集合论悖论的解决V7.5

集合论悖论的解决V7.5
集合论悖论的解决V7.5

集合论悖论的解决V7.5

2010.12.25 QQ:165442523

摘要:实数集R的所有幂集:P(R),P(P(R)),P(P(P(R))),...,Pn(R),...因为所有Pn(R)都是不包含自身的集合,罗素悖论中“所有不包含自身的集合”必包含所有Pn(R),也就是包含广义连续统假设中的全部基数{X0,X1,...Xn...},从而无意义。

简而言之,集合可以包含自身,但集合不可以包含自身的幂集,这就是我与公理集合论最大不同点。

虽然我知道公理集合论是为了解决罗素悖论而产生的,但我认为公理集合论是在走弯路,甚至是误入岐路了.如果不包含下列的理论,我认为<<集合论>>是不完整的.

广义连续统假设:无限集合的基数必是X0,X1,...Xn...之一.

其中的基数X就是阿列夫,因为我找不到这个字符,所以用英文字母X表示了. 无意义公理:一个无限集的基数是极限limXn(n→∞),则这个集合是没有什么意义的.

这个公理是我引入的,我还没在别处见到过。

这个公理是易理解的,它就相当于公理集合论中的真类的概念,但公理集合论引入这个类的概念后就误入岐路了,至少作者是这样认为的。

李均宇第一定理:如果一个集合包含广义连续统假设中全部的基数,也就是集合{X0,X1,...Xn...},则这个集合的基数是limXn(n→∞)

这个定理是显而易见的,用反证法不难证明的。

李均宇第二定理:如果一个无限集合又包含自身的幂集,也就是集合

A={......,P(A)),则这个集合A的基数是limXn(n→∞)

证明:设无限集合A的基数是Xn,n是固定不变的.因为无限集合A又包含自身的所有子集或幂集,而幂集的基数是 X(n+1)=2^Xn,所以无限集合A的势变成

X(n+1),这与原先假设无限集合A的基数是Xn,n是固定不变的相矛盾,所以无限集合A的基数是limXn(n→∞).

李均宇第三定理: 如果一个集合包含一个无穷集的所有幂集,也就是集合

B={P(A),P(P(A)),P(P(P(A))),...,Pn(A),...},则这个集合B的基数是

limXn(n→∞),尤其是当A为实数集R时,集合

B={P(R),P1(R),P2(R),...,Pn(R),...},则这个集合B的基数是limXn(n→∞)

所有幂集,假设无穷集A,则其幂集P(A),幂集的幂集P(P(A)),幂集的幂集的幂集P(P(P(A))),...Pn(A).....称为其所有幂集。

因为一个无穷集的所有幂集的基数就是广义连续统假设中全部的基数,所以由李均宇第一定理知此定理成立。

李均宇第四定理: 假设集合P'n(A)与幂集Pn(A)等势,也就是基数一样,则P'n(A)也相当于幂集Pn(A)一样适用于李均宇第二和第三定理中。

一。基数悖论

定理1:所有集合的集合的基数是limXn(n→∞).

这个显而易见,这在<<集合论>>中早已有之,这里重述而已。因为所有集合的集合包含自身幂集,由李均宇第二定理知其基数是limXn(n→∞).所以这种集合在公理集合论中称为真类。

二。罗素悖论

李均宇第五定理:假设A是不包含自身的集合(不是真类),则A的幂集P(A)也是不包含自身的集合.

证明:用反证法.假设A是不包含自身的集合(不是真类),B=P(A),如果B包含自身,则B的元素包含自身B,B的元素的元素也包含自身B,而B的元素是A的子集,B的元素的元素是A的子集的元素,A的子集的元素与A的元素是一样的,也就是说,A包含B,根据李均宇第二定律知A是真类,矛盾。

这点不难理解的,例如集合{1,2,3}不包含自身,则其所有元素和子集和幂集也是不包含自身的,这很易理解的,只是推广到无限集合中去而已。再如实数集R 不包含自身,则R的任一子集和幂集也是不包含自身的。

定理2:所有不包含自身的集合的基数也是limXn(n→∞).

证明:因为实数集R是不包含自身的集合,由李均宇第五定理所以R的所有幂集也是不包含自身的,也就是R的幂集R1,R的幂集的幂集R2,R的幂集的幂集的幂集R3。。。。全不包含自身,则所有不包含自身的集合必含R的所有幂集,由李均宇第三定理所以其基数也就是limXn(n→∞).

所以罗素悖论中的“所有不包含自身的集合”,这个集合的基数就是

limXn(n→∞),也就是公理集合论中的真类。

三。序数悖论

定理3:任何序数的非空集合都有最小数,从而任何序数的集合在小于等于关系

下都是良序集.

定理3是<<集合论>>已有的定理,所以这里无须证明.

李均宇第六定理:任何序数的集合的幂集也是序数.

证明:因为任何序数的集合的子集也是序数的集合,所以由定理3知其子集也是良序数,所以子集也是一个序数,则所有子集组成的幂集也就是序数的集合,由定理3知此幂集也是良序集,所以此幂集也是一个序数.

定理4:所有序数的集合的基数也是limXn(n→∞).

证明:设所有序数的集合为集合A,由李均宇第六定理知此集合A的幂集也是序数,所以也应包含在集合A中,则集合A包含自身的幂集,由李均宇第二定理知此集合的基数是limXn(n→∞).

基数悖论的问题在于"所有集合的集合",序数悖论的问题在于"所有序数的集合",罗素悖论的问题在于"所有不包含自身的集合组成的集合".因为根据上面证明,这三个集合的基数都是limXn(n→∞).则这三个集合是没有什么意义的,所以集合论悖论没有动摇现有科学的基础.

作者认为公理集合论引进了类的概念是正确的,但随后是把简单的问题复杂化,作者把集合论悖论的解决用最简单的语言讲明白出来,抛弃了公理集合论这个科学上的怪胎,意义是十分重大的。

四。下面深入讨论下一些集合的性质

命题一:所有不包含自身幂集的集合是真类吗?是的。

因为实数集R的所有幂集都是不包含自身幂集的集合。所以所有不包含自身幂集的集合必包含实数集R的所有幂集,由李均宇第三定理知其为真类。为什么实数集R的所有幂集都是不包含自身幂集的集合呢,因为假设其任一幂集Rn包含自身幂集,则由李均宇第二定理知其为真类,这与Rn有固定Xn矛盾的。

命题二:所有不包含1的集合是真类吗?是的。

因为不包含1的集合的幂集也是不包含1的,这用反证法不难证明,因为它根本没有元素1了,所以其幂集也不可能包含有元素1.则其所有幂集也不包含元素1,假设实数集R去掉1后为数集r,则r的所有幂集r1,r2,...rn,...也不包含元素1,由李均宇第三定理知其为真类。

命题三:所有包含1的集合是真类吗?是的。

因为实数集R的幂集必包含元素{1},将括号去掉后就是元素1,去掉括号后的幂集与原幂集一一对应,仅仅{1}变成1,所以去掉括号后的幂集与原幂集等势,

也就是相同基数,同理,实数集R的所有幂集都有等势幂集包含元素1,由李均宇第四定理和第三定理知其为真类。

那么所有不包含1的集合就真的无意义了吗?不是的。这就是全集的问题。如果全集是某个有固定基数Xn的集合,在这个全集内的所有子集中再讨论所有不包含1的集合,这就有意义了,不是真类了。如果全集是真类所有集合的集合,基数是limXn(n→∞),那么才会可能是真类的。也就是说,任何将“所有集合的

集合”划分为有限个子集的集合,都必定有一个子集是真类。再论罗素悖论中的“所有不包含自身的集合”,也是因为它的全集是所有集合的集合,才会无意义的,如果是某个集合内的“所有不包含自身的集合”,则有意义矣。

=======================================================

Solve the paradox of set theory V7.5

by LiJunYu 2010.12.25 email: myvbvc@https://www.360docs.net/doc/8111128696.html, or 165442523@https://www.360docs.net/doc/8111128696.html,

Brief:All power sets of real number set

R:P(R),P(P(R)),P(P(P(R))),...,Pn(R),...Because all Pn(R) does not contain its own,in Russell's paradox,"all sets which does not contain its own" must contain all Pn(R),that is to say,it contains all of the cardinality of generalized continuum hypothesis {X0,X1,...Xn...},so became meaningless.

Although I know that axiomatic set theory is to solve the paradox arising from, but I think the axiom of set theory in the detours, and even strayed into the manifold road. If the theory does not contain the following, I think <> is incomplete.

Generalized continuum hypothesis: the cardinality of an infinite set must be one of X0, X1, ... Xn ....

Where X is the Greece character aleph, because I can not find the character, so the letter X was expressed in English.

Meaningless axioms: If the cardinality of an infinite set is limit limXn (n-->infinite), then this set is meaningless.

I can not find the sign expressed infinite in english computer,so I use the character "infinite".

This axiom is my introduction, I have not seen elsewhere.

This axiom is easy to understand, it is equivalent to axiomatic set theory in the concept of the true class, but after the introduction of the concept of this class of axiomatic set ,the theory straying into the manifold road,

at least I think so.

LiJunYu first theorem: If a set contains all of the cardinality of generalized continuum hypothesis , that is the set {X0,X1,...Xn...},the cardinality of this set is limXn (n-->infinite)

This theorem is obvious, by reduction to absurdity is not difficult to prove.

LiJunYu second theorem: If an infinite set also contains its own power set, that is the set A={......,P(A)),then the cardinality of this set A is limXn (n-->infinite)

Proof: Let the cardinality of infinite sets A is Xn, n be fixed. Because they contain an infinite set A subset or all of its power set, while the power set of the cardinality is X (n +1) = 2 ^ Xn, Therefore, the cardinality becomes X (n +1), which assumes an infinite set A, the original cardinality is Xn, n is a constant contradiction,antinomy, so the cardinality of infinite sets A is limXn (n-->infinite).

LiJunYu third theorem: If a set contains all power set of an infinite set , that is the set B={P(A),P(P(A)),P(P(P(A))),...,Pn(A),...} ,then the cardinality of this set B is limXn (n-->infinite),for example,the real number set R,B={P(R),P1(R),P2(R),...,Pn(R),...},then the cardinality of this set B is limXn (n-->infinite).

All the power set, assuming infinite set A, then the power set P (A), power set of the power set P (P (A)), the power set of the power set of the power set P (P (P (A))), ... Pn (A )..... as all of its power set.

Because all power set of infinite set is the cardinality of the generalized continuum hypothesis in all of the cardinality, so by the LiJunYu first theorem know this theorem.

LiJunYu fourth Theorem: If the set P'n(A) have the same cardinality with the power set Pn(A), that is, then the set P'n(A) equivalent to the power set Pn(A) for LiJunYu second and LiJunYu third theorem.

****I. cardinality Paradox

Theorem 1: The set of all sets of the cardinality is limXn (n-->infinite). The obvious, that in the "> has long been, here repeat it. Because the set of all sets contains its own power set,by the LiJunYu second theorem the cardinality is limXn (n-->infinite). So this set is referred to as the true class of axiomatic set theory.

****II. Russell's paradox

LiJunYu Fifth Theorem: If the set A does not contain its own,then the power set of A is P(A),it is also not contain its own.

Proof: by contradiction. To assume that any one does not contain its own set of is A, assume that power sets of set A is B=P(A),if B is the set that contains itself, then there is a element B in the set B which contain its own, and also there is a element B of a element B in the set B which contain its own, the element of B is subset of A,the element of subset of A is the same element to the element of A,so the element of A is B,

by the LiJunYu second theorem the cardinality is limXn (n-->infinite).

A is a proper class.That is not true.

This is understandable, for example, the set {1,2,3} does not contain itself, then its elements and its power set and all subsets, also does not contain itself, it is very easy to understand, but extended to an infinite set to it. Then real number set R does not contain its own , then any child set and power set of R does not contain itself.

Theorem 2: If the set B is all sets which does not contain its own,the cardinality of B is limXn (n-->infinite).

Proof: because the real numbers set R is not contain its own ,by LiJunYu Fifth theorems ,so all power set of R is not contain its own, that is, the power set of R is R1, the power set of the power set of R is R2, the power set of the power set of the power set of R is R3. . . . ALL the power set Rn does not contain itself, then All the set does not contain its own ,that is the set B,containing all the power set of R, by the theorem of LiJunYu third,the cardinality so is limXn (n-->infinite).That is set B contain {P(R),P1(R),P2(R),...,Pn(R),...}.

So Russell's paradox in "All sets which do not contain its own set ",the cardinality of this set is limXn (n-->infinite), in axiomatic set theory call as the true class.

****III. Ordinal number paradox

Theorem 3: Any ordinal number set has a minimum order, so any ordinal number set on less than or equal relations are well-ordered set. Theorem 3 is the <> there's theorem, so there need not be proved.

LiJunYu sixth Theorem: Any set of ordinals ,its power set is also ordinal number .

Proof: for any ordinal number of set subset is ordinal set, so by Theorem 3 knowing subset is also a well-ordering set ,so the subset is an ordinal number, then all subsets of the power set is ordinal number of the set, by Theorem 3 know that this power set is well-ordered set, so this power set is a ordinal number.

Theorem 4: The cardinality of the set of all ordinals is limXn

(n-->infinite).

Proof: Let all order number of the set named A, by the LiJunYu sixth theorem, this set A power set is ordinal, it should also be included in the set A, then the set A contains its own power set ,by LiJunYu second theorem ,The cardinality of this set is limXn (n-->infinite).

The problem of the cardinality paradox is "a set of all sets", the problem of Ordinal number paradox is "the set of all ordinals," the problem of Russell's paradox is "All the set does not contain its own." Because according to the above shows that this the cardinality of the three sets

are limXn (n-->infinite). then this is meaningless three sets, so the paradoxes of set theory did not shake the existing science cardinality. Axiomatic set theory that the introduction of the concept of class is correct, but then the issue is to complicate the simple, I solve the paradoxes of set theory with the most simple language to understand them, abandoned the scientific axiom of set theory , meaning is very important. ****IV. The following in-depth discussion of the nature of some of the set

Proposition I: All the set which does not contain its own power set is proper class? Yes.

Because all power set of the real numbers R does not contain its own power set . So all the set which does not contain its own power set must contain all power set of real numbers R , by the third theorem of LiJunYu knowing it is proper class. Why do all power set of the real numbers R does not contain its own power set, because assumption any power set Rn contains its own power set , by knowing LiJunYu second theorem it is proper class, which have a fixed Xn Rn, contradictory.

Proposition II: all the set which do not contain number 1 is proper class? Yes.

Because the power set which do not contain number 1 is also a set which do not contain number 1, it is not difficult to prove by contradiction, because it does not element 1, so its power set and can not contain element 1. So all of its power set does not contain elements 1. Assuming the real number set R after removing a number of set is named r, then the power set of all r is r1, r2, ... rn, ... all does not contain element 1, the third by the theorem of LiJunYu knowing it is proper class. Proposition III: all the set which do contain number 1 is proper class? Yes.

Because the power set of real number set R must contain elements of {1}, after removing the brackets is the element 1, the power set which remove parentheses is one by one corresponding the power set of the original, only {1} into 1, so the brackets removed power set is same cardinality with the original set , which is the same cardinality, the same token, all the power set of real numbers R, exists corresponding same cardinality power set,which contains element 1, by the theorem of LiJunYu fourth and third theorems know it is proper class .

Then all the set which do not contain number 1 really meaningless it? Not. This is the problem of the complete works . If the set is a set of a fixed cardinality Xn, all within this subset of complete works and then discuss all the set does not contain 1, which makes sense, is not proper class. If the set is a set of proper class of all sets, the cardinality is limXn (n-->infinite), then the will be proper class . That is, any of "the set of all sets" made into a limited number count of subset , there must be one subset l is the proper class. On Russell's Paradox, "a set of all do

not contain themselves", also because it's complete works is a set of all sets, will be meaningless, if it is within a set which has fixed cardinality Xn, then meaningful carry on.

杨利川:中国道德的悖论

中国道德的悖论:崇尚集体主义,却没有公共精神 作者|杨利川(授权)|来源|中山大学中国公益慈善研究院(ID:SOPSYSU) 本文节选自杨利川在转型中国第42期沙龙上的演讲。本文已获杨利川授权。 为什么号称最有集体主义精神的民族实际上是一盘散沙,没有合作精神。为什么号称礼仪之邦的国民,却最缺乏公共素质。我们经常讲,我们出国以后为什么大声喧哗,为什么毁坏人家的公物,为什么爬人家的古迹,为什么满地扔垃圾,我们在国内任何一个节日完了以后,满地都是,任何一个漂亮的赏花的地方,等人走了以后,满草地都是垃圾,甚至天安门广场上也扔得遍地都是垃圾,沾得到处都是口香糖。 为什么一个最服从威权管制的民众却最不守规矩?说中国人不守规矩。可是,实际上中国人管制最严啊,最听话啊,怎么到这儿就不守规矩了呢?为什么自以为最爱国、最有民族性的国民,却最不爱惜自己的家园和公共资源?我有一次到云南一个什么湖去旅游,这是真事,那一天是9·18。9·18是什么日子大家知道吧。我就在湖边上,离我大概几米远有两个这么大的垃圾箱,围着那个垃圾箱满地都是垃圾,还有人在地上扔呢,我当时就这么喊,我说“你们知道今天是什么日子吗,有本事把垃圾扔日本去。”我就这么喊的,确实让人愤怒。 我们自己的家园,我们自己的资源,我们自己在毁,但是说起民族、说起爱国,谁的嗓门都大,能游行,砸人家丰田的汽车,砸人家日本的拉面店。为什么最爱面子的中国人却没有自我尊严?面子和尊严有区别吗?有关系吗?大马路上插队、不排队,汽车挤来挤去的。从来没有人说这太丢人了,这不好意思。没有。谁抢了是谁的。 为什么最重视道德教化的国民,却最讲究实惠、迷恋物质,缺乏精神生活?中国人不是道德礼仪之邦吗?但是中国的物质主义最强,没有信仰。其实很多人艺术

圣彼得堡悖论及其消解新解

圣彼得堡悖论新解与不确定性估值 内容提要:著名数学家Bernoulli为解决“圣彼得堡悖论”提出了货币的边际效用递减理论(下称“效用函数解决方案”),本文通过以下两个方面证明了Bernoulli的“效用函数解决方案”是不成立的:1、用Bernoulli和克莱默的“效用函数”构造了新的悖论;2、设计并实施了不存在边际效用递减效应的“新型圣彼得堡游戏”,该游戏同样产生了“圣彼得堡悖论”。本文进一步分析论证了人们面对不确定性前景的风险调整才是导致“圣彼得堡悖论”产生的真正原因,由此给出了不确定性决策的风险调整模型,用此模型解决了“圣彼得堡悖论”及其它相关悖论。本文对基于不确定性的经济学理论研究提出了一个全新的研究思路和方向。 关键词:不确定性估值,圣彼得堡悖论,效用,风险调整模型,经济实验 1.圣彼得堡悖论与Bernoulli的效用函数解决方案 “圣彼得堡悖论”来自于一种掷币游戏,即圣彼得堡游戏。设定掷币掷出正面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。如果第n次投掷成功,得奖金2n元,游戏结束。 按照概率期望值的计算方法,此游戏的期望收益为所有可能结果的得奖期望值之和: 1111 ()2482 2482n n E=?+?+?++?+ ――――――――――――(1.1) 由于对于游戏中投币的次数没有理论上的限制,很显然,上式是无数个1的和,它等于无穷大,即该抽奖活动收益的数学期望值是无限的。那么对于这样一个收益的数学期望值是无穷大的“圣彼得堡游戏”当支付多大的费用呢?试验表明,大多数人只准备支付几元钱来参加这一游戏。于是,个人参与这种游戏所愿支付的有限价格与其收益的无穷数学期望之间的矛盾就构成了所谓的“圣彼得堡悖论”。 Bernoulli对于这个问题给出一种解决办法。他认为人们真正关心的是奖励的效用而非它的绝对数量;而且额外货币增加提供的额外效用,会随着奖励的价值量的增加而减少,即后来广为流传的“货币边际效用递减律”。伯努利将货币的效用测度函数用货币值的对数来表示,从而所有结果的效用期望值之和将为一个有限值,则理性决策应以4元为界。 他选择对数函数形式的效用函数:

《四次数学危机与世界十大经典数学悖论》

《“四次”数学危机与世界十大经典数学悖论》 “四次”数学危机 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。 最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。 我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。 第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢? 直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。 而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。 第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。 我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那

公理集合论

1 公理集合论 公理集合论把一些符号组成的表达式称为集合,是一种纯粹形式化的理论,彻底摆脱了集合直观语义的束缚。公理集合论建立在若干公理组成的公理系统之上。最著名的集合论公理系统是由德国逻辑学家Zermelo 和Frankel 等人提出的ZFC 公理系统。它包含10组公理,一部分公理规定集合应当具有的几个简明性质,另外一部分公理定义了可称为集合的表达式。本讲我们先了解公理集合论的渊源,然后重点学习ZFC 公理系统。 1. 康托的朴素集合论和罗素悖论 在思考和表达时,我们会把一些对象视为一个整体,并称之为 某某类(class )或者某某集合(set )。例如,所有的实数构成一个 类,实数类又可划分为有理数和无理数等两个类。这些概念的出现 显然是我们对于思考对象进行分类的自然结果,并非人为定义的。 因此,古代数学中就出现了这个概念(古希腊?)。18世纪的数学 家欧拉和19世纪的数学家布尔都分别用这个概念论证亚里士多德 逻辑学中的推理模式的正确性。而对于集合的研究始于19世纪德 国数学家康托(Cantor )。 当戴德金用有理数的分割来定义实数时, 康托把实数集合作为研究对象。他证明了实数集合的无穷大比自然 数集合的无穷大更大。这个有趣的发现促使他研究更多更大的无穷 集合,发现了一个又一个新颖的关于无穷集合的性质。这些结果发 表在1874年的一篇论文中,开创了集合论这门新的数学分支。康 托在这篇文章中对集合的定义如下(翻译为英文): A set is a gathering together into a whole of definite, distinct objects of our perception or of 显然,这是关于集合的直觉概念,并不是严格的定义(formal definition ),我们称之为集合概念的朴素定义(na?ve definition )。事实上,并非任何对象的全体都可以称为集合。例如,所有集合的全体,若称为集合则导致矛盾。康托本人在18世纪末就发现了这个矛盾,但是没有声张。后来英国数学家罗素在1902年发现了另外一个矛盾,表述如下:令T 是所有不是自己的成员的集合全体,即 {|}x T x x =? 若T 是集合,则T 是自己的成员当且仅当T 不是自己的成员。这个矛盾在 数学史上称为罗素悖论(Russell ’s Paradox )。罗素 自己解决不了这个悖论,就写信告诉了德国的弗 雷格 (Frege) 。弗雷格是一阶逻辑的创始人,他致 力于用其所创的一阶逻辑语言表达和分析人类的

悖论及其科学意义

悖论及其科学意义 西班牙的小镇塞维利亚有一个理发师,他有一条很特别的规定: 只给那些不给自己刮胡子的人刮胡子。 这个拗口的规定看起来似乎没什么不妥,但有一天,一个好事的人跑去问这个理发师一个问题,着实让他很为难,也暴露了这个特别规定的矛盾。那个人的问题是: “理发师先生,您给不给自己刮胡子呢?” 让理发师为难的是: 如果他给自己刮胡子,他就是自己刮胡子的人,按照他的规定,他不能给自己刮胡子;如果他不给自己刮胡子,他就是不自己刮胡子的人,按照他的规定,他就应该给自己刮胡子。不管怎样的推论,理发师的做法都是自相矛盾的。这真是令人哭笑不得的结果。 这就是悖论。 悖,中文的含义是混乱、违反等。 悖论,在英语里是paradox,来自希腊语“para+ dokein”。意思是“多想一想”。悖论是指一种导致矛盾的命题。 悖论都有这样的特征: 它看上去是合理的,但结果却得出了矛盾——由它的真,可以推出它为假;由它的假,则可以推出它为真。 悖论与谬论不同,谬论是用目前的理论就能够证明、判断其为错误的理论、观点,总体来说,谬论是完全错误的;而悖论则看起来是是非难辨的。但这种“是非难辨”并非是永远不能分辨的,随着人们认识能力的不断提高,随着科学的不断发展,悖论是可以逐步得到消除的,矛盾是可以解决的。

广义上说,凡似是而非或似非而是的论点,都可以叫做悖论,如欲速则不达、大智若愚等都是典型的悖论;还有一些对常识的挑战也可称为悖论。 狭义上说,悖论是从某些公认正确的背景知识中逻辑地推导出来的两个相互矛盾(或相互反对)命题的等价式。通俗地说,如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。这就是悖论。狭义的悖论又可称为严格意义上的悖论或真正的悖论。 “我说的这句话是假的”,这就是典型的悖论,因为从这句话所包含的大前提来看,这是一句假话,其内容必定就是“假”的;既然是假的,则其意必然与其所指相反,所以,这句话应该是“真”的。但如果假设这句话是真的,其本身又恰恰证明它是假的。所以,你无从分辨这句话的真假。 悖论一般可以分为语义悖论和逻辑悖论两种。如果从一命题为真可推出其为假,又从该命题为假可推出其为真,则这个命题就构成语义悖论。前面所说的“我说的这句话是假的”就是如此。 逻辑悖论总是相对于一个公理系统而言,如果在一个公理系统中既可以证明A又可以证明非A,则我们就说在这个公理系统中含有一个悖论。集合论中著名的罗素悖论就是一个逻辑悖论。实际上,自然科学中出现的悖论一般都是逻辑悖论。 自然科学中的悖论一般还被称为佯谬。在英文中,佯谬与悖论是同一词paradox。它们都是由于前提、判断和结论的运用而产生的,具有相同的逻辑本性。如由爱因斯坦等提出的EPR悖论,也可称为EPR佯谬。 悖论有很多种称谓。古希腊的亚里士多德称之为难题;中世纪的经院哲学家们称之为不可解命题;近现代的科学家一般称之为悖论或佯谬,哲学家则称之为二律背反(“悖论”在英文中还有一个词antinomy)。 1979年,美国数学家霍夫斯塔德(D.R.Hofstad—ter)认为悖论是一个“怪 圈”(strange loop,又译为奇异的循环),是由于“自我相关”而导致的。这种怪圈不仅存在于数学和思维中,也存在于绘画和音乐中。埃

悖论的产生和意义

对于悖论存在及其意义的探究 摘要:悖论的存在已有数千年历史,悖论到底如何定义的?是为什么会存在的?历史上人们又是怎么对待悖论的?悖论能够怎样被解决?悖论的存在又有什么意义?这一切问题都需要我们深入思考研究。 关键词:悖论;逻辑哲学;存在;本体论;形而上学 一、什么是悖论? 在人类思想史上,已经提出了各种各样的谜题与悖论,它们对人类理智构成了严重的挑战,许多大家、巨擘以及无名氏前仆后继地对其进行了艰辛的探索。从古希腊、中国先秦时期到现代数学、逻辑学等众多学科中,已经发现了各种各样的悖论或怪论,悖论已经成为数学、逻辑学、哲学、语言学、计算机科学、思维科学等多学科专家共同探讨的课题,谈论“悖论”几乎成为时髦。那么,到底什么是悖论呢?悖论,亦称为吊诡或诡局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一词,来自希腊语paradoxos,意思是“未预料到的”,“奇怪的”。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。 二、悖论与逻辑哲学 说谎者悖论被认为是世界上最早的悖论,由公元前六世纪的哲学家克利特人艾皮米尼地斯提出:“所有克利特人都说谎,他们中间的一个诗人这么说。”这个悖论最简单的表述形式是:“我在说谎”。如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。这类悖论的一个标准形式是:如果事件A 发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。悖论的存在显然是因为某些命题正在逻辑上存在不合理性从而引起了众多学者的探究。 虽然逻辑不能等同于逻辑哲学,但是逻辑哲学基本上是和逻辑同时产生的,任何逻辑学家都在无形中进行着对逻辑哲学的研究。尤其是对于数学这样的极其讲究严密的逻辑性的研究领域,逻辑哲学的研究根本无法避免。著名的“罗素悖论”的出现甚至引起了第三次数学危机。所谓的罗素悖论是罗素针对当时建立不久的集合论体系提出的一个基础上存在的矛盾:“定义两个集合:P={A∣A∈A} ,Q={A∣A?A} 。问题:Q∈P 还是 Q?P?”。显然,无论是指定哪个判断为真,最后都能够推断出与其相反的结论。为了使其更容易被理解,罗素悖论又被称为“理发师悖论”:“有一个理发师说:‘我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸’”。那么这个理发师要不要给自己刮脸呢?无论他怎么做,最后都一定会违背自己当初的话。 悖论的流行引发了世界上的思想风暴。越来越多的人认识到我们现有社会中存在的不完美,思维方式不能再局限于既定逻辑,而要尝试打破规则,因为悖论的存在充分说明了现有的规则有着无法忽视的漏洞,甚至会动摇社会根基。 三、悖论与本体论 西方哲学从古希腊开始一直以研究世界的本原为己任, 形成了西方哲学的本体论传统。本体论的最主要特征就是研究存在问题, 即关于什么样的实体存在, 以及作为实体在资格

芝诺悖论的极限分析

芝诺悖论的极限分析 学生姓名:王慧文指导教师:岳进 摘要:古希腊哲学家芝诺提出了著名的“二分法”,其结论的荒谬性不言而喻,可是对他的论证我们 似乎很难找出毛病,好像是可以接受的。其结论之所以不可以接受,源于在他的论证中隐藏着一些 谬论。在极限方面过程中把带有统一度量单位的“无穷”混为一谈。在哲学方面违反了辩证法的客观 性原则、全面性原则和对立统一性原则;但芝诺悖论的提出,对辩证法的方法,以及运动过程中诸 要素的多种矛盾,通过逻辑运算对芝诺悖论的荒谬性进行反驳,对数学的发展起了很大的作用。 同时本文利用数学求极限的方法,通过逻辑运算,揭示阿基里斯永远追不上乌龟结论的错误。 关键词:悖论;无穷与有穷;运动与静止;连续与间断 引言: 数学悖论是数学发展过程中的一个重要的存在形态,它是数学体系中出现的一种尖锐的矛盾,对于这一矛盾的处理与研究,丰富了数学的内容,促进了数学的发展。 芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺“二分法”悖论是说,你不能在有限的时间内穿过无穷的点。在你穿过一定的距离的全部之前,你必须穿过这个距离的一半。这样做下去就会陷入无止境,所以在任何一定的空间中都有无穷个点,你不能在有限的时间中一个接一个地接触无穷个点。运动只是假象,不动不变才是真实。假如承认有运动,就得承认速度最快的赶不上速度最慢的”,即快的“只能无限地接近但永远不能赶上”慢的。因为,快的要追上慢的,总要到达慢的所处,的所经过的每个出发点,而当它到达第一个出发点时,慢的已经往前走了“一段,即阿基里斯追赶乌龟的赛跑。 芝诺的哲学观点虽然不对,但是,他如此尖锐地提出了空间和时间是连续还是离散的问题,引起人们长期的讨论和发展,不能不说是巨大的贡献。本论文就是通过极限与哲学的分析,对芝诺悖论进行剖析。 1、悖论对数学产生的作用 1.1从悖论说起 什么是悖论?它既属于逻辑矛盾、语义矛盾,也属于思想方法上的矛盾。简单地说,悖论一般表现为这样的命题:如果你认为它真,则可以推出它为假;如果你认为它假,则可以推出它为真[1]。悖论往往以逻辑推理为手段,深入到原理论的基础之中深刻地揭露出该理论体系中的无法回避的矛

集合论的发展史

集合论的发展史 集合是什么,通俗地说它是一些元素组成的集体,是一些确定而又可分的“物”的集体。集合并不指具体的“物”,而是由物的集体所组成的新对象。20世纪以来的研究表明,不仅微积分的基础——实数理论奠定在集合论的基础上,而且各种复杂的数学概念都可以用“集合”概念定义出来,而各种数学理论又都可以“嵌入”集合论之内。因此,集合论就成了全部数学的基础,而且有力地促进了各个数学分支的发展。现代数学几乎所有的分支都会用到集合这个概念。集合论最重要的创建者是康托尔(Georg Cantor,1845—1918)。在19世纪人们很少怀疑微积分的基础应该建立在严密的实数理论上,而严密的实数理论可以由集合论推出。但是微积分本质上是一种“无限数学”。那么无限集合的本质是什么?它是否具备有限集合所具有的性质? 从19世纪60年代起,法国数学家康托尔承担了这一工作,他清楚地看到以往数学基础中的问题,都与无穷集合有关。康托尔的集合论的建立,不仅是数学发展史上一座高耸的里程碑,甚至还是人类思维发展史上的一座里程碑。它标志着人类经过几千年的努力,终于基本上弄清了无限的性质,找到了制服无限“妖怪”的法宝。苏联著名数学家柯尔莫戈洛夫说:“康托尔的不朽功绩在于向无限冒险迈进。”德国数学大师伯特赞扬康托尔的理论是“数学思想最惊人的产物,在纯粹理性的范畴中人类活动最美的表现之一”。 然而事情并非总是顺利的。1900年左右,正当康托尔的思想逐渐被人接受,并成功地把集合论应用到了许多别的数学领域中去,大家认为数学的“绝对严格性”有了保证的时候,一系列完全没有想到的逻辑矛盾,在集合论的边缘被发现了。开始,人们并不直接称之为矛盾,而是只把它们看成数学中的奇特现象。1903年英国哲学家兼数学家罗素(Russell, B.A.W,1872—1970)提出了一个悖论,“一切不包含自身的集合所形成的集合是否包含自身?”答案如果说是,即包含自身,属于这个集合,那么它就不包含自身;如果说否,它不包含自身,那么它理应是这个集合的元素,即包含自身。 可能有人看不懂罗素悖论,没关系,罗素本人就用通俗的“理发师悖论”作了比喻;理发师自称,他给所有自己不刮胡子的人刮胡子,但不给任何自己刮胡子的人刮胡子。试问理发师该不该给自己刮胡子?如果他从来不给自己刮胡子,就属于“自己不刮胡子的人”。根据他的自称,他就应该给自己刮胡子,但是,一旦他给自己刮胡子,他就成了“自己刮胡子的人”了。还是根据他的自称,他就不应该给自己刮胡子。所以不管理发师的胡子由谁来刮,都会产生矛盾。罗素悖论以其简单、明确震动了整个西方数学界和逻辑学界,逻辑学家费雷格收到罗素的信之后,在他刚要出版的《算术基础法则》第二卷末尾写道:“一位科学家不会碰到比这更难甚的事情了,即在工作完成之时,它的基础垮掉了。当这本书等待付印的时候,罗素先生的一封信把我置于这种境地。”弗雷格对罗素悖论的迅速反应是惊恐地感到:“算术开始受难。” 数学史上第三次危机来临了,数学王国的居民们惶惶不安,因为数学家们一贯追求严密性,一旦发现他们自称绝对严密的数学的基础——集合论并不严密,竟然出现了“悖论”这种自相矛盾的结果,可以想像,他们是多么震惊。震惊之余,数学家们意识到,应当建立某种公理系统来对集合论作出必要的规定,以排除“罗素悖论”和其他有关的“悖论”。现在,各种成功地解决悖论的方案都对集合的“无限扩张”进行了限制,因此现在任何一种形式的集合论,实质上都包

历史上的道德悖论

道德与利益 班级14经济统计学 学号I61414058 姓名* * *

历史上的道德悖论 ——浅谈中国贵族精神的兴衰 我国古代的谚语似乎有很多矛盾的地方,比如古人说“瘦死的骆驼比马大”,又说“拔毛的凤凰不如鸡”,古人说“三百六十行,行行出状元”,却又说“万般皆下品,唯有读书高”,这反映了古人面对道德悖论时心中的无奈与矛盾。 春秋初期,齐国曾是春秋五霸之首,国力强盛,然而这样的情形并未持续多久,由于政局动荡、战乱频发等原因,齐国的国势急转直下。到了春秋晚期,已经几乎变成了一个空有庞大领土的“空壳”。在春秋时期的齐国历史中,有一个人不得不提,那就是曾执政二三十年、当国秉政、权倾朝野的崔杼。今天的我们对崔杼的了解可能更多的是“崔杼弑君”的故事。故事其实很简单,齐庄公与崔杼的继室妻子东郭姜通奸,事情被崔杼得知,他一怒之下杀了齐庄公。齐国太史公如实记载了这件事,崔杼大怒,杀了太史。太史的两个弟弟太史仲和太史叔也如实记载,都被崔杼杀了。崔杼告诉太史第三个弟弟太史季说“你三个哥哥都死了啊,你难道不怕死吗?你还是按我的要求:把庄公之死写成得暴病而死吧”,太史季正色回答“据事直书,是史官的职责,失职求生,不如去死。你做的这件事,迟早会被大家知道的,我即使不写,也掩盖不了你的罪责,反而成为千古笑柄”。崔杼无话可说,只得放了他。太史季走出来,正遇到南史氏执简而来,原来南史氏以为他也被杀了,是来继续实写这事的。 千百年来,这个故事一直被史家传颂,大家在歌颂那四位不畏强暴、誓死维护正义的史官的同时,也不忘斥责崔杼弑君的恶行,然而却很少有人指责齐庄公。说到底,这件事的起因在于齐庄公私通东郭姜,也可以说是齐庄公犯错在先,然而为什么我们总是要避开这个话题呢?原因很简单,在古代,君王无论做了什么都一定是对的,而臣子就应该无限的忠诚于君主,忠诚是凌驾于一切道德之上的。可如果我们冷静地站在崔杼的角度想想,应该可以理解他的心情,毕竟对于任何一个男人来说,戴绿帽子都是最为丢脸的事。以一个现代人的角度来看待这件事,我认为崔杼和那四个史官一样,是具有贵族精神的人,他把自己的尊严看的比性命更重要,毕竟“弑君”是极为危险的事,稍有疏忽就可能被“诛灭九族”! 讲到这里,我又想起另一个人,那就是曾侍过八个皇帝的五代名臣—张全义。五代是我国古代公认的最为“无耻”的朝代,这一时期不仅出了像“儿皇帝”石敬瑭这

悖论的意思是什么

悖论的意思是什么 导读:我根据大家的需要整理了一份关于《悖论的意思是什么》的内容,具体内容:悖论的意思:悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A 发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐...悖论的意思: 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 英文解释 [数] antinomy;paradox ; [paradox] 逻辑学和数学中的矛盾命题 定义 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。

性质 悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。 根源 悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 解悖 悖论与解悖只要运用对称逻辑,没有一个悖论无解。悖论是表面上同一命题或推理中隐函着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 用对称逻辑思维层次法解"说谎者悖论" 这个悖论即"我在说谎"这句话中所蕴含的悖论。这个悖论表面上由"我在说谎"和"我说实话"这两个对立的"命题"组成,实际上这两个"命题"并不等价——前一个命题包含思维内容,后一个"命题"只是前一个命题的语言表达式,因此后一个"命题"不是

论儒学的社会本位与个人本位悖论及其影响

?中国哲学史? 论儒学的社会本位与个人本位悖论及其影响 涂 可 国 社会本位主义是指某种以他人、集体、国家和民族的利益为重的理论和学说,它是利他主义、集体主义(包含家族主义、团体主义、国家主义等)、民族主义等的合题。个人本位主义大约相当于常说的个人主义,它是一种把个人的个性、价值、权利置于首要位置的理论和学说。对于儒家思想是否具有社会本位主义特质的问题,虽然中国哲学界绝大多数论者表示肯定性的认同,但在具体理解和诠释上却是见仁见智。关于儒学的个人本位倾向,尽管前贤也有人申论,但迄今仍被绝大多数人所忽视。本文认为,儒学呈现出某种逻辑“悖论”,它不仅具有社会本位主义的特质,而且也蕴含着与之相反相成的个人本位主义性质;儒学的社会本位与个人本位特质给人的全面发展带来了积极和消极的双重影响。 一 儒学的主导思想和核心内容是伦理教化,伦理主义是其最大特点之一。而这种伦理主义并不是一般地以伦理为本位,而是具体地鲜明地表现为重协调性道德而轻进取性道德。所谓协调性道德是指调节人与人、人与社会之间关系的伦理规范和道德品性,它也可以称为社会道德(狭义的),诸如诚实、公正、仁爱、同情、正义、牺牲、团结、和合等,即是协调性道德。所谓进取性道德就是用以调节个人自身关系的伦理规范与道德品质,像刚毅、敏捷、勇敢、明智、节制、节俭、创新、竞争等,就是进取性道德,它也可以称为个人道德。儒家伦理主义学说总体上以突出协调性道德为其根本特色。 11道德成为儒学之重心 首先,儒家核心伦理理念凸显社会协调性道德。孔子所建构的儒学是以仁、礼互动互摄为中心的社会伦理体系结构。从某种意义上说,孔学即是仁学,“仁”在实质上是以他人为导向的协调性德目。孟子对孔子提出来的“仁”作了新的发挥,并使之成为其思想的轴心之一。先秦儒学以“仁”为根本,必然导出以协调性道德为主导的伦理思想体系。在有的学者看来,孔孟重仁,强调培养个人内心的道德自觉,注重个人的品德修养,由个人伦理归于社会伦理,形成人本主义特色伦理学。(参见李欣复,第294页)这一观点有失偏颇。且不说孔孟是如何重礼的,即使孔孟儒学重仁,也是社会本位主义的。因为首先,个人的仁德和礼德都既需要个人的自觉修为又需要社会教化,“仁”和“礼”本质上都是调节人与社会之间关系的行为规范;“仁”讲的是爱人,不是表达个人对自身的进取性义务,而是表达一种社会伦理诉求,故而孔孟重“仁”实质上就是重社会协调性道德。其次,儒学轻个人进取性品质而重协调性人格特质。在整个儒学框架中,用来表征个人积极进取精神的个人性道德条目较少,它不大鼓励个性的张扬、竞争意识和创新意识的培养,而偏重于强调用以处理个人与社会关系的道德,注重个人内敛性品格的锻造,推崇人的忧患意识、仁爱情怀和社会道义感。儒家一贯推重的仁义礼智信五常之德,惟有“智”勉强可以称为进取性德目; ? 13?

浅析谎言悖论

浅析说谎者悖论 摘要:如今,解决悖论成了逻辑学界的一大热门课题。本文将追本溯源,对悖论及说谎者悖论作简要分析及说明,说谎者悖论是历史上最古老的悖论,又是最典型的语义悖论。历史上学者们提出很多解决方案,而这些解决方案的都是不成功的,本文将针对说谎者悖论的实质作简要探讨。 关键字:谎言悖论,悖论,说谎者悖论 一谎言悖论的现象 1引言 大多数人一天要遭遇将近两百个谎言。谎言的无处不在或已超出一般人的想象。人们说谎的动机至少有九种。概括为进攻性和防御性动机,如为自身谋求优势,保护隐私等。谎言的无处不在引起我的好奇,进而激起我想一探究竟的欲望。然而谎言本身是更倾向于实实在在的知识,我比较感兴趣的是谎言悖论这种奇奇怪怪的知识。 2对悖论的说明 悖论是英文paradox或antinomy的中译。它来自希腊文的“para”和“doxa”,意思是“难以置信”。从字面上理解,悖论指的是荒谬的理论或者自相矛盾的语句或命题。《中国百科全书·哲学卷》对“悖论”的定义是:“指由肯定它真,就推出它假,由肯定它假,就推出它真的一类命题”。这类命题也可以表述为:“一个命题A,A蕴涵非A,同时非A蕴涵A,A与自身的否定非等值。”《辞海》对“悖论”的定义是:“一命题B,如果承认B,又推得非B;反之。如果承认非B,又可推得B,则称命题B为——悖论。” 3对谎言悖论的界定 “谎言悖论”的表述形式,是要求断定语句“这句话是谎言”的“真”、“假”。而你只要试图完成这一任务,就会发现自己已经陷入了一个难以摆脱的矛盾怪圈:假如你断定该句为“真”,那便会推出该句是“假”;而倘若你断定该句为“假”,那便会据此推出该剧是“真”。

集合论的创立与发展

三次数学危机与集合论的创立 一、 前言 每一门学科都有其自己的历史。数学,常被认为是一门完善的自然学科也有着自己的发展历程。同一切事物一样,数学在其发展的过程中,并非是一帆风顺的,而是经历了很多次问题的出现和解决才逐步发展起来的。无论是概念还是体系,内容还是方法,理论还是应用,都是伴随着各种问题的斗争和解决而进步和发展的。比如无理数,连续,无穷等概念的出现,没一个新问题的提出都刺激着数学的发展。 1、数学危机 虽然总是不断的有新问题的出现,但是就数学的整个历史发展历程来说,曾遇到过三次数学危机。第一次危机是由无理数的发现引发的;第二次危机是由于无穷小量引发的;第三次危机则是由罗素悖论产生的。每一次危机的出现都猛烈冲击着原有的理论体系,都是对原有理论体系内在矛盾的揭示,通过对其中逻辑矛盾的发现,启发人们对原有理论的缺陷或局限性进行思考。 危机的出现刺激着人们更加深入的研究,而每一次危机的解决都是对科学的进一步的改正、完善、补充和促进,对数学的发展有重要的意义,也必将推动数学的快速发展。正如人们常说,“危机是一种激化了的非解决不可的矛盾冲突,每一次危机都大大推动了数学的发展。” 2、集合论简介 集合论作为整个现代数学的基础,是数学中有着极为重要的作用。集合论是19世纪70年代由德国数学家康托尔G.Cantor 1845 - 1918创立的。集合论到现在已经被应用到了各个科学领域,并成为了数学的基础,产生了很多数学分科。 3、集合论与数学危机的联系 集合论的出现,使得第一第二次数学危机得到了很好的解决,成为了其理论基础。而第三次数学危机的出现对作为根基的集合论提出了矛盾,从而形成了更大的危机。 二、 三次数学危机 1、 第一次数学危机 第一次数学危机是由希泊索斯(Hippasis )对无理数的发现而引发的。 在公元前580~568年之间的古希腊,当时“万物皆数”是在学术界占统治地位的毕达哥拉斯学派的一个信条。他们认为一切都可以归结到整数或整数比,也就是说世上只有有理数。当时毕达哥拉斯学派还有一大贡献就是毕达哥拉斯定理,即勾股定理。然而希泊索斯发现了不可公度性的两条线段——等腰直角三角形的腰长与斜边,致使毕达哥拉斯学派内部的理论体系中产生了矛盾。 假设等腰直角三角形腰长a b =,而其斜长c 为有理数。 反证法:可知,2222 2c a b a =+=。不妨设a 和c 互素,则可以知道 c 为偶数,必有a 为奇数。取2c p =,得到222a p =,a 为偶数。得到矛盾。 对于第一次危机的研究,人们把几何建立在古典逻辑的基础上,不再把几何与数密切联系起来(数形分离),促进了几何学的发展。对于这个危机要么勾股定理不对,要么就承认有理数的不完备,进而预示着无理数的存在。 2、 第二次数学危机 (1)危机产生

悖论大全

老虎悖论是博弈论中一个著名的逻辑悖论。 故事 国王要处决一个囚犯,但给他一个生还的机会。囚犯被带到5扇紧闭的门前,其中一扇后面关着一只老虎。国王 对囚犯说:“你必须依次打开这些门。我可以肯定的是,在你没有打开关着老虎的那扇门之前,你是无法知道老虎是在那扇门后。”显然,如果囚犯有可能在打开有老虎的那扇门前知道,就证明国王在撒谎,那么就可以活命。开门之前,囚犯进行了如下分析:假如老虎在第五扇门,那当他把前四扇门打开后都没发现老虎,那他肯定猜到老 虎在第五扇门中,因国王说过不论何时他也料不到老虎在哪扇门后,那国王的说话就错了。因此,老虎肯定不在 第五扇门中。同样道理,老虎也不在第四道门中,否则囚犯打开三道门后,只剩两道门,老虎既不在第五扇门后,那就会给他料到在第四扇门后;依次类推,老虎不存在任何一道门后;囚犯这时就不再多想,冒冒失失依次推门,结果老虎从第二扇门中跳了出来,把囚犯咬死了。国王看见了说:“不是跟你说了老虎在哪扇门后总是出乎你的意料了吗?现在你就是万料不到了。” 悖论分析 如果囚犯的推理成立,那么就算国王把老虎放在第五扇门后,也是“料想不到”,学者们争论的重点在于:这个推理究竟错在第几步? 1.主张错在第一步 如果第一步是正确的,那么后面几步为什么是错的?所以第一步就错了。错在囚犯把国王的思路作为论据。 首先必须定义怎样算国王所谓的“知道”(或“意料”),如果投机猜测算的话,那国王不论怎样放都不能保证不被猜中,所以带投机成分的猜测不能算“知道”(国王为了自身利益也会这么定义),设“知道”定义为“在即有事实下的逻辑推

理”,那么囚犯不仅要正确预测老虎,还要对其预测给出严格的逻辑证明才行。本例中不考虑没有老虎的情况,即 囚犯已知必有1老虎。作为囚犯,他在每次打开一个门前都会进行逻辑推理,如果能推出老虎是在即将打开的门 里就赢了,如果不能推出,他就只能打开这个门,如果打开后没有老虎就继续推理下一个门是否有老虎,依此类推。 然后,把问题从5个门简化为只有2个门,囚犯会在打开第一个门之前,对第一个门里是否有老虎做逻辑推理: 由于囚犯要引用国王的思路,故须先考虑国王思路是否是会错。 A.如果相信国王是不会错的,那么你不可能推测出第一个门里有没有,因为如果推测出就说明国王会错,所以在 这个前提下不可能知道。囚犯无法推测出第一个门里有没有老虎,必然要打开第一个门。 B.如果相信国王是会错的: 囚犯首先认为国王放第二个门是错的,但国王既然是会错的,他为何不会按囚犯认为错误的思路放第二个门呢? 所以国王的思路就没法唯一的推测了。囚犯失去国王的思路做论据,无法推测出第一个门里有没有老虎,必然要 打开第一个门。 因此,国王应且只应放到第一个门中,则国王必胜。 推广到n个门的情况,只要国王不把老虎放到最后一个门,则国王必胜,囚犯必败。 2.主张错在第二步 故事中的囚犯最后决定相信“没有老虎”。但,国王并不知道囚犯是否会这样,所以的确不可能把老虎放在第五扇门。如果囚犯决定相信“一定有老虎”,那么在前四扇门都没有老虎之后,第五扇门后的老虎的确就变成“可预料的”了。 既然老虎在第五扇门的话,它一定是“可预料的”,那么当你已经开了三扇空门时,情况是怎么样?我们可以试着写成逻辑式子:前提一、老虎不可预料。前提二、老虎如果在第五扇门时,可预料。前提三、老虎不在第五扇门时,就一定在第四扇门。前提四、老虎如果在第四扇门时,可预料。结论:前提互相矛盾。 请注意:这时的逻辑推理中,既然前提互相矛盾,必定有一个以上不成立,那么可能性就是以下四个其中之一、 或是更多: A.老虎可预料。 B.老虎如果在第五扇门时,不可预料。 C.老虎不在第五扇门时,也不一定在第四扇门。 D.老虎如果在第四扇门时,不可预料。 二和四自身是矛盾命题,不考虑,三会导致老虎变成薛定谔的猫,也就是既存在亦非存在的状态(囚犯把老虎往 前门推是错误的,因为前提中包含“已经开了三扇空门”)。所以可能性只有一个:老虎可预料。但若老虎可预料,那么显示国王说谎,如果国王可能说谎,那么老虎也真的有可能消失。 这时的正确结论是:国王一定说谎,但他的谎言可能是“老虎可预料”,却也可能是“根本没老虎”,囚犯只是偏心于 一个可能性,结果帮国王圆谎罢了。 3.主张错在最后一步 如果“不可预料”并不是一种保证,而只意味“高机率”,“有老虎”才是保证,那么情况又整个改观。可以列成以下状况:

贝朗特悖论的解决

理学院 School of Science 课程设计报告 学生:凡 学生学号:200701121 所在班级:07数学1 所在专业:数学与应用数学 指导教师:樊嵘 实习场所:理工大学 实习时间:第六学期 课程设计成绩 总评 学习态度报告质量

使用SAS统计模拟方法解决Bertrand’s paradox Bertand’s paradox 是法国数学家Bertrand于1889提出的一个概率悖论:在圆任作一弦,其长度超过圆接正三角形边长的概率是多少?他在提出问题之后,给出了三种不同的解法,得到了三个不同的结果,是为悖论。 第一种解法如下: 由于弦交圆于两点。我们先固定弦的一个端点。以此端点作一个等边三角形(如图)。显然,只有穿过此三角形的弦才符合要求。而符合条件的弦的另一端正好占整个圆弧的1/3。并且,不论固定的那个 1/3。 第二种解法如下: 由于弦长只和圆心到它的距离有关。所以固定圆一条半径。当且仅当圆心到它的距离小于1/2才满足条件。并且,不论固定的是哪条半径,情况都是一样的。所以结果为1/2。 第三种解法如下; 弦被其中点唯一确定(除了圆心)。当且仅当其中点在半径为1/2的圆时才满足条件。此小圆面积为大圆的1/4。所以结果为1/4。 所以被称为悖论。

在以前对这问题的分析中,倾向于认为得到三种结果的原因是因为采用了不同的等可能性假定。 解法一假定端点在圆上均匀分布。 解法二假定半径在圆均匀分布以及弦的中点在半径上均匀分布。 解法三假定弦的中点在圆均匀分布。 先不论他们的假设是否合理,从这个问题的提法来看,问题考察 的是圆的随机弦问题。我们应该从弦的本质定义出发,即圆上任意两点的连线为弦。从这个思路,我们可以使用SAS 进行统计模拟,确定问题的答案。具体思路如下: 1.先进行1000次试验,每次试验进行1000次模拟,每次模拟从 圆上随机取两点,计算距离,记录d 1000个数据,数据集为cs ,其中的变量只有一个x 。对此数据进行分析,得到其方差与均值,可以求出概率。 2.为了得到弦长的分布,我们进行1000次模拟,每次模拟从圆上随机取两点,计算距离并记录。如此得到数据集为strx ,其中的变量有三个,分别记录两点的角度参数x ,y 与两点之间距离d 。 3.从圆进行推广,得到椭圆随机弦长的分布,思路同上。 4.从得到的结果进行理论分析。 数据的得到与数据集的建立: 使用matlab 编程可以得到模拟需要的数据,在SAS 中建立各数据集的程序如下: cs 数据集: strx 数据集:

日常生活中的悖论问题 研究性课题

日常生活中的悖论问题 在我们的生活中,存在着许多的数学问题,其中有一些现象,看着貌似是对的,但生活常识又告诉我们它是错的,我们把这一类问题叫做悖论问题。 悖论问题在我们的生活中十分常见,而且其中充满着许多数学乐趣,所以今天就让我们来探究一下悖论问题。 一.悖论问题的原理及解悖的方法 首先,悖论是指在逻辑上可以推导出互相矛盾之结论,但表面上又能自圆其说的命题或理论体系。悖论的出现往往是因为人们对某些概念的理解认识不够深刻正确所致。悖论的成因极为复杂且深刻,对它们的深入研究有助于数学、逻辑学、语义学等等理论学科的发展,因此具有重要意义,而悖论是表面上同一命题或推理中隐函着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。 悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。 悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 其次,就是悖论的解决办法,一般而言,只要运用对称逻辑,没有一个悖论无解。悖论是表面上同一命题或推理中隐函着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。 例如,用对称逻辑思维层次法解"说谎者悖论",这个悖论即"我在说谎"这句话中所蕴含的悖论。这个悖论表面上由"我在说谎"和"我说实话"这两个对立的"命题"组成,实际上这两个"命题"并不等价--前一个命题包含思维内容,后一个"命题"只是前一个命题的语言表达式,因此后一个"命题"不是严格意义上的命题。长期以来人们之所以把其看成悖论,是由于把两个"命题"看成等价,即都是思维内容和语言表达式统一的命题。只要把思维的两大层次:命题的思维内容和命题的语言表达式区别开来,"我在说谎"这个悖论即可化解。 二.数学界典型的悖论 芝诺悖论是古希腊数学家芝诺提出的一系列关于运动的不可分性的哲学悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于

相关文档
最新文档