缓释剂的制备 1本课题得到辽宁省教育厅高等学校科学研究项目(2005200)和辽宁省企业博士后研究项目(BSH2005921077)的资助。

农药缓释技术分类

农药缓释技术分类 一物理型:利用农药与高分子化合物之间相互作用,是农药在适当的时间缓慢释放出来。 1,微胶囊体:微胶囊剂是以水作为基质的非均相体系,农药有效成分包含在分散的油相之中,在分散的有油性粒子外层包以高分子聚合物构成的极薄的囊波。PLA-PEG-PLA共聚物是近些年来制备微囊粒剂原料之一,这主要是忧郁聚乳酸(PLA)具有优良的生物相容性和生物可降解性,同事聚乙二醇(PEG)具有良好的两亲性和生物相容性。农药微囊粒剂的释放适度可以通过界面聚合反应的时间,微囊粒子的大小,农药和囊材的不同用量比等因素进行控制和调节。军一体的制造方法大多采用热处理,即用农药与高分子化合物或橡胶等基质中热熔,成型的方法。 2,均体:在适宜的温度条件下,将原药均匀的分散于高分子化合物或弹性基质等其他基质中,将原药和高分子化合物混为一体,形成固溶体,凝胶体或分散体,然后按照使用需要加工成型,支撑高分子化合物与农药的复合物。 3,包结化合物:包结化合物通常是用B-环糊精作为包裹材料。制作工艺是将环糊精用水溶解后,加入农药搅拌均匀,再加水使沉淀从溶液中析出,过滤干燥即得到环糊精包覆的农药产品。 4,吸附性制品:吸附性制品是将药剂吸附于无机,有机或天然吸附性载体中作为贮存体,如:氧化铝,膨润土,沸石,硅藻土,锯末,高分子交换树脂或合成的粒状载体。 二,化学型缓释剂:化学型农药缓释剂将农药与含有-OH,-OOH,-NH2等活性基团的聚合物之间采取酯键,醚键,酰胺键及胺盐等共价键和离子键相结合。纤维素淀粉海藻酸盐。 1,原药与高分子化合物直接结合。 2,通过交联剂与高分子化合物结合。 3,原药与化合物形成络合物。

系统毒理学研究进展

浅谈系统毒理学的研究进展 环境16级李步东 10076160111 0.绪论 毒理学[1]是一门研究外源因素(化学、物理、生物因素)对生物系统的有害作用的应用学科。是一门研究化学物质对生物体的毒性反应、严重程度、发生频率和毒性作用机制的科学,也是对毒性作用进行定性和定量评价的科学。是人们预测其对人体和生态环境的危害,为确定安全限值和采取防治措施提供科学依据的一门学科。然而,传统毒理学科研依然存在许多不足,如对外源性物质的损害机制了解有限,研究紧张慢,在危险度的定量评价方面也存在许多缺点。 1.系统毒理学的形成 随着人类基因组计划完成[2]和高通量技术的迅猛发展,产生了一门在系统水平研究生命的结构、功能和调节网络的学科——系统生物学(Kitano,2002)。这是一门在细胞、组织、器官和生物体整体水平研究结构和功能各异的各种分子及其相互作用,并通过计算生物学来定量描述和预测生物功能、表型和行为的学科。系统生物学的发展,为复杂毒性的研究,提供了新的契机,系统生物学强调生命过程应该作为一个统一整体来研究,而不是各个部分的简单加和[3]。系统生物学将在基因组序列已知的基础上完成由生命密码到生命过程的研究。生物体是一个复杂系统,只有将在基因、蛋白质等不同水平上观察到的各种相互作用、代谢途径、调控通路的改变综合起来,才能全面、系统地阐明复杂的毒性效应,因此导致传统毒理学向系统毒理学发展。 系统毒理学是通过机体暴露后在不同剂量、不同时点的基因表达谱、蛋白质谱和代谢物谱的改变,结合传统毒理学的研究参数,借助生物信息学和计算毒理学技术,系统地研究外源性化学物和环境应激等与机体的相互作用的一门学科。 2.计算系统毒理学的形成及应用 2.1计算系统毒理学的形成 系统毒理学旨在采用人源细胞系、细胞组分进行体外高通量筛选实验,整合计算预测模型,直接测试和模拟人体环境,对化合物人体健康风险进行直接评估。主要包括毒理组学技术及计算系统毒理学两部分[4]。 随着系统毒理学实验数据的增多,计算系统毒理学逐渐兴起。其主要目的是基于TT21C指导下的高通量毒理组学数据,用计算的手段开发系统性定量评估化合物毒性的方法,为化合物安全性决策的复杂问题提供有效的预测工具。主要研究内容包括:(1)通过对化合物暴露高通量实验数据的挖掘,得到化合物影响复杂生命体和环境的相关知识库;(2)通过构建毒理组学网络模型,并用数学方法表示和模拟中间过程,全面理解外源物致毒的中间机制;(3)发展具有预测功能的毒理学综合模型,以期定量全面评估化合物的安全性[5]。强调“毒性通路”系统的计算思路的出现,使得计算系统毒理学区别于只关注最高效应终点的传统计算毒理学,成为一个新的研究分支。计算系统毒理学发展的初期主要是借鉴计算系统生物学的研究方法,解决21世纪毒理学的预测问题。计算系统毒理学是多学科交叉的新兴学科,涉及化学、生物学、环境科学、医药、数学、计算机等不同学科领域。计算系统毒理学也一定是系统性的,即化合物高通量性、多毒性端点性和通路全面性。鉴于此,计算系统毒理学将有望解决传统毒理学的遗留问题,如高剂量动物测试外推低剂量人体效应困难等。同时,在化合物设计早期便可批量预测有害效应,节省了不

相关文档
最新文档