PT燃油系统结构组成及工作原理

PT燃油系统结构组成及工作原理
PT燃油系统结构组成及工作原理

关于燃油供给系统构造与原理

燃油供给系统构造与原理 ·燃油供给系统组成:燃油泵、燃油滤清器、燃油压力调节器、喷油器、冷起动喷油器、油压脉冲衰减器等。 ·燃油供给系统功用:供给喷油器一定压力的汽油,喷油器根据电脑指令喷油。 ·一、电动燃油泵 1.电动燃油泵结构与原理 (1)滚柱式电动汽油泵 1)工作过程 ·转子偏心地安装在泵体内,滚柱装在转子的凹槽中。当转子旋转时,滚柱在离心力的作用下紧压在泵体的内表面上;同时在惯性力的作用下,滚柱总是与转子凹槽的一个侧面贴紧,从而形成若干个工作腔。 ·在汽油泵工作过程中,进油口一侧的工作腔容积增大,成为低压吸油腔,汽油经进油口被吸入工作腔内。在出油口一侧的工作腔容积减小,成为高压油腔,

高压汽油从压油腔经出油口流出。 ·限压阀(溢流阀)的作用是当油压超过0.45MPa时开启,使汽油回流到进油口,以防止油压过高损坏汽油泵。 ·在出油口处装设单向止回阀(出油阀),当发动机停机时,止回阀关闭,防止管路中的汽油倒流回汽油泵,借以保持管路中有一定的油压 2)特点 ·运转噪声大 ·油压脉动大 ·泵内表面和转子易磨损 (2)叶片式电动汽油泵 1)工作原理 ·叶轮是一个圆形平板,在平板的圆周上加工有小槽,形成泵油叶片。 ·叶轮旋转时,小槽内的汽油随同叶轮一同高速旋转。由于离心力的作用,使出口处油压增高,而在进口处产生真空,从而使汽油从进口吸人,从出口排出 2)特点 ·运转噪声小 ·泵油压力高 ·叶片磨损小 ·使用寿命长 2.电动燃油泵的控制

(1)燃油泵继电器控制电路 ·点火开关STA:起动机继电器闭合,同时ECU有STA信号,起动机起动。·STA信号和NE信号输入ECU:Tr1接通,开路继电器闭合,燃油泵运转。·起动或重负荷时:ECU中的Tr2断开,燃油泵继电器闭合,燃油泵高速运转;·怠速或轻负荷时:ECU中的Tr2接通,燃油泵继电器断开,电流流过燃油泵电阻器,燃油泵低速运转 (2)燃油泵ECU控制电路

燃油供给系统组成

燃油供给系统组成:燃油泵、燃油滤清器、燃油压力调节器、喷油器、冷起动喷油器、油压脉冲衰减器等。 ·燃油供给系统功用:供给喷油器一定压力的汽油,喷油器根据电脑指令喷油。 ·一、电动燃油泵 1.电动燃油泵结构与原理 (1)滚柱式电动汽油泵(视频) 1)工作过程 ·转子偏心地安装在泵体内,滚柱装在转子的凹槽中。当转子旋转时,滚柱在离心力的作用下紧压在泵体的内表面上;同时在惯性力的作用下,滚柱总是与转子凹槽的一个侧面贴紧,从而形成若干个工作腔。 ·在汽油泵工作过程中,进油口一侧的工作腔容积增大,成为低压吸油腔,汽油经进油口被吸入工作腔内。在出油口一侧的工作腔容积减小,成为高压油腔,高压汽油从压油腔经出油口流出。 ·限压阀(溢流阀)的作用是当油压超过0.45MPa 时开启,使汽油回流到进油口,以防止油压过高损坏汽油泵。 ·在出油口处装设单向止回阀(出油阀),当发动机停机时,止回阀关闭,防止管路中的汽油倒流回汽油泵,借以保持管路中有一定的油压

2)特点 ·运转噪声大 ·油压脉动大 ·泵内表面和转子易磨损 (2)叶片式电动汽油泵 1)工作原理 ·叶轮是一个圆形平板,在平板的圆周上加工有小槽,形成泵油叶片。 ·叶轮旋转时,小槽内的汽油随同叶轮一同高速旋转。由于离心力的作用,使出口处油压增高,而在进口处产生真空,从而使汽油从进口吸人,从出口排出 2)特点 ·运转噪声小 ·泵油压力高 ·叶片磨损小 ·使用寿命长

2.电动燃油泵的控制 (1)燃油泵继电器控制电路 ·点火开关STA:起动机继电器闭合,同时ECU有STA信号,起动机起动。 ·STA信号和NE信号输入ECU:Tr1接通,开路继电器闭合,燃油泵运转。 ·起动或重负荷时:ECU中的Tr2断开,燃油泵继电器闭合,燃油泵高速运转; ·怠速或轻负荷时:ECU中的Tr2接通,燃油泵继电器断开,电流流过燃油泵电阻器,燃油泵低速运转 (2)燃油泵ECU控制电路 ·起动或重负荷时:发动机ECU通过FPC端子向燃油泵ECU发出高电平信号,燃油泵ECU向燃油泵输出高电压(约12V),燃油泵高速运转 ·怠速或轻负荷时:发动机ECU通过FPC端子向燃油泵ECU发出低电平信号,燃油泵ECU向燃油泵输出低电压(约9V),燃油泵低速运转

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理图解 Post by:2010-10-419:48:00 什么是悬挂系统 舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。 汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。 悬挂系统的分类 现代汽车悬架的发展十分快,不断出现,崭新的悬架装置。按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,如下图所示,也就是汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。20世纪80年代以来主动悬架开始在一部分汽车上应用,并且目前还在进一步研究和开发中。主动悬架可以能动地控制垂直振动及其车 身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。

汽车各系统工作原理

发动机工作原理概述 汽车的引擎是汽车的动力源泉,就像人的心脏一样重要。所以,一部车引擎的特性可以作为决定整部车性能的重要指标。也就是说,如果一部车的引擎非常出色,那么这部车的性能也一定很出色。 汽车的引擎是通过燃油和空气所形成的混合气体燃烧、爆炸来产生动力的。这一切的物理、化学变化都是在燃烧室内进行的。 首先,起动机带动引擎的曲轴运动,而曲轴通过特有的曲柄连杆机构带动气缸内的活塞上下运动。在活塞向下运动时,气缸内产生了真空效应,同时外界的新鲜空气通过空气过滤器被吸入到进气腔,并通过此时开启的进气门而被引入到气缸内。 在空气进入气缸的同时,燃油也通过喷油嘴以绝对雾化状态喷射到气缸的燃烧室内(目前多数喷射引擎都是将燃油喷射到进气门处,然后与空气一起进入到气缸内)并与空气形成混合气体。 在混合气体形成同时,汽缸的燃烧室内火花塞开始打火,形成高达几万伏特的高压电火花,迅速点燃混合气体,混合气体发生爆炸,推动活塞向下运动。这时气缸的排气们开启,将燃烧后的废气引入到排气管内,通过消音器被排放到空气中。在活塞运动到下止点后,一个完整的工作流程结束。由于运动的特性及曲柄连杆机构的特性,活塞会再度向上运动,同时开始第二个工作流程。

通过上图我们不难了解整个运动的过程(由于是剖视图,气缸未标出,活塞位于气缸内,活塞到达运动的上止点时与缸盖之间的空间为燃烧室),正是因为引擎的多个气缸内的活塞有顺序的交替运 汽车总体工作原理概述 可以说,汽车是当代科学与艺术的结晶。从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。

高压共轨燃油喷射系统的结构和工作原理

高压共轨燃油喷射系统的结构和工作原理 李明诚,《电控柴油机的基本结构及工作原理》,2011 1、高压共轨喷射系统简介 它是由燃油泵把高压油输送到公共的、具有较大容积的配油管——油轨内,将高压油蓄积起来,再通过高压油管输送到喷油器,即把多个喷油器,并联在公共油轨上。在公共油轨上,设置了油压传感器、限压阀和流量限制器。由于微电脑对油轨内的燃油压力实施精确控制,燃油系统供油压力因柴油机转速变化所产生的波动明显减小(这是传统柴油机的一大缺陷),喷油量的大小仅取决于喷油器电磁阀开启时间的长短。 特点: ①、将燃油压力的产生与喷射过程完全分开,燃油压力的建立与喷油过程无关。燃油从喷油器喷出以后,油轨内的油压几乎不变; ②、燃油压力、喷油过程和喷油持续时间由微电脑控制,不受柴油机负荷和转速的影响; ③、喷油定时与喷油计量分开控制,可以自由地调整每个气缸的喷油量和喷射起始角。 2、高压共轨燃油喷射系统的基本结构 高压共轨燃油喷射系统包括燃油箱、输油泵、燃油滤清器、油水分离器、高低压油管、高压油泵、带调压阀的燃油共轨组件、高速电磁阀式喷油器、预热装置及各种传感器、电子控制单元等装置。 高压共轨燃油喷射系统的低压供油部分包括:燃油箱(带有滤网、油位显示器、油量报警器)、输油泵、燃油滤清器、低压油管以及回油管等;共轨喷射系统的高压供油部分包括:带调压阀的高压油泵、燃油共轨组件(带共轨压力传感器)以及电磁阀式喷油器等。 3、电控燃油喷射系统的工作原理 电子控制单元接收曲轴转速传感器、冷却液温度传感器、空气流量传感器、加速踏板位置传感器、针阀行程传感器等检测到的实时工况信息,再根据ECU内部预先设置和存储的控制程序和参数或图谱,经过数据运算和逻辑判断,确定适合柴油机当时工况的控制参数,并将这些参数转变为电信号,输送给相应的执行器,执行元件根据ECU的指令,灵活改变喷油器电磁阀开闭的时刻或开关的开或闭,使气缸的燃烧过程适应柴油机各种工况变化的需要,从而达到最大限度提高柴油机输出功率降低油耗和减少排污的目的。 一旦传感器检测到某些参数或状态超出了设定的范围,电控单元会存储故障信息,并且点亮仪表盘上的指示灯(向操作人员报警),必要时通过电磁阀自动切断油路或关闭进气门,减小柴油机的输出功率(甚至停止发动机运转),以保护柴油机不受严重损坏——这是电子控制系统的故障应急保护模式

汽车刹车制动系统工作原理图解

汽车刹车制动系统工作原理图解 想必不需要多问,大家都知道在行车过程中,汽车制动功能是非常重要的,因为刹车制动直接关系到车主的生命财产安全,如果知道不好,那是极度危险的,学习了解汽车制动工作原理,有利于在今后的开车过程中熟练掌握刹车技能,在日常汽车维护中也能自己修理刹车制动部件。随着酒后代驾、商务代驾、婚庆代驾等代驾行业的兴起,标志着中国交通社会文明程度的不断提升。当然,对代驾司机提出了更多的驾驶技能要求,不仅要会驾驶各种品牌的汽车,更要懂得在紧急情况下如何处理应急问题,因此第一代驾为广大司机整理了全面的汽车刹车制动系统工作原理图解知识。 实际刹车与工作原理图解

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、

传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

高压共轨燃油喷射系统的结构和工作原理.

高压共轨燃油喷射系统的结构和工作原理 2017-06-14 高压共轨燃油喷射系统的结构和工作原理 李明诚,《电控柴油机的基本结构及工作原理》,2011 1、高压共轨喷射系统简介 它是由燃油泵把高压油输送到公共的、具有较大容积的配油管――油轨内,将高压油蓄积起来,再通过高压油管输送到喷油器,即把多个喷油器,并联在公共油轨上。在公共油轨上,设置了油压传感器、限压阀和流量限制器。由于微电脑对油轨内的燃油压力实施精确控制,燃油系统供油压力因柴油机转速变化所产生的波动明显减小(这是传统柴油机的一大缺陷),喷油量的大小仅取决于喷油器电磁阀开启时间的长短。 特点: ①、将燃油压力的产生与喷射过程完全分开,燃油压力的建立与喷油过程无关。燃油从喷油器喷出以后,油轨内的油压几乎不变; ②、燃油压力、喷油过程和喷油持续时间由微电脑控制,不受柴油机负荷和转速的影响;③、喷油定时与喷油计量分开控制,可以自由地调整每个气缸的喷油量和喷射起始角。 2、高压共轨燃油喷射系统的基本结构 高压共轨燃油喷射系统包括燃油箱、输油泵、燃油滤清器、油水分离器、高低压油管、高压油泵、带调压阀的燃油共轨组件、高速电磁阀式喷油器、预热装置及各种传感器、电子控制单元等装置。 高压共轨燃油喷射系统的低压供油部分包括:燃油箱(带有滤网、油位显示器、油量报警器)、输油泵、燃油滤清器、低压油管以及回油管等;共轨喷射系统的'高压供油部分包括:带调压阀的高压油泵、燃油共轨组件(带共轨压力传感器)以及电磁阀式喷油器等。 3、电控燃油喷射系统的工作原理 电子控制单元接收曲轴转速传感器、冷却液温度传感器、空气流量传感器、加速踏板位置传感器、针阀行程传感器等检测到的实时工况信息,再根据ECU内部预先设置和存储的控制程序和参数或图谱,经过数据运算和逻辑判断,确定适合柴油机当时工况的控制参数,并将这些参数转变为电信号,输送给相应的

制动系统的一般工作原理

制动系统的一般工作原理 制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。 可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动 鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。 目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。 实际应用差别很明显,盘刹比鼓刹好用。刹车鼓中的石棉材料会致癌。鼓刹与盘刹各有利弊。在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。 散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会

汽车刹车系统的工作原理简述

汽车刹车系统的工作原理 在汽车的性能测试环节中,加速和是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车好不好,但问题在于速度慢多数情况下不会有什么太大问题而不好很可能关系到生命安全,所以今天我们就来说说汽车的。 系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,时系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里到静止可能只需要XX秒而已,可见系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下踏板,向总泵中的油施加压力,液体将压力通过管路传递到每个车轮卡钳的上,驱动卡钳夹紧盘从而产生巨大摩擦力令车辆减速。 我们先从总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的总泵“小得可怜”,甚至让人怀疑它是否能提供足够的力。其实完全不必为此担心,因为系统运用了“帕斯卡定律”。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到总泵液体上的压强等于盘处的液体压强,但因为压强等于单位面积的压力,所以只要增大的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形,左侧直径是2英寸,右侧直径是6英寸,也就是左侧的3倍,那么如果给左侧施加一定量的力,那么右侧将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

汽车悬架系统开发布置流程

悬架系统开发流程---布置部分 目标设定BENCHMARK 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。 拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外

汽车刹车泵工作原理

简述刹车系统工作原理 [汽车之家技术] 在汽车之家的性能测试环节中,加速和刹车是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车刹车好不好,但问题在于速度慢多数情况下不会有什么太大问题而刹车不好很可能关系到生命安全,所以今天我们就来说说汽车的刹车。 刹车系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,刹车时刹车系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里刹车到静止可能只需要XX秒而已,可见刹车系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急刹车中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,活塞驱动刹车卡钳夹紧刹车盘从而产生巨大摩擦力令车辆减速。 我们先从刹车总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的刹车总泵”小得可怜“,甚至让人怀疑它是否能提供足够的刹车力。其实完全不必为此担心,因为刹车系统运用了”帕斯卡定律“。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到刹车总泵液体上的压强等于刹车盘活塞处的液体压强,但因为压强等于单位面积的压力,所以只要增大活塞的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形活塞,左侧活塞直径是2英寸,右侧活塞直径是6英寸,也就是左侧活塞的3倍,那么如果给左侧活塞施加一定量的力,那么右侧活塞将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

悬架系统设计步骤(DOC)

悬架系统设计步骤 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。 拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外 倾的回复能力,但这导致轮罩间宽度尺寸的减小。)

汽车制动系统工作原理详解

汽车制动系统工作原理详解 众所周知,当我们踩下制动踏板时,汽车会减速直到停车。但这个工作是怎么样完成的?你腿部的力量是怎么样传递到车轮的?这个力量是怎么样被扩大以至能让一台笨重的汽车停下来? 首先我们把制动系统分成6部分,从踏板到车轮依次解释每部分的工作原理,在了解汽车制动原理之前我们先了解一些基本理论,附加部分包括制动系统的基本操作方式。 基本的制动原理 当你踩下制动踏板时,机构会通过液压把你脚上的力量传递给车轮。但实际上要想让车停下来必须要一个很大的力量,这要比人腿的力量大很多。所以制动系统必须能够放大腿部的力量,要做到这一点有两个办法: 1、杠杆作用 2、利用帕斯卡定律,用液力放大 制动系统把力量传递给车轮,给车轮一个摩擦力,然后车轮也相应的给地面一个摩擦力。在我们讨论制动系统构成原理之前,让我们了解三个原理: 杠杆作用、液压作用、摩擦力作用 杠杆作用

制动踏板能够利用杠杆作用放大人腿部的力量,然后把这个力量传递给液压系统。 如上图,在杠杆的左边施加一个力F,杠杆左边的长度(2X)是右边(X)的两倍。因此在杠杆右端可以得到左端两倍的力2F,但是它的行程Y只有左端行程2Y的一半。 液压系统 其实任何液压系统背后的基本原理都很简单:作用在一点的力被不能压缩的液体传递到另一点,这种液体通常是油。绝大多数制动系统也在此中放大制动力量。下图是最简单的液压系统: 如图:两个活塞(红色)装在充满油(蓝色)的玻璃圆桶中,之间由一个充满油的导管连接,如果你施一个向下的力给其中一个活塞(图中左边的活塞)那么这个力可以通过管道内的液压油传送到第二个活塞。由于油不能被压缩,所以这种方式传递力矩的效率非常高,几乎100%的力传递给了第二个活塞。液压传力系统最大的好处就是可以以任何长度,或者曲折成

汽车悬架系统工作原理

汽车悬架系统工作原理 作者:William Harris (本文为博闻网所有, 未经许可禁止以任何形式或使用。违者必究。) 推荐到: 本文包括: 1 1. 引言 2 2. 减振器 3 3. 专用悬架 4 4. 了解更多信息 5 5. 阅读所有引擎盖下类文章 人们在考虑汽车的性能时,通常会关注马力、扭矩和“0到60”加速时间等参数。但是如果驾驶员无法操控汽车,那么活塞发动机产生的所有动力都将毫无用处。有鉴于此,汽车工程师在掌握了四冲程燃发动机后,立即就把注意力转向了悬架系统。 本田发动机供图 本田雅阁2005 Coupe双A形控制臂式悬架 汽车悬架的工作是最大限度地增加轮胎与路面之间的摩擦力,提供能够良好操纵的转向稳定性,以及确保乘客的舒适度。在本文中,我们将探究汽车悬架的工作方式、发展演变过程以及未来设计的发展方向。 如果路面非常平坦,没有坑坑洼洼,就不需要悬架。但道路往往并不平坦。即使是新铺的高速公路,其路面也会有些微凹凸不平而对汽车车轮造成影响。就是这样的路面将力作用在车轮上。根据牛顿运动定律,力都具有大小和方向。路上的颠簸会使车轮垂直于路面上下运动。当然,力的大小取决于车轮颠簸的程度,但无论如何,在通过不平路面时车轮都会产生一个垂直加速度。

如果没有一个居间结构,所有车轮的垂直能量将直接传递给在相同方向上运动的车架。在这种情况下,车轮会完全丧失与路面的接触,然后在向下的重力作用下再次撞回路面。因此,您需要的是这样一个系统:它能够吸收垂直加速车轮的能量,使车轮顺着路面上下颠簸的同时车架和车身不受干扰。 对行驶中汽车的力的研究称为车辆动力学。您需要了解下面一些概念,以便理解为何必须将悬架置于首要地位。大多数汽车工程师从两个方面来考虑行驶中汽车的动力特征:?行驶性能——汽车平稳驶过崎岖不平的路面的性能 ?操纵性能——汽车安全地加速、制动和转弯的性能 这两个特征可通过三个重要原理进一步加以描述:路面隔离性能、抓地性能和转弯性能。下表描述了这些原理以及工程师们如何尝试解决它们各自的问题。 原 理 定义目标解决方案 路 面 隔离性能车辆吸收路面振动或将其与乘客 席隔离的性能。 使车身在驶过不平路面时不受干 扰。 吸收并消化路面颠簸 产生的能量,从而使 车辆不至于产生过度 的震动。 抓地性能在各种类型的方向变化以及直线 行驶过程中汽车保持与路面接触 的程度。例如,制动时汽车的重 量将从后轮移至前轮。因为车头 扎向路面,所以这种运动类型称 为“俯冲”。相反,加速时汽车 的重量会从前轮移至后轮,称为 “蹲伏”。 保持轮胎与地面接触,因为轮胎 与路面之间的摩擦力会影响车辆 转向、制动和加速性能。 尽量减少车身重量的 左右和前后转移,因 为这会降低轮胎的抓 地性能。 转 弯性能车辆沿弯路行驶的性能。 尽量减少车身的翻滚趋势。当汽 车转弯时,离心力会作用于汽车 的重心并将其向外推,从而抬高 车辆的一侧而降低另一侧,造成 翻滚趋势。 转弯时将汽车的重量 从较高的一侧转移到 较低一侧。

燃油系统的组成与工作原理

燃油系统的组成与工作原理 如图2—1所示,燃油系统主要由燃油泵、燃油滤清器、燃油脉动阻尼器、燃油压力调节器、喷油器、进油管、回油管等组成。 一、燃油泵 电动燃油泵由小型直流电动机驱动,其作用是提供燃油喷射所需的压力燃油。电动燃油泵的电动机和燃油泵连成一体,密封在同一壳体内。 电动燃油泵按安装位置不同可分为:安装在油箱外输油管路中的外装式燃油泵和安装在油箱中的内装式燃油泵。前者一般采用滚柱泵,后者采用叶片泵,但也可以采用滚柱泵。内装式燃油泵安装管路较简单,不易产生气阻和漏油。有时在油箱内还设有一个小油箱,并将燃油泵置于小油箱中。这样可防止在油箱燃油不足时,因汽车转向或倾斜引起燃油泵周围燃油的移动,使燃油泵吸入空气而产生气阻。现在大多数车型都使用内装式燃油泵,有些车仍使用外装式燃油泵,还有少数车型,将两者串联在油路上使用。 电动燃油泵可分:滚柱式、叶片式、齿轮式、涡轮式、侧槽式。目前常见的电动燃油泵有滚柱式和叶片式两种。 1.滚柱式: 结构:燃油泵滤网、电机、单向阀、卸压阀。 电子控制燃油喷射系统的电动燃油泵是一种由小型直流电动机驱动的燃油泵。电动机和燃油泵做成一体,密封在一个泵壳内。

如图2—2 所示,滚柱式燃油泵泵壳的一端是进油口,另一端是出油口。电源插头在出油口一侧。进油口一侧的滚柱式燃油泵由壳体中间的直流电动机高速驱动。当燃油泵旋转时,由于离心力的作用,转子槽内的滚柱向外移动,紧靠在偏心的泵体壁面上。滚柱随转子一同旋转时泵腔容积发生变化;燃油进口处容积越来越大,出口处容积越来越小,使燃油经过入口的滤网被吸入燃油泵,加压后经过电动机周围的空隙由出口泵出。 2.叶片式: 如图2—3 所示,这种燃油泵与滚柱式电动燃油泵结构相似,但它的转子是一块圆形平板,平板圆周上开有小槽,形成泵油叶片。燃油泵在运转时,转子周围小槽内的燃油跟随转子一同高速旋转。由于离心力的作用,使燃油出口处油压增高,同时在进口处产生一定的真空,从而使燃油从进口吸入并被泵向出口。这种泵是最大泵油压力可达600kPa以上。

汽车各类悬架系统图解说明

汽车各类悬架系统图解说明 独立悬架与非独立悬架示意图13-4所示 独立悬架如图4-57(a)所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。非独立悬架如图4-57(b)所示。其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。 钢板弹簧13-5

钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车架的振动衰减,起到减振器的作用 扭杆弹簧 扭杆弹簧一般用铬钒合金弹簧钢制成。一端固定在车架上,另一端上的摆臂2与车轮相连。当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。 扭杆的断面形式 断面常为圆形,少数是矩形或管形 空气弹簧 空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种(如图4-61所示),工作气压为0.5~1Mpa。这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。 油气弹簧简图

油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的 1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防尘罩11-油封 双向作用筒式减振器示意图p314 -4-51 横向稳定器的安装13-7copy.gif

电子控制燃油喷射系统的组成及工作原理

电子控制燃油喷射系统的组成及工作原理 一、电子控制燃油喷射系统的控制内容及功能 1、电子控制燃油喷射(EFI) 电子控制燃油喷射主要包括喷油量、喷射定时、燃油停供及燃油泵的控制。 1)喷油量控制 ECU将发动机转速和负荷信号作为主控信号,确定基本喷油量(喷油电磁阀开启的时间长短),并根据其它有关输入信号加以修正,最后确定总喷油量。 2)喷油定时控制 在电控间歇喷射系统中,当采用与发动机转动同步的顺序独立喷射方式时,ECU不仅要控制喷油量,还要根据发动机各缸的发火顺序,将喷射时间控制在一个最佳时刻。 3)减速断油及限速断油控制 a. 减速断油控制 汽车行驶中,驾驶员快收油门踏板时,ECU将会切断燃油喷射控制电路,停止喷油,以降低减速时HC及CO的排放量。当发动机转速降至一定的特定转速时,又恢复供油。 b. 限速断油控制 发动机加速时,发动机转速超过安全转速或汽车车速超过设定的最高车速,ECU将会在临界转速时切断燃油喷射控制电路,停止喷油,防止超速。 4)燃油泵控制 当点火开关打开后,ECU将控制汽油泵工作2—3秒,以建立必须的油压。此时若不启动发动机,ECU将切断汽油泵控制电路,汽油泵停止工作。在发动机启动过程和运转过程中,ECU控制汽油泵保持正常运转。 2、电控点火装置(ESA) 点火装置的控制主要包括点火提前角、通电时间和爆震控制等方面。 1)点火提前角控制 ECU中首先存储发动机在各种工况及运行条件下最理想的提火提前角。发动机运转时,ECU 根据发动机转速和负荷信号,确定基本点火提前角,并根据其它有关信号进行修正,最后确定点火提前角,并向电子点火控制器输出信号,以控制点火系的工作。

汽车制动真空助力器工作原理

汽车知识——真空助力器工作原理汽车知识——真空助力器工作原理 制动助力器,它是一个黑色圆罐,位于驾驶员侧发动机舱后部,固定在车身上,借推杆与制动踏板连接。加力气室由前后壳体组成,其间夹装有膜片和座,它的前腔经单向阀通进气管或真空筒;后腔膜片座毂筒中装有控制阀,其中装有与推杆固接的空气阀和限位板、真空阀和推杆等零件。膜片座前端滑装有推杆,其间有传递脚感的橡胶反作用盘,橡胶反作用盘是两面受力;右面的中心部分要受推杆及空气阀的推力,盘边环部分还要承受膜片座的推力;左面要承受推杆传来的主缸液压反作用力。实际上它是一个膜片,利用它的弹性变形来完成渐进随动,同时使脚无悬空感。单向阀有两个功能:一是保证发动机熄火后有一次有效地助力制动;二是发动机偶尔回火时,保护真空助力室的膜片免于损坏。 一般和刹车总泵一体,助力器成圆筒形状,当中有个皮碗把助力器分成两个腔,当中和前面各有一个单向阀,平时这两个腔全是真空的,当踏下刹车踏板时,前面的单向阀打开,前腔开始进气,但后面的腔还是真空的,当中的单向阀关闭,因为前腔和后腔产生负压,所以皮碗带动顶杆一起推动刹车总泵工作;当收回刹车踏板时当中的单向阀打开,前面的单向阀关闭,前腔的空气流入后腔,两个腔没有负压,顶杆随着踏板回位弹簧一起回到原来的位置,同时当中的单向阀也关闭。 制动助力器利用发动机真空来增大脚施加给主缸的力,真空助力器是一个含有智能阀和膜片的金属罐。一根杆穿过罐的中央,两头分别连接主缸活塞和踏板连杆。 动力制动系统的另一个关键零件是单向阀。 单向阀只允许将空气吸出真空助力器。如果关闭发动机,或者真空管发生泄漏,则单向阀将确保空气不进入真空助力器。这点很重要,因为在发动机停止运转时,真空助力器必须得提供足够的推进力来让驾驶员再刹几次车。在公路上驾车行驶时,如果汽油耗尽,您当然不希望在此时失去制动功能。 真空助力器的设计非常简单、精致。该装置需要真空源才能运行。汽油动力车的发动机可以提供适用于助力器的真空。在装有真空助力器的汽车上,制动踏板推动一个连杆,该连杆穿过助力器进入主缸,驱动主缸活塞。发动机在真空助力器内的膜片两侧形成部分真空。踩下制动踏板时,连杆打开一个气门,使空气进入助力器中膜片的一侧,同时密封另一侧真空。这就增大了膜片一侧的压力,从而有助于推动连杆,继而推动主缸中的活塞。 释放制动踏板时,阀将隔绝外部空气,同时重新打开真空阀。这将恢复膜片两侧的真空,从而使一切复位

最新燃油供给系统教案

授课教案 课程:汽车电子控制技术一体化教程授课老师:XXX

教学过程设计

4)油压调节器 使燃油压力相对于大气压力或进气歧管负压保扌寸疋值,既保扌寸喷油压力与喷油环境压力的插值一定。当供油压力超过规定值时,压力调节器内的减压阀打开,汽油便经过回油管流回油箱,保持输油管压力恒定。提问油压调节 器的安装位置 考察细节把握 能力 5)燃油滤清器 作用是阻止燃油中的颗粒物、水及不洁 物,以防堵塞喷油器针阀,保证燃油系统 精密部件免受磨损及其他损害。 6)喷油器 是个简单的电磁阀,当电磁线圈通电时, 产生吸力,针阀被吸起,打开喷孔,燃油 经针阀头部的轴针与喷孔之间的环形间隙 高速喷出,形成雾状,利于燃烧充分。 7)冷启动阀 冷起动阀的作用是在冷起动发动机时向进 气歧管喷射额外的燃油,以改善低温起动 性能。 8)炭罐 收集汽油箱和浮子室内的汽油蒸汽,并将 汽油蒸汽导入气缸参与燃烧,从而防止汽 油蒸汽直接排放到大气中造成污染。 燃油供给系统可以根据发动机各种不同提问学生燃油引发学生对工况配置出一定数量和浓度的可燃混合过浓和过稀的燃油系统重 气,供入气缸参与发动机工作,燃油系统的好坏关系到汽车性能与排放。下一节课将上电控喷射系统的分类、燃油泵的类型结构和喷油器的类型及工作原理。影响要性的思考 小结 (3分钟,第 课时结束)

复习上节内容(8分钟)燃油供给系统的基本结构包括燃油箱、燃油 泵、燃油缓冲器、燃油压力调节器、喷油 器、节温定时开关和冷启动阀(冷启动喷油 器)等。 提问学生燃油 泵的类型、冷 启动阀的作用 检查学生学习 掌握情况 教授新课 (10分钟)二、电控燃油喷射系统的分类 1)按燃油喷射部位分: 1?缸内喷射; 2?进气歧管喷射; 3?节气门体喷射。 2)按喷油器的数目分: 1?单点喷射; 2?多点喷射。 3)按进气量的检测分: 1?速度密度控制型(D型);2?质量流量控 制型(L型)。 4)按喷射的时序分:1?顺序喷射; 2?分组喷射; 3?同时喷射。提问三种不同喷射方式的优缺点 (10分钟)三、电动燃油泵的类型与结构 1、电动燃油泵的类型 1)按安装位置分: 1. 油箱内置式; 2. 油箱外置式。提问外置式的 缺点 启发学生思考 2)按结构分: 1. 涡轮式; 2. 滚柱式; 3. 转子式; 4. 叶片式。 2、电动燃油泵的结构 1)涡轮式电动燃油泵 2)滚柱式电动燃油泵 3)齿轮式电动燃油泵 考察学生上节 课学习情况

主动悬挂系统工作原理

主动悬架是根据汽车的运动状态和路面状态,适时地调节悬架的刚度和阻尼,使其处于最佳减振状态。它是在被动悬架(弹性元件、减振器、导向装置)中附加一个可控作用力的装置。通常由执行机构、测量系统、反馈控制系统和能源系统4部分组成。执行机构的作用是执行控制系统的指令,一般为发生器或转矩发生器(液压缸、气缸、伺服电动机、电磁铁等)。测量系统的作用是测量系统各种状态,为控制系统提供依据,包括各种传感器。控制系统的作用是处理数据和发出各种控制指令,其核心部件是电子计算机。能源系统的作用是为以上各部分提供能量。 主动悬挂系统能够根据车身高度、车速、转向角度及速率、制动等信号,由电子控制单元(ECU)控制悬挂执行机构,使悬挂系统的刚度、减振器的阻尼力及车身高度等参数得以改变,从而使汽车具有良好的乘坐舒适性和操纵稳定性。 主动悬挂系统是近十几年发展起来的、由电脑控制的一种新型悬挂系统,它汇集力学和电子学的技术知识,是一种比较复杂的高技术装置,例如装置主动悬挂系统的法国雪铁龙桑蒂雅,该车悬挂系统系统的中枢是一个微电脑,悬挂系统上的5种传感器分别向微电脑传送车速、前轮制动压力、踏动油门踏板的速度、车身垂直方向的振幅及频率、转向盘角度及转向速度等数据,电脑不断接收这些数据并与预先设定的临界值进行比较,选择相应的悬挂系统状态,同时,微电脑独立控制每一只车轮上的执行元件,通过控制减振器内油压的变化产生抽动,从而能在任何时候、任何车轮上产生符合要求的悬挂系统运动,因此,桑蒂雅轿车备有多种驾驶模式选择,驾车者只要扳动位于副仪表板上的“正常”或“运动”按钮,轿车就会自动设置在最佳的悬挂系统状态,以求最好的舒适性能,主动悬挂系统具有控制车身运动的功能,当汽车制动或拐弯时的惯性引起弹簧变形时,主动悬挂系统会产生一个与惯力相对抗的力,减少车身位置的变化,例如德国 benz 2000款cl型跑车,当车辆拐弯时悬挂系统传感器会立即检测出车身的倾斜和横向加速度,电脑根据传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多大的负载加到悬挂系统上,使车身的倾斜减到最小。 (一)主动式空气悬挂系统工作原理

相关文档
最新文档