运用洛必达法则解高考数学问题

运用洛必达法则解高考数学问题
运用洛必达法则解高考数学问题

运用洛必达法则解高考

数学问题

文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

运用洛必达法则解高考数学问题

【摘要】高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成了热点,洛必达法则是利用导数来计算具有不定型的极限的方法.

【关键词】中学数学;高等数学;法则

近年来的高考数学试题逐步做到科学化,规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。为此,高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成了热点。

许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型。这类题目容易让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路――分类讨论和假设反证的方法。虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难。研究发现利用分离参数的方法不能解决这部分问题的原因是出现了型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则

洛必达法则是利用导数来计算具有不定型的极限的方法。这法则是由瑞士数学家约翰?伯努利所发现的,因此也被叫作伯努利法则。是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

洛必达法则(定理):设函数f(x)和g(x)满足:

(1) = =0;

(2)在点a的某去心邻域内f(x)与都可导,且的导数不等于0;

(3)若 =A,则 =A

下面通过几道高考试题来进一步验证。

例1(2010年海南.文)已知函数f(x)= x( -1)-a ,当x 0时,f(x)0,求a的取值范围。

解:由已知得,当x=0时,f(x) 0成立,此时a

当x 0时,f(x) 0即x( -1)-a 0,等价于a

令g(x)= ,则

令h(x)=(x-1) +1,则 x ,所以h(x)在(0,+ )上单调递增

即h(x) h(0) =0,从而x 0时, = 所以g(x)在(0,+ )上单调递增.即 g(x) g(0),而g(0)无意义,到这儿解题思路受阻。

所以由洛必达法则,有 = =1 综上所述,得a 1

例2(2010年全国新课程1卷.理)设函数f(x)= -1-x-a ,当x 0时,f (x) 0,求a的取值范围。

解:由已知得,当x=0时,f(x) 0成立,此时a

当x 0时,f(x) 0即 -1-x-a 0等?r于a

令g(x)= ,则

令h(x)= ,则, x

所以,在(0,+ )上单调递增,即 =0

从而,h(x)在(0,+ )上单调递增,即h(x) h(0)=0

因此,当x 0时从而,g(x)在(0,+ )上单调递增,即g(x) g(0)而g(0)无意义,到这儿解题思路受阻。所以由洛必达法则,有 = 综上所述,得a

例3(2006年全国卷2.理)设函数f(x)=(x+1),若对所有的x≥0,都

有f(x) ax成立,求实数a的取值范围。

解:由已知得,当x=0时,f(x) ax成立,此时a

当x 0时,f(x) ax等价于a≤

令g(x)= ,则 =

令h(x)= ,则

从而,h(x)在(0,+ )上单调递增,即h(x) h(0)=0

因此,当x 0时从而,g(x)在(0,+ )上单调递增,即g(x) g(0)而g(0)无意义,到这儿解题思路受阻。所以由洛必达法则,有

= =1 综上所述,得a 1

从上述3道例题可以看出,从2006年到现在近十年,这类试题一直受高考出题者的青睐,洛必达法则是数学分析的一个重要定理,是利用导数来计算具有不定型的极限的方法,近年来,不少压轴题以导数命题,往往可以用洛必达法则求解,固然,这些压轴题用初等数学的方法也可以求解,但方法往往计算量较大。这时,用洛必达法则较容易解决,这就充分体现了高等数学的优越性。

参考文献:

[1]赵文博.洛必达法则巧解高考压轴题[J].中学生数理化(高二数学),2018(02).

导数结合洛必达法则巧解高考压轴题-2019年精选文档

导数结合xx法则巧解高考压轴题 高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成为热点.许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查题型.这类题目简易让考生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决.利用分离参数的方法不能解决这类问题的原因是出现了“”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有用方法就是洛必达法则.利用导数确定函数的单调性,再用洛必达法则就能顺利解决上面提出的“”型的导数应用问题.本文首先给出洛必达法则,然后用洛必达法则和导数解决高考试题并将这种方法应用于其他试题,从中可以发现运用高等数学知识解?}的优越性. 洛必达法则:设函数f(x)、g(x)满足: (1)f(x)=g(x)=0; (2)在U0(a)内,f ′(x)和g′(x)都存在,且g′(x)≠0; (3)=A(A可为实数,也可以是±∞).则==A. 1.(2011海南宁夏理21)已知函数f(x)=+,曲线y=f(x)在点(1,f (1))处的切线方程为x+2y-3=0.(1)求a,b的值; (2)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.解析:(1)略解,易知a=1,b=1; (2)当x>0,且x≠1时,由f(x)>+,易得k0,从而h(x)=lnx+在x∈(0,+∞)时单调递增,且h(1)=0,所以当x∈(0,1)时,h(x)0;当 x∈(0,1)时, g′(x)0,所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.由洛必达法则有: g(x)=(+1)=1+=1+=0, 即当x→1时,g(x)→0所以当x>0,且x≠1时,g(x)>0.因为k0,且x≠1时,f(x)>+成立,求k的取值范围是(-∞,0].

洛必达法则失效的种种情况及处理方法

洛必达法则失效的种种情况及处理方法 今天我在看XX 书时,看到这样一道题?+∞→x x x x x 0d sin 1lim ,说是不可以使用洛必达法则,我对照这本书上关于使用洛必达法则的条件,觉得还不太清楚,好像应该是符合条件的,谢谢你抽空给我指点一下。 洛必达法则是计算极限的一种最重要的方法,我们在使用它时,一定要注意到该法则是极限存在的充分条件,也就是说洛必达法则 )()(lim )()(lim x g x f x g x f a x a x ''=→→的三个条件: (1)0)(lim =→x f a x (或∞),0)(lim =→x g a x (或∞); (2))(x f 和)(x g 在a x =点的某个去心邻域内可导; (3)A x g x f a x =''→)()(lim (或∞)。 其中第三个条件尤其重要。 其实,洛必达法则的条件中前两条是一望即知的,所以我们在解题过程中可以不用去细说,而第三个是通过计算过程的尝试验证来加以说明的,由于验证结束,结论也出来了,也就更加没有细说的必要了。所以在利用洛必达法则解题过程中,往往只用式子说话,不必用文字来啰嗦的。 而对于极限问题?+∞→x x x x x 0d sin 1lim 来说,因为x x g x f x x sin lim )()(lim +∞→+∞→=''不存在(既不是某个常数,也不是无穷 大),而可知洛必达法则的第三个条件得不到验证。此时,我们只能说洛必达法则对本问题无效,绝对不能因此而说本问题之极限不存在。 实际上,我们利用“将连续问题离散化”的方法来处理,可以断定这个极限是存在的。 【问题】求极限?+∞→x x x x x 0d sin 1lim 。 【解】对于任何足够大的正数x ,总存在正整数n ,使ππ)1(+<≤n x n ,也就是说总存在正整数n ,使r n x +=π,其中π<≤r 0。 这样+∞→x 就等价于∞→n ,所以 ??+∞→+∞→+=r n n x x x x r n x x x ππ00d sin 1lim d sin 1lim ??????++=??+∞→r n n n n x x x x r n ππππd sin d sin 1lim 0 ππππ22lim d sin d sin 1lim 00=++=??????++=∞→∞→??r n R n t t x x n r n n r n , 这里前面一项注意到了函数x sin 的周期为π,而后面一项作了令t n x +=π的换元处理。最后注意到积分值R 的有界性(20<≤R )。 如果把上述洛必达法则失效的情况称为第一种情况,则洛必达法则还有第二种失效的情况:第三个条件永远也无法验证。

洛必达法则巧解高考压轴题

洛必达法则巧解高考压 轴题 This model paper was revised by LINDA on December 15, 2012.

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() ()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=() ()lim x a f x l g x →'='。 0 0型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() ()lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() ()lim x a f x l g x →'='。 ∞ ∞型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必 达法则

也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20cos ln lim x x x → (00 型) (4)x x x ln lim +∞ → (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2 (1)当1-=m 时,求)(x f 在[]1,2-上的最小值 (2)若)()2('2x f x m x >++在()0,∞-上恒成立,求m 的取值范围 例题3.已知函数)0(,)(>++ =a c x b ax x f 的图像在点())1(,1f 处的切线方程为1-=x y ,

(完整版)利用洛必达法则来处理高考中的恒成立问题

导数结合洛必达法则巧解高考压轴题 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=;(2)在点 a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=',那么 () ()lim x a f x g x →=()()lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?f , f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()()lim x f x l g x →∞'=',那么 () ()lim x f x g x →∞=()()lim x f x l g x →∞'='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点 a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()lim x a f x l g x →'=',那么 ()() lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - →洛必达法则也成立。 2.洛必达法则可处理00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型。 3.在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定 式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

使用洛必达法则求极限的几点注意_图文(精)

硬闲洛密达法则求极限的儿点涅枣 口杨黎霞 (江南大学江苏?无锡214122 摘要如果当圹+口或r+*时,两个函数删与,M都趋于零或都趋于无穷大。那么极限l/m葡可能存在,也可能不存在。洛 ‘::, 必达法则是计算此类未定式极限行之有效的方法.然而。对于本科一年级的初学者来讲,若盲目使用此法则.会导致错误。本文就使用该法则解题过程中的几点注意作了分析与探讨。 关键词洛必达法则 极限未定式等价无穷小代换 变量代换 中图分类号:0172 文献标识码:A 在高等数学里.极限是大一新生一开始就要接触而且非常重要的内容。其中有一类未定式的极限不能用“商的极限等于极限的商”这一法则.而要用洛必达法则。洛必达法则内容很简单.使用起来也方便有效。但在具体使用过程中。一旦疏忽了以下几点.解题就可能出错。 首先,只有分子、分母都趋于零或都趋于无穷大时,才能直接使用洛必达法则。 其次,每次使用洛必达法则前都要检验是否满足次法则条件。只要满足此法则条件.就可连续使用此法则.直到求出结果或为无穷大。

例如:t/mx"。:坛,n.垡!;!j:以,n墨王翌::!.≥芝三:…:lira墨}==D(n仨z+ ,-.-e’r_? e’ Jr--JO e‘r_?e。 此题用了n次法则。 再者,使用洛必达法则求极限是应及时化简,主要指代数、三角恒等变形,约去公因子。具有极限不为零的因子分离出来,等价无穷小代换,变量代换等。下面通过例子说明。 土- 例:鲤【(J慨。7I叫】‘=塑【(J+÷eL÷】=纫型±笋=姆 号等力 此题先用了变量代换。当变量x趋于。时.t趋于0.这一点要注意。 例:矗。卑=f溉!堡:型Jim r.zim掣=f讹丝车堑 =lim S,ec气-I=li,n.]+co.sx-一2 本题用了多种方法:提出极限存在但不为零的因子。等价无穷小代换。洛必达法则,三角恒等变形约分等。 (J呵+{,一、/瓦芦 fJ目:lim———生—r_—一若直接使用洛必达法则,其分子

洛必达法则解决高考问题

洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) 及; (2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3), 那么=。 法则2 若函数f(x) 和g(x)满足下列条件:(1)及; (2),f(x) 和g(x)在与上可导,且g'(x)≠0; (3), 那么=。 法则3 若函数f(x) 和g(x)满足下列条件:(1) 及; (2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3), 那么=。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,,洛必达法则也成立。 ○2洛必达法则可处理,,,,,,型。 ○3在着手求极限以前,首先要检查是否满足,,,,,,型 定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理 1.(2010年全国新课标理)设函数。 (1)若,求的单调区间;

(2)若当时,求的取值范围 原解:(1)时,,. 当时,;当时,.故在单调减少,在单调增加 (II) 由(I)知,当且仅当时等号成立.故 , 从而当,即时,,而, 于是当时,. 由可得.从而当时, , 故当时,,而,于是当时,. 综合得的取值范围为 原解在处理第(II)时较难想到,现利用洛必达法则处理如下: 另解:(II)当时,,对任意实数a,均在; 当时,等价于 令(x>0),则,令 ,则,, 知在上为增函数,;知在上为增函数,;,g(x)在上为增函数。

13洛必达法则教案

教学过程:

1. 0 0型和∞ ∞型未定式的解法:洛必达法则 定义:若当a x →(或∞→x )时,函数)(x f 和)(x F 都趋于零(或无穷大),则极 限) ()(lim ) (x F x f x a x ∞→→可能存在、也可能不存在,通常称为0 0型和∞ ∞型未定式. 例如 x x x tan lim 0 →, (0 0型); bx ax x sin ln sin ln lim 0 →, (∞ ∞型). 定理1:设 (1)当0→x 时, 函数)(x f 和)(x F 都趋于零; (2)在a 点的某去心邻域内,)(x f '和)(x F '都存在且0)(≠'x F ; (3) ) ()(lim ) (x F x f x a x ∞→→存在(或无穷大), 则) ()(lim )()(lim x F x f x F x f a x a x ''=→→ 定义:这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的 方法称为洛必达法则 证明: 定义辅助函数 ???=≠=a x a x x f x f ,0),()(1, ???=≠=a x a x x F x F , 0),()(1 在),(δa U ? 内任取一点x , 在以a 和x 为端点的区间上函数)(1x f 和)(1x F 满足柯西中值定理的条件, 则有 ) ()() ()()()(a F x F a f x f x F x f --= )()(ξξF f ''=, (ξ在a 与x 之间) 当0→x 时,有a →ξ, 所以当A x F x f a x =''→)()(lim , 有A F f a =''→) ()(lim ξξξ 故A F f x F x f a a x ='' =→→) ()(lim )()(lim ξξξ. 证毕 说明: 1.如果)()(lim x F x f a x '' →仍属于0 0型, 且)(x f '和)(x F '满足洛必达法则的条件,可继 续使用洛必达法则, 即Λ=''''=''=→→→) () (lim )()(lim )()(lim x F x f x F x f x F x f a x a x a x ; 2.当∞→x 时, 该法则仍然成立, 有) ()(lim ) ()(lim x F x f x F x f x x ''=∞ →∞ →; 3.对a x →(或∞→x )时的未定式∞ ∞,也有相应的洛必达法则;

导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题 第一部分:历届导数高考压轴题 (全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有 f (x )≥ax 成立,求实数a 的取值范围. (全国1理)已知函数()11ax x f x e x -+= -. (Ⅰ)设0a >,讨论()y f x =的单调性; (Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥; (Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos x f x x = +. (Ⅰ)求()f x 的单调区间; (Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. (辽宁理)设函数ln ()ln ln(1)1x f x x x x = -+++. ⑴求()f x 的单调区间和极值; ⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞若存在,求a 的取值范围;若不存在,试说明理由.

(新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间; (Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--. (Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1 x f x x ≥+; (Ⅱ)设当0x ≥时,()1 x f x ax ≤ +,求a 的取值范围. (新课标理)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围.

(完整版)洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20 cos ln lim x x x → (00 型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2

洛必达法则求极限教学

洛必达法则求极限教学 摘要:本文结合教学实际对洛必达法则及其在求未定式极限方面的应用进行了分析,同时还分析了学生易错的洛必达法则求函数极限失效的情况。 关键词:洛必达法则;未定式;极限 求极限是微积分中的一项非常基础和重要的工作。教学中发现对于普通的求极限问题,学生解决起来问题不大,但是对于形如:■,■,∞-∞,0·∞,∞0,1∞,00的7种未定式,学生虽然能联系到洛必达法则,但是经常出错。 一、洛必达法则及应用 (一)洛必达法则 若函数f(x)与函数g(x)满足下列条件: 1. (或∞),(或∞); 2.f(x)与g(x)在x=a点的某个去心邻域内可导; 3. (或∞)。则 洛必达法则所述极限结果对下述六类极限过程均适用: 。 (二)洛必达法则的应用 1. 基本类型:未定式直接应用法则求极限 解:这是■型未定式。直接运用洛必达法则有 解:这个极限是■型未定式,于是 2. 未定式的其他類型:0·∞、∞-∞、00、∞0、1∞型极限的

求解 除了■型或■这两种未定式外,还可以通过转化,来解其他未定式。 解:这是∞-∞型,设法化为■型: 解:这是1∞未定式 解:这是∞0未定式,经变形得, 故 例6 求 解:这是0·∞型未定式,可变形为,成了■ 型未定式,于是 解:这是00型未定式,由对数恒等式知,xx=exInx,运用例8可得 二、洛必达法则对于实值函数的失效问题 洛必达法则可谓是在求不定式极限中作用最为显赫的一种方法,当然,它也有失效的时候。“失效”的原因则是因为题目本身不满足可以使用洛必达法则的几个条件。所以,在要使用洛必达法则时,要检验该题目是否符合洛必达法则条件,洛必达法则失效的基本原因有以下几种。 (一)使用洛必达法则后,极限不存在(非∞),也就是不符合洛必达法则的条件(3) 例8 计算 解:,而不存在,

洛必达法则在高考解答题中的应用

导数结合洛必达法则巧解高考压轴题 一.洛必达法则: 法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ; (3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()() lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立. ○2洛必达法则可处理00,∞ ∞,0?∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解 1. 函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围. 2. 已知函数x b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围.

导数结合洛必达法则巧解高考压轴题

导数结合洛必达法则巧解高考压轴题 第一部分:历届导数高考压轴题 (全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围. (全国1理)已知函数()11ax x f x e x -+=-. (Ⅰ)设0a >,讨论()y f x =的单调性; (Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥; (Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos x f x x = +. (Ⅰ)求()f x 的单调区间; (Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. (辽宁理)设函数ln ()ln ln(1)1x f x x x x = -+++. ⑴求()f x 的单调区间和极值; ⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的 取值范围;若不存在,试说明理由. (新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间; (Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--. (Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1 x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤ +,求a 的取值范围. (新课标理)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程 为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围. 例题:若不等式3sin x x ax >-对于(0,)2 x π ∈恒成立,求a 的取值范围 第二部分:泰勒展开式 1.23 11,1!2!3! !(1)! n n x x x x x x x e e n n θ+=++++ +++其中(01)θ<<;

高考导数(洛必达法则)

第二部分:泰勒展开式 1.2311,1!2!3!!(1)!n n x x x x x x x e e n n θ+=+++++++K 其中(01)θ<<; 2. 23 1ln(1)(1),2!3!! n n n x x x x x R n -+=-+-+-+K 其中111(1)()(1)!1n n n n x R n x θ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+-K ,其中21 (1)cos (21)! k k n x R x k θ+=-+; 4. 2422 1cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+-K 其中2(1)cos (2)! k k n x R x k θ=-; 第三部分:新课标高考命题趋势及方法 许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路——分类讨论和假设反证的方法.虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了 00 ”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则. 第四部分:洛必达法则及其解法 洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x a x a f x g x →→==; (2)在()U a o 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim () x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. (2011新)例:已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法 由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--.

洛必达法则word版

第十七讲 Ⅰ 授课题目: §3.2 洛必塔法则 Ⅱ 教学目的与要求: 1.掌握用罗必塔法则求极限; 2.明了使用罗必塔法则的条件; 3.了解将罗必塔法则与极限运算性质结合使用常能简化运算。 Ⅲ 教学重点与难点: 重点:各种类型的未定式转化为 00或∞ ∞ 型的未定式 难点:罗必塔法则与极限运算性质的结合使用 Ⅳ 讲授内容: §3.2 洛必塔法则 如果当a x →(或∞→x )时,两个函数)(x f 与)(x F 都趋于零或都趋于无穷大,那末极限)() (lim ) (x F x f x a x ∞→→可能存在、也可能不存在.通常把这种极限叫做未定式,并 分别简记为 00或∞∞.在第一章第六节中讨论过的极限x x x sin lim 0→就是未定式0 0的一个 例子.对于这类极限,即使它存在也不能用“商的极限等于极限的商”这—法则. 下面我们将根据柯西中值定理来推出求这类极限的一种简便且重要的方法. 我们着重讨论a x →时的未定式 的情形,关于这情形有以下定理: 定理1 设 (1)当a x →时,函数)(x f 及)(x F 都趋于零; (2)在点a 的某去心邻域内,)(x f '及)(x F '都存在且0)(≠'x F ; (3)) () (lim x F x f a x ''→存在(或为无穷大), 那么 ) () (lim )()(lim x F x f x F x f a x a x ''=→→. 这就是说,当)()(lim x F x f a x ''→存在时,)()(lim x F x f a x →也存在且等于)()(lim x F x f a x ''→;当) () (lim x F x f a x ''→为 无穷大时,

洛必达法则完全证明教学文案

洛必达法则完全证明

洛必达法则完全证明 定理1 00lim ()lim ()0x x x x f x g x →→==,0'()lim '() x x f x g x →存在或为∞ ,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明见经典教材。 定理2 lim ()lim ()0x x f x g x →∞→∞ ==,0'()lim '()x x f x g x →存在或为∞ ,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明:1 01lim ()lim ()0t x x t f x f t =→∞→==,1 01lim ()lim ()0t x x t g x g t =→∞→==,由定理1 11 200021111()'()()'()()'()lim =lim lim lim lim 1111()'()()'()()'()t x x t x t t t x f f f f x f x t t t t g x g x g g g t t t t ==→∞→→→→∞-===-。 定理300lim ()lim ()x x x x f x g x →→==∞,0'()lim '() x x f x g x →存在或为∞ ,则00()'()lim =lim ()'()x x x x f x f x g x g x →→ 证明: 001 ()()lim =lim 1 ()() x x x x f x g x g x f x →→,由定理1 00002221'()()()'()()()lim =lim =lim lim(())1'()()()'()()() x x x x x x x x g x f x f x g x g x g x f x g x g x f x f x f x →→→→-=- 1) 设0()lim () x x f x g x →存在且不为0,则 0002()()'()lim lim()lim ()()'()x x x x x x f x f x g x g x g x f x →→→=,00()'()lim lim ()'() x x x x f x f x g x g x →→= 2) 设0 ()lim ()x x f x g x →存在且为0,设0k ≠ ,则 0()lim()0()x x f x k g x →+≠

洛必达法则解高考题

洛必达法则解高考题 2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。 洛必达法则简介: 法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞ = 及()lim 0x g x →∞ =; (2)0A ?f ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)() () lim x f x l g x →∞'=', 那么 ()() lim x f x g x →∞ =() () lim x f x l g x →∞ '='。 法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)() () lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=() () lim x a f x l g x →'='。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○ 1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a + →,x a - → 洛必达法则也成立。 ○ 2洛必达法则可处理00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型。 ○3在着手求极限以前,首先要检查是否满足00,∞∞ ,0?∞,1∞,0 ∞,00,∞-∞型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ○ 4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 二.高考题处理

(完整版)利用洛必达法则来处理高考中的恒成立问题

导数结合洛必达法则巧解高考压轴题 法则1 若函数f(x) 和g(x)满足下列条件:(1) lim f x x a 0及 l im g x 0 ; x a ⑵在点 a 的去 心邻域内, f(x) 与g(x) 可导且 g'(x) K ; (3) f x lim l ,那么 x a g x f x f x lim -=lim l 。 x a g x x a g x f x f x lim =lim l 。 x a g x x a g x 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公 式中的X — a , x —x 换成 X — +x, X — -X, x a , x a 洛必达法则也成立。 2. 洛必达法则可处理°,—, 0 , 1 , , Q ° , 型。 3. 在着手求极限以前,首先要检查是否满足 0 , — , 0 , 1 , ° , 0° , 型定 式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时 称洛必达法则不适用,应从另外途径求极限。 4.若条件符合,洛必达法则可连续多次使 用,直到求出极限为止。 f(x) 和g(x)在 ,A 与 A, 上可导,且 g'(x)工0 ; ⑶lim x l ,那么 x g x f x f x lim =lim l 。 x g x x g x 法则3若函数f(x)和g(x)满足下列条件:(1) lim f x 及 lim g x (2)在点 x a x a a 的去心邻域内,f(x) 与g(x)可导且 g'(x) K ; f (3) lim x l ,那么 x a g x 0 及[im g x 0 ; (2) Af 0, 和g(x)满足下列条件:⑴lim f x x 法则2若函数f(x)

洛必达法则巧解高考压轴题

洛必达法则巧解高考压轴题

————————————————————————————————作者:————————————————————————————————日期:

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型) (2)lim x ?p 2 sin x -1cos x (00型) (3) 20 cos ln lim x x x → (00 型) (4)x x x ln lim +∞→ (∞∞型)

洛必达法则巧解高考压轴题

洛必达法则巧解高考压 轴题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

洛必达法则巧解高考压轴题 洛必达法则: 法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x a f x →= 及()lim 0x a g x →=; (2)在点a 的去心内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()()lim x a f x l g x →'='。 00 型 法则2 若函数f(x) 和g(x)满足下列条件: (1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心内,f(x) 与g(x) 可导且g '(x)≠0; (3)()() lim x a f x l g x →'=', 那么 () ()lim x a f x g x →=()()lim x a f x l g x →'='。 ∞∞ 型 注意: ○1将上面公式中的x→a ,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则 也成立。 ○ 2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 典例剖析 例题1。 求极限 (1)x x x 1ln lim 0 +→ (∞∞型)

(2)lim x ?p 2 sin x -1cos x (00型) (3) 20cos ln lim x x x → (00型) (4)x x x ln lim +∞→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22 )2(sin ln lim x x x -→ππ 例题2。 已知函数R m x e x m x f x ∈+-=,)1()(2 (1)当1-=m 时,求)(x f 在[]1,2-上的最小值 (2)若)()2('2x f x m x >++在()0,∞-上恒成立,求m 的取值范围 例题3.已知函数)0(,)(>++ =a c x b ax x f 的图像在点())1(,1f 处的切线方程为1-=x y , (1)用a 表示 c b , (2)若x x f ln )(≥在[)+∞,1上恒成立,求a 的取值范围 例题4.若不等式3sin ax x x ->在??? ??∈2,0πx 是恒成立,求a 的取值范围 例题5.已知2)1()(ax e x x f x --= (1)若)(x f 在1-=x 时有极值,求函数)(x f 的解析式 (2)当0≥x 时,0)(≥x f ,求a 的取值范围 强化训练 1. 设函数x e x f -1)(-= (1)证明:当1->x 时,1)(+≥ x x x f 。 (2)当0≥x 时1 )(+≤ax x x f 求a 的取值范围 2.设函数2()1x f x e x ax =---。

洛必达法则的一些应用

1 引言 18世纪数学本身的发展,以及这个世纪后期数学研究活动的扩和数学教育的改革都为19世纪数学的发展准备了条件.微积分学的深人发展,才有了后面的洛比达法则,而且在英国和欧洲大陆是循着不同的路线进行的.在欧洲大陆,新分析正在莱布尼茨的继承者们的推动下蓬勃发展起来.伯努利家族的数学家们首先继承并推广莱布尼茨的学说. 雅各布·伯努利运用莱布尼茨引用的符号,并称之为积分,莱布尼茨采用他的建议,并列使用微分学与积分学两个术语.雅各布·伯努利的弟弟约. 翰·伯努利在莱布尼茨的协助之下发展和完善了微积分学. 他借助于常量和变量,用解析表达式来定义函数,这比在此之前对函数的几何解释有明显的进步. 他在求“0/0”型不定式的值时,发现了现称为洛必达法则的方法,即用以寻找满足一定条件的两函数之商的极限. 约翰·伯努利的学生、法国数学家洛必达的《无限小分析》(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模著作,他在书中规了这一种算法即洛必达法则,之后洛必达法则的也得到了广泛应用,这对传播微分学起到很大的作用. 从极限概念的产生到现在已经经历了两千五百多年的发展,漫漫的历史长河,人类在寻求真理和科学的过程中不断探索和总结,对于数学的探索给了人类科学发展以强大的动力.我们应当对任何知识都认真的学习、研究及做出总结.不仅踏寻前人的路迹,同时也要从中开创新的空间. 极限是数学分析的基石,是微积分学的基础.不定式极限是一种常见和重要的极限类型,其求法多种多样,变化无穷.本文先介绍了洛必达法则的定义,然后对洛必达法则使用条件及其常见误区进行了详细分析,阐述了该法则适用于解决函数极限的类型并举例说明其应用,总结了洛必达法则的各种形式及使用围,并介绍了洛必达法则的基本应用,以及在使用洛必达法则解题时应注意的问题.文章还将法则的适用围推广至求数列极限,然后分析法则的使用过程中容易出现的错误;最后通过具体实例说明了可以将法则和其他求极限方法结合起来使用,使我们对法则有了更深入的理解,进而提高了应用洛必达法则解决问题的能力. 2 洛必达法则及使用条件 在计算一个分式函数的极限时,常常会遇到分子分母同时趋向于零或无穷大的情况,由于这时无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难,事实上,这时极限可能存在,也可能不存在,当极限存在时,极限的值也会有各种各样的可能,如当a x →(或∞→x )时,两个函数)(x f 与)(x g 都趋于零或都趋于无穷大,那么极限

相关文档
最新文档