第一讲 集合与对应

第一讲  集合与对应
第一讲  集合与对应

在小学数学教学中如何渗透集合思想的几点做法

在小学数学教学中如何渗透集合思想的几点做法 集合是近代数学中的一个重要概念。集合思想是现代数学思想向小学数学渗透的重要标志,在解决某些数学问题时,若是运用集合思想,可以使问题解决得更简单明了。集合论的创始人是德国的数学家康托(1845——1918),其主要思想方法可归结为三个原则,即概括原则、外延原则、一一对应原则。自集合论创立以来,它的概念、思想和方法已经渗透到现代数学的各个分支中,成为现代数学的基础。瑞士数学家欧拉(1707——1787)最早使用了表示两个非空集之间的关系的图,现称欧拉图。英国数学家维恩最早使用了另一种图即可以用于表示任意的几个集合(不论它们之间的关系如何,都可以画成同一样式),又称“维恩图”,用维恩图表示集合,有助于探索某些数学题的解决思路。 布鲁纳曾说,掌握基本的数学思想方法能使数学更易于理解和记忆,领会基本数学思想方法是通向迁移大道的“光明之路”。数学思想方法不但对学生学习具有普遍的指导意义,而且有利于学生形成科学的思维方式和思维习惯。 集合思想包括概念、子集思想、交集思想、并集思想、差集思想、空集思想、一一对应思想等,作为数学思想方法的一种,在教学中是具有很大的指导意义的。那么,在小学数学教学中我们应该如何应用集合思想进行教学活动呢? 一、集合概念在小学数学教学中的应用

集合思想的概念在教学中是不必向学生作解释的,教师主要指导学生看懂集合图的意思,会根据集合图来解题或者帮助解题。图形本身直观地应用了集合的表示方法——图示法,因此在小学低年级中运用这个方法对于教学是很有帮助的。 在认数教学中,教师要结合各种集合图,可以是选用书本上的,也可以是选用一些生活中常见的事物自己画。同时还可以反过来给学生一个数字,让学生画集合图,这样既可以让学生开动脑筋发挥自己的想象,也可以让学生更了解集合中的元素与基数概念的联系。 在日常教学中,教师还要让学生理解一些用来描述集合的常用术语,如“一些”、“一堆”、“一组”、“一群”等。比如说,在小学数学教材北师大版一年级(上册)的第四单元分类中,就出现了这么一张图,让学生观察,要求把玩具放一堆,文具放一堆,服装鞋帽放一堆,这种把具有同一种属性的东西放在一起,这就是集合的整体概念。 在认识0-10的十一个数字中,每个数字都有一张相应的集合图,也就是告诉学生,一个集合中有几个元素就用“几”来表示。如北师大版一年级(上册)第4页找一找的活动中“1”可以表示图里的一座房子;“2”可以表示图里的两个人。这就很形象的把集合中的元素与基数的概念有机的联系起来。 二、子集、交集、并集、差集、空集思想在小学数学教学中的应用 1、子集思想在小学数学教学中的应用 教学数的大小这一问题时,就可以应用子集思想。如北师大版二

第一讲 集合及集合的表示

集合及集合的表示 【学习目标】 1.了解集合的含义,会使用符号“∈”“?”表示元素与集合之间的关系. 2.能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用. 3.理解集合的特征性质,会用集合的特征性质描述一些集合,如常用数集、解集和一些基本图形的集合等. 【要点梳理】 集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用. 要点一:集合的有关概念 1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体. 2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集. 3.关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立. (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素. (3)无序性:集合中的元素的次序无先后之分.如:由1,2,3组成的集合,也可以写成由1,3,2组成一个集合,它们都表示同一个集合. 4.元素与集合的关系: (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A ? (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A 5.集合的分类 (1)空集:不含有任何元素的集合称为空集(empty set),记作:?. (2)有限集:含有有限个元素的集合叫做有限集. (3)无限集:含有无限个元素的集合叫做无限集. 6.常用数集及其表示 非负整数集(或自然数集),记作N 正整数集,记作N*或N+ 整数集,记作Z 有理数集,记作Q 实数集,记作R 要点二:集合的表示方法 我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合. 1. 自然语言法:用文字叙述的形式描述集合的方法.如:大于等于2且小于等于8的偶数构成的集合. 2. 列举法:把集合中的元素一一列举出来,写在大括号内.如:{1,2,3,4,5},{x2,3x+2,5y3-x, x2+y2},…; 3.描述法:把集合中的元素的公共属性描述出来,写在大括号{ }内.具体方法:在大括号内先写上 表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 要点诠释: (1)用描述表示集合时应注意:①弄清元素所具有的形式(即代表元素是什么),是数,还是有序实数对(点)还是其他形式?②元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑. (2)用描述法表示集合时,若需要多层次描述属性时,可选用逻辑联结词“且”与“或”等连接;若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围. 4.图示法:图示法主要包括Venn图、数轴上的区间等.为了形象直观,我们常常画一条封闭的曲线,

集合运算中蕴涵的数学思想方法

集合运算中蕴涵的数学思想方法 江苏省姜堰中学 张圣官 (225500) 2003年教育部颁布的《普通高中数学课程标准》中,特别提到“强调本质,注意适度形式化”,其中写道“要使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的数学思想方法”。在数学教育的各个环节中渗透数学思想方法,不仅具有提高教学效果的近期功效,而且具有优化学生的认知结构、进而全面提高学生数学素质的远期功效,这已经成了大家的共识。然而,对数学材料本身所蕴涵的数学思想方法进行挖掘和提炼,并在数学解题中加以运用和完善,这一方面还需要我们进行探索与研究。本文拟就集合的交、并、补集运算中所蕴涵的数学思想方法作一点说明。 1.交集思想方法 假设有两个集合A 和B ,A={x|x 具有性质P 1},B={x|x 具有性质P 2},则A ∩ B ={x|x 具有性质P 1和P 2}。在研究同时具有性质P 1和P 2的对象时可以考虑运用交集思想方法。从哲学意义上讲,A 和B 反映的是个性,A ∩ B 反映的是共性,而A ∩ B ?A 和A ∩ B ?B 则表明共性存在于个性之中这一基本原理。 例1设A={(x ,y )|x=m,y=3m+1,m ∈N + },B={(x ,y )|x=n,y=a(n 2-n+1),n ∈N + },问 是否存在非零整数a 使得A ∩ B ≠Φ?证明你的结论。 分析:集合A 、B 可化简为A={(x ,y )|y=3x+1,x ∈N +},B={(x ,y )|y=a(x 2-x+1),x ∈N + }。 本题是探索性问题,先假设a 存在,然后开始研究。 简解:要使A ∩ B ≠Φ,即A 、B 有共同的元素,只要方程组?? ?+-=+=)1(132x x a y x y 至少有一组正整数解,也即是方程ax 2-(a+3)x+a-1=0至少有一个正整数解。 ∵a ≠0且a ∈Z , 由⊿≥0,得3a 2-10a-9≦0,∴313253132 5+-≤≤a , ∴a=1,2,3,4 。 经检验,a=1,4符合题意;a=2,3不符合。 ∴存在a=1或4 ,使得A ∩ B ≠Φ 。 评注:本题如果将A 、B 视为点集,那么问题就化归为求直线与抛物线的交点中是否存在整点的问题令人望而生畏。以上解法利用交集思想方法,从共性入手,从而由A 、B 的共性使问题获得了优解。 例2已知n 是同时满足以下两个条件的最小正整数:①是15的倍数;②各个数位上的数字都是0或8 。试求n 。 解:设A={15的倍数},B={各个数位上数字都是0或8的正整数},则所求的n 即为 A ∩B 中的最小元素。 ∵A={3的倍数}∩{5的倍数}={数字和是3的倍数的整数}∩{个位数是0或5的整数}, ∴A ∩B={个位数字是0,其余各个数位上是0或8,且8的个数是3的倍数的正整数}。 由n 是A ∩B 中最小的数即知,n=8880 。 2.并集思想方法 有些数学问题牵涉若干个体,如果用孤立静止的观点来考虑问题,则或过于繁冗或难以奏效。如果在挖掘各个个体间隐含的某种关系的基础上将各个个体合并(取并集)为一个有机整体进行处理,则往往会出奇制胜,这就是并集思想方法。从哲学意义上讲,这种合并可

浅谈集合思想在一年级数学教学中的渗透

浅谈集合思想在一年级数学教学中的渗透 发表时间:2010-01-26 10:21:21 [查看原文] 集合论是数学思想方法的一个基本分支,在数学中占据着一个极其独特的地位,其基本概念已经渗透到数学的所有领域。1874年,集合论的创始者德国数学家G.康托尔摆脱了“数”的限制,首次提出了集合的概念。他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。在集合概念的基础上,定义了集合的子集、幂集、并集、交集以及集合到集合的映射等一系列概念。 一年级教材是怎样渗透集合思想的呢?先请看这样一个案例: 案例:【一年级上册】出示一队小朋友排排站的情境(如图),其中一位小朋友说:从左数我排第6,从右数我排第5,问题是:一共有多少人? 从左数,我排第6,从右数我排 师:要求一共有多少人?你能把自己的想法告诉大家吗? 生1:我是看图数出来一共有7人。 生2:这个图不对,这个小朋友说从左数他排第6,但是我们看到的他前面只有3个人,那他不是排第4了? 师:那到底哪里出了问题呢? 生3:这个题目不能看图数,因为有些小朋友被大树挡着了,你数不到的。 师:你怎么知道有些小朋友被树挡住了? 生4:因为那个小朋友说他从左数是排第6,而我们只看到4个人,所以他前面的2棵数挡住了2个人。 师:哦!原来是这样的,那既然有些小朋友被大树挡住了,我们看不到,那看图一个个数的方法好不好? 生5:也可以一个个地数,因为那个小朋友又说从右数他排第5,所以第三棵树后面也有一个小朋友被挡住了,这样每棵树后面都有一个小朋友,1、2、3…一共有10个人. 师:分析得真不错! 生6:这样一个个数太麻烦了,我用算式6+5=11(人) 生:不对不对,上面这个同学说一共有10个人,你怎么算出来是11个人呢? 师:是啊,可不能是两个不同的答案啊!我们问问他6表示什么?5表示什么?看他说的有没有道理? 生:6表示从左数他排第6,5表示从右数他排第5。 师:为什么用加法呢? 生6:因为要合起来一共是多少,用加法计算。 生有意见:那合起来也不是6个和5个合起来啊。 师:那你说说你的想法.到底是要几个和几个合起来算呢?

专题一集合与常用逻辑用语第一讲集合答案部分

专题一 集合与常用逻辑用语 第一讲集合 答案部分 1. A 【解析】A={x||x|<2}=(—2,2) , B={—2,0,1,2} ,??? ^^{0,1},故选 A . 2 2 2. B 【解析】因为 A={xx —X —2;>0},所以 e R A={x|x —X —2 < 0} ={x| —1W x < 2},故选 B ? 由题意知, A={x|x —1 > 0},则 APIB ={1,2}.故选 C . 因为 B ={x X> 1},所以 e R B ={x | X <1},因为 A ={x O c X < 2}, 因为 U ={1,2,3,4,5} , A ={1,3},所以 ejA= {2 , 4, 5}.故选 C . 6. A 【解析】通解 由 X 2 +y 2 < 3知,-73 < X <73, - J 3 < y <73. 又 x € Z , y 忘 Z ,所以 x€{-1,O,1} , y€{-1,O,1}, 所以A 中元素的个数为C i c ; =9,故选A . 优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图, 易知在圆X 2 +y 2 =3中有9个整点,即为集合 A 的元素个数,故选 A . 7. A 【解析】??? B ={x| X CO} , ? A PI B = {x | X c 0},选 A . & C 【解析】??? 1壬 B ,??? 12 —4" + m =0 ,即卩 m = 3,??? B ={1,3}.选 C . 2 2 3. C 【解析】 4. B 【解析】 所以AI (命 B)={x|0

集合概念与单独概念普遍概念

集合概念与单独概念、普遍概念 【作者】王心铭 【提要】集合概念与单独概念、集合概念与普遍概念之间分别表现为交叉关系要搞清它们的区别和联系首先应把握客观事物中类和分子、整体和部分、集合体和个体三种不同关系。在此基础上要把一个概念放在具体的环境中去考察才能准确判定它的类属。这样才不会在概念的使用上出现误用集合的逻辑错误。 【关键词】类、整体、集合体、集合概念 概念的逻辑分类,是根据概念的内涵和外延的不同特征给概念进行的划分。单独概念对应于普遍概念,划分根据是概念所反映的对象的数量。反映某一特定对象的概念,是单独概念其外延独一无二;反映某一类对象的概念是普遍概念,其外延最少两个。集合概念对应于非集合概念,划分根据是概念所反映的对象是否为一类事物的集合体。反映集合体的概念是集合概念,反映非集合体的概念是非集合概念。因而,每一种划分的子项之间是互相排斥的。即单独概念与普遍概念之间的关系是不相容的,集合概念和非集体概念之间也是不相容的。但是,由于它们是采用不同的根据从不同的方面对概念进行的两种划分,因此,两种划分所得的不同系列的子项之间并不互相排斥,其中集合概念与单独概念、集合概念与普遍概念之间分别表现为交叉关系。只有把握好这三种概念之间的区别和联系,对一个具体概念进行正确的归类,才能做到使用准确。

一 弄清客观事物中类与分子、整体与部分、集合体与个体三种关系是区别三种概念的根据。 客观事物中的类是许多具有相同或相似属性事物的综合,从属于类的每个对象叫做分子,属于一个类的任何分子都具有这类事物的属性并能独立存在。比如综合大学是由一所所象山东大学、山西大学、西北大学等设有文科、理科方面各种专业的大学组合而成的类,综合大学所具有的多科系的高等学校这一属性作为分子的每个具体的大学必定具有,用造句法检验时,山东大学是综合大学这样的语句必定成立。综合大学与山东大学之间就是类与分子的关系。反映类的概念和反映分子的概念在外延上表现为属种关系。 整体是由部分组成,每个单独事物都可看作一个单个整体,整体依赖部分,部分不能脱离整体而独立存在,整体所具有属性部分并不具有。比如山西大学是由山西大学组织部、山西大学后勤处、山西大学哲学系等党务、业务、行政方面许多具体部门组成,任何一个部门不可脱离山西大学而独立存在。比如离开了山西大学,也就没有山西大学哲学系。同时,这些部门也都不具有山西大学所具有的高等学校这一属性。用造句法作检验时,山西大学哲学系是大学这一语句必定不能成立,山西大学与山西大学哲学系就是整体和部分的关系。反映整体的概念和反映部分的概念在外延上表现为全异关系。 集合体是由许多同类个体有机构成的不可分割的统一体(或叫群体),这个统一体形成后,有着自己的本质属性,组成集合体的个体,虽然可以

小学数学思想方法的梳理集合思想

小学数学思想方法的梳理(集合思想) 课程教材研究所王永春 十二、集合思想 1. 集合的概念。 把指定的具有某种性质的事物看作一个整体,就是一个集合(简称集),其中每个事物叫做该集合的元素(简称元)。给定的集合,它的元素必须是确定的,即任何一个事物是否属于这个集合,是明确的。如“学习成绩好的同学”不能构成一个集合,因为构成它的元素是不确定的;而“语文和数学的平均成绩在90分及以上的同学”就是一个集合。一个给定集合中的元素是互不相同的,即集合中的元素不重复出现。只要两个集合的元素完全相同,就说这两个集合相等。 集合的表示法一般用列举法和描述法。列举法就是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法。描述法就是在花括号内写出规定这个集合元素的特定性质来表示集合的方法。列举法的局限性在于当集合的元素过多或者有无限多个时,很难把所有的元素一一列举出来,这时描述法便体现出了优越性。此外,有时也可以用封闭的曲线(文恩图)来直观地表示集合及集合间的关系,曲线的内部表示集合的所有元素。 一一对应是两个集合之间元素(这种元素不一定是数)的一对一的对应,也就是说集合A中的任一元素a,在集合B中都有唯一的元素b与之对应;并且在集合B中的任一元素b,在集合A中也有唯一的元素a与之对应。数集之间可以建立一一对应,如正奇数集合和正偶数集合之间的元素可以建立一一对应。其他集合之间也可以建立一一对应,如五(1)班有25个男生,25个女生,如果把男生和女生各自看成一个集合,那么这两个集合之间可以建立一一对应;再如,中国、美国、俄罗斯、英国、法国、德国作为一个集合,北京、华盛顿、莫斯科、伦敦、巴黎、柏林作为一个集合,这两个集合之间也可以建立一一对应。 2. 集合思想的重要意义。 集合理论是数学的理论基础,从集合论的角度研究数学,便于从整体和部分及二者的关系上研究数学各个领域的知识。如数系的扩展,从小学的自然数到整数,再到中学的有理数、无理数和实数,都可以从集合的角度来描述。有时用集合语言来表述有关概念更为简洁,如全体偶数的集合可表示为{x|x=2k,k∈Z}。集合沟通了代数(数)和几何之间的关系,如y = kx ,既是正比例函数,又可以表示一条直线;也就是说在平面直角坐标系上,这条直线是由满足y = kx 的有序实数对所组成的点的集合。用集合图描述概念的分类及概念之间的关系,往往层次分明、直观清晰,如四边形的分类可以用文恩图表示。 3.集合思想的具体应用。 集合思想在小学数学的很多内容中进行了渗透。在数的概念方面,如自然数可以从对等集合基数(元素的个数)的角度来理解,再如在一年级通过两组数量相等的实物建立一一对应,让学生理解“同样多”的概念,实际上就是两个对等集合的元素之间建立一一对应;数的运算也可以从集合的角度来理解,如加法可以理解为两个交集为空集的集合的并集,再如求两数相差多少,通过把代表两数的实物图或直观图一对一地比较,来帮助学生理解用减法计算的道理;实际上就是把代表两数的实物分别看作集合A、B,通过把A的所有元素与B的部分元素建立一一对应,然后转化为求B与其子集(与A等基)的差集的基数。此外,在小学数学中还经常用集合图表示概念之间的关系,如把所有三角形作为一个整体,看作一个集合,记为A;把锐角三角形、直角三角形和钝角三角形各自看作一个集合,分别记为B、C、D,这三个集合就是集合A的三个互不相交的子集,B、C、D的并集就是A。再如在学习公因数和公倍数时,都是通过把两个数各自的因数和倍数分别用集合图表示,再求两个集合的交集,直观地表示了公因数和公倍数的概念。4.集合思想的教学。 集合思想在小学数学中广泛渗透,在教学中应注意以下几个问题。 第一,应正确理解有关概念。我们知道,两个数之间可以比较大小,但是两个集合之间无法直接比较大小,也就是说一般不说两个集合谁大谁小。如有两个集合A、B,当且仅当它们有完全相同的元素时,称A、B

第1讲 集合及其运算

第一讲集合及其运算 主讲老师:徐剑 教学目标 1. 掌握集合的交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号; 2. 能使用数轴分析、Venn图表达集合的运算,体会直观图示对理解抽象概念的作用. 教学重难点 1.会求简单集合间的并集、交集;理解补集的含义并会求补集. 一、课前预习 1.集合与元素 (1)集合元素的三个特征:、、. (2)元素与集合的关系是或关系,用符号或表示. (3)集合的表示法:、、. A∩A=;A∩?=; A∪A=;A∪?=; A∩(?U A)=;A∪(?U A)=;?U(?U A)=. 二、例题解析 1、集合的含义 例1已知集合A={0,1,2},则集合B={(x,y)|x≥y,x∈A,y∈A}中元素的个数是() A.1 B.3 C.6 D.9

(2)已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为( ) A .1或-1 B .1或3 C .-1或3 D .1,-1或3 (3)已知集合A ={x |x ∈Z ,且32-x ∈Z },则集合A 中的元素个数为________. 2、集合的基本关系 例2 (1)设P ={y |y =-x 2+1,x ∈R },Q ={y |y =1-x 2},则 ( ) A .P ?Q B .Q ?P C .?R P ?Q D .Q ??R P (2)设A ={1,4,2x },B ={1,x 2},若B ?A ,则x =________. 3、集合的基本运算 例3 (1)设U =R ,{|55}A x x =-<<,{|07}B x x =≤<. 求A ∩B 、A ∪B 、?U A 、?U B 、(?U A )∩(?U B )、(?U A )∪(?U B )、?U (A ∪B )、?U (A ∩B ). (2)已知全集{1,2,3,4,5}U =,若A B U =,A B ≠?,A ∩(?U B )={1,2}, 求集合A 、B . (3)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若A ∩B =B ,则实数m 的取值范围为________. 三、课后作业 1. 如果集合A ={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( ). A .0 B .0 或1 C .1 D .不能确定 2. 集合A ={x |x =2n ,n ∈Z },B ={y |y =4k ,k ∈Z },则A 与B 的关系为( ). A .A ≠ ?B B .A ≠?B C .A =B D .A ∈B . 3. 满足条件{1,2,3}?≠M ?≠{1,2,3,4,5,6}的集合M 的个数是 个. 4. 设集合2{|3}M y y x ==-,2{|21}N y y x ==-,则M N = . 5.设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的取值范围.

(完整版)集合的概念及表示练习题及答案

新课标 集合的含义及其表示 姓名:_________ 一、选择题: 1.下面四个命题:(1)集合N 中的最小元素是1:(2)若a N -?,则a N ∈ (3)244x x +=的解集为{2,2};(4)0.7Q ∈,其中不正确命题的个数为 ( ) A. 0 B. 1 C.2 D.3 2.下列各组集合中,表示同一集合的是 ( ) A.(){}(){}3,2,2,3M N = B.{}{}3,2,2,3M N == C.(){},1M x y x y =+=,{}1N y x y =+= D. {}(){}1,2, 1.2M N == 3.下列方程的实数解的集合为12,23?? -???? 的个数为 ( ) (1)224941250x y x y +-++=;(2)2620x x +-=; (3) ()()2 21320x x -+=;(4) 2 620x x --= A.1 B.2 C.3 D.4 4.集合{} (){} 2 2 10,6100 A x x x B x N x x x =++==∈++=,{}450 C x Q x =∈+<, {}2D x x =为小于的质数 ,其中时空集的有 ( ) A. 1个B.2个 C.3个 D.4个 5. 下列关系中表述正确的是 ( ) A.{}200x ∈= B.(){}00,0∈ C. 0∈? D.0N ∈ 6. 下列表述正确的是( ) A.{}0=? B.{}{}1,22,1= C.{}?=? D.0N ? 7. 下面四个命题:(1)集合N 中的最小元素是1:(2)方程()()()3 1250x x x -+-=的 解集含有3个元素;(3)0∈?(4)满足1x x +>的实数的全体形成的集合。其中正确命题的个数是 ( ) A.0 B. 1 C. 2 D.3 二.填空题: 8.用列举法表示不等式组240121x x x +>??+≥-?的整数解集合为 9.已知集合12,6A x x N N x ?? =∈∈??-?? 用列举法表示集合A 为 10.已知集合241x A a x a ??-?? ==??+???? 有惟一解,又列举法表示集合A 为 三、解答题: 11.已知{}{}2A=1,a,b ,,,B a a ab =,且A=B ,求实数a,b ; 12. 已知集合{} 2210,A x ax x x R =++=∈,a 为实数 (1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值 (3)若A 中至多只有一个元素,求a 的取值范围 13. 设集合{} 22,M a a x y a Z ==-∈ (1)请推断任意奇数与集合M 的关系 (2)关于集合M ,你还可以得到一些什么样的结论

小学数学中常见的数学思想方法有哪些.

小学数学中常见的数学思想方法有哪些? 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化

及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

集合思想及应用

难点1 集合思想及应用 集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用. ●难点磁场 (★★★★★)已知集合A ={(x ,y )|x 2 +mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},如果A ∩B ≠?,求实数m 的取值范围. ●案例探究 [例1]设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2 +2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =?,证明此结论. 命题意图:本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题.属★★★★★级题目. 知识依托:解决此题的闪光点是将条件(A ∪B )∩C =?转化为A ∩C =?且B ∩C =?,这样难度就降低了. 错解分析:此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手. 技巧与方法:由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得值. 解:∵(A ∪B )∩C =?,∴A ∩C =?且B ∩C =? ∵???+=+=b kx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =? ∴Δ1=(2bk -1)2-4k 2(b 2-1)<0 ∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1 ① ∵? ??+==+-+b kx y y x x 052242 ∴4x 2 +(2-2k )x +(5+2b )=0 ∵B ∩C =?,∴Δ2=(1-k )2-4(5-2b )<0 ∴k 2 -2k +8b -19<0,从而8b <20,即b <2.5 ② 由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得 ?????<--<+-0 32, 01842 2k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =?. [例2]向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.问对A 、B 都赞成的学生和都不赞成的学生各有多少人? 命题意图:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握.本题主要强化学生的这种能力.属★★★★级题目. 知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来. 错解分析:本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索.

第1讲 必修1第一章集合的基本含、集合间的基本关系以及基本运算-教师版

教学课题人教版必修1第一章集合的基本含、集合间的基本关系以及基本运算 教学目标知识目标: (1)掌握集合的表示方法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题(2)运用类比的方法,对照实数的相等与不等的关系,探究集合之间的包含与相等关系 (3)能利用Venn图表达集合间的关系;探索直观图示(Venn图)对理解抽象概念的作用 (4)通过探讨集合与集合间的关系,对照数或式的算术运算和代数运算,探究集合之间的运算. 能力目标: (1)发展运用数学语言的能力,感受集合语言的意义和作用,学习从数学的角度认识世界 (2)初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力 (3)使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力 . 教学重点与难点重点:集合间的基本关系以及基本运算 难点:子集、真子集的判断、空集与非空集合的分类谈论 教学过程 课堂导学 1.集合与元素 (1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于两种,用符号∈或?表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 集合自然数集正整数集整数集有理数集实数集 符号N N*(或N+)Z Q R 2.集合间的基本关系 关系自然语言符号语言Venn图 子集集合A中所有元素都在集合B中(即若 x∈A,则x∈B) A?B(或B ?A) 真子集集合A是集合B的子集,且集合B中至 少有一个元素不在集合A中 A B(或 B A)

【点评】含字母的两个集合相等,并不意味着按序对应相等,要分类讨论,同时也要考虑集合中的 元素的互异性和无序性。 ★★★变式2:集合{|2,}A x x k k Z ==∈,{|21,}B x x k k Z ==+∈,{|41,}C x x k k Z ==+∈,又,a A b B ∈∈,则有( ) A .a b A +∈ B .a b B +∈ C .a b C +∈ D .a b +不属于,,A B C 中的任一个 答案:B 解:设Z k k a ∈=11,2,2221,b k k Z =+∈, ∴12122212()1a b k k k k B +=++=++∈。 新知三: 子集、真子集、空集 ①如果集合A B ?,并且存在元素x B ∈且x A ?,我们称集合A 是集合B 的真子集,记作:A B 。 ②不含任何元素的集合叫做空集,记作?,并规定:空集是任何集合的子集。 ★例3:写出集合{1,0,1}-的所有子集,并指出哪些是它的真子集. 解:子集为:?,{1}-,{0},{1},{1,0}-,{1,1}-,{0,1},{1,0,1}-。 真子集为:?,{1}-,{0},{1},{1,0}-,{1,1}-,{0,1}。 【点评】若有限集A 有n 个元素,则A 的子集有2n 个,真子集有21n -,非空子集有21n -个,非 空真子集有22n -个。 ★★变式3:已知集合{}{}1,21,2,3,4,5P ??,那么满足条件的集合P 的个数是( ) A .5 B .6 C .7 D .8 答案:D 解:满足条件的集合P 可为:{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5, {}1,2,4,5,{}1,2,3,4,5,共8个。 ★★例4:已知集合{13}A x x =-≤≤,2{,}B y y x x A ==∈,{2,}C y y x a x A ==+∈,若满足C B ?,求 实数a 的取值范围。 解:2{,}{09}B y y x x A y y ==∈=≤≤, {2,}{26}C y y x a x A y a y a ==+∈=-+≤≤, ∵C B ?,∴20 2369a a a -??? +? ≥≤≤≤。 ★变式4:集合{}1,2,3,4A =,2{0}B x N x a =∈-=,若满足B A ?,求实数a 的值组成的集合。 答案:{}1,4,9,16 ★★例5:已知集合A ={|25}x x -<≤,{|121}B x m x m =+-≤≤且B A ?,求实数m 的取值范围。 解:∵B A ? (1)当B =?时,则121m m +>-,解得2m <。 (2)当B ≠?时,则12121512m m m m +-?? - ??+>-? ≤≤,解得23m ≤≤。 综上所述,实数m 的取值范围是m ≤3。 【点评】当出现“A B ?”这一关系时,首先是讨论A 有没有可能为空集,因为A =? 时满足 A B ?。

AA第一讲 集合的概念及运算

第一讲集合的概念及运算 考点解读 【基础性考点知识突破】 一、集合的含义及表示方法 1.元素与集合的含义 一般地,把研究对象统称为元素,把一些元素组成的总体叫做集合. 构成集合的元素除了常见的数、式、点等数学对象之外,还可以是其他任何对象.2.集合中元素的性质 集合中元素的特征:确定性、互异性和无序性. (1)任何一个对象都能确定它是不是某一集合的元素,这是集合的最基本特征. (2)集合中的任何两个元素都是不同的对象,即在同一集合里不能重复出现相同元素. (3)在同一集合里,通常不考虑元素之间的顺序. 3.集合的表示 集合的表示有三种方法,分别是列举法、描述法和Venn图法.一般地,表示有限集合常用列举法;表示无限集合常用描述法;描述抽象集合常用Venn图法.正确认识一个集合的关键是理解集合中的元素特征. 4.元素与集合的关系 “属于”或“不属于”,记为“”或“?”. 二、集合与集合之间的关系 1.集合与集合之间的关系 (1)包含关系 子集:如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A?B或B?A,显然A?A,??A. (2)相等关系 如果集合A中的每一个元素都是集合B中的元素,反过来,集合B中的每一个元素也都是集合A中的元素,那么就说集合A等于集合B,记作A=B. 对于两个集合A与B,如果A?B,同时B?A,那么集合A与集合B相等,记作A=B. (3)真子集关系

对于两个集合A 与B ,若A ?B ,且A ≠B ,则集合A 是集合B 的真子集,记作A B 或B A .显然有下面的结论: ①对于集合A 、B 、C ,如果A ?B ,B ?C ,则A ?C ; ②对于集合A 、B 、C ,如果A B ,B C ,则A C . (4)不包含关系 用表示 2.空集 不含任何元素的集合叫做空集,记作?. 空集是任何一个集合的子集,是任何一个非空集合的真子集. 3.有限集的子集、真子集的个数 关于有限集的子集个数有下列结论:若有限集合A 中有n 个元素,则集合A 的子集的 个数有2n 个,即02C C C 2n n n n n ++???+=(个),非空子集的个数有(21n -)个;真子集的个数有(21n -)个;非空真子集的个数有(22n -)个, 三、集合的交、并、补集的运算 1.交集 (1)定义:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A ∩B ,A ∩B ={x |x ∈A 且x ∈B }. (2)性质:A ∩A =A ;A ∩B =B ∩A (交换律); A ∩?=?;(A ∩B )?A ;(A ∩B )?B ; 若A ?B ,则A ∩B =A . 2.并集 (1)定义:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A ∪B ,A ∪B ={x |x ∈A 或x ∈B }. (2)性质:A ∪A =A ;A ∪B =B ∪A (交换律); A ∪?=A ;A ?(A ∪ B );B ?(A ∪B ); 若A ?B ,则A ∪B =B . 3.补集 (1)定义:在研究某一集合问题的过程中,所有集合都是一个给定集合的子集,这个给

成语集合DTNL

成语集合DTNL 成语集合DTNL D 搭鼻啮指搭搭撒撒搭桥铺路达诚申信达官贵人达官贵要达官显贵 达官显宦达官要人达观知命达权通变达权知变达人立人达人知命 达士通人怛然失色答非所问答问如流 打抱不平打擦边球打草惊蛇打草蛇惊打成一片打出吊入打出调入 打错算盘打道回府打得火热打翻天印打风打雨打凤捞龙打凤牢龙 打富济贫打个照面打恭作揖打躬作揖打拱作揖打狗看主打滚撒泼 打虎不成打虎还得打虎牢龙打花胡哨打诨插科打击报复打鸡骂狗 打家劫道打家截道打家劫盗打家劫舍打街骂巷打开缺口打开天窗 打了水漂打里打外打里照外打莲花落打脸挂须打流跑滩打落水狗 打马虎眼打谩评跋打闷葫芦打破常规打破饭碗打破纪

录打破葫芦 打破迷关打破砂锅打破网儿打强心针打勤献趣打情骂俏打情骂趣 打脸揭短打人骂狗打入冷宫打入另册打入地狱打散堂鼓打蛇七寸 打蛇打头打收兵锣打水不浑打水不混打顺风锣打顺风旗打死老虎 打铁趁热打铁看火打铁先得打通关节打退堂鼓打瓮墩盆打下马威 打小报告打小算盘打旋磨儿打鸭惊鸳打牙打令打牙犯嘴打牙撂嘴 打牙配嘴打预防针打嘴巴战打醉眼子大白天下大败亏轮大败亏输 大败涂地大包大揽大饱眼福大本大宗大笔如椽大笔一挥大辩不言 大辩若讷大兵压境大步流星大才榱槃大才槃槃大才晚成大才小用 大材小用大操大办大吵大闹大吵大嚷大车无輗大车以载大彻大悟 大澈大悟大吃大喝大吃大嚼大吃一惊大出风头大处落墨大处着墨 大处着眼大吹大打大吹大擂大吹法螺大醇小疵大慈大

悲大错特错 大打出手大大咧咧大大落落大胆包身大胆海口大胆泼辣大刀阔斧 大盗窃国大纛高牙大得人心大德不酬大敌当前大地春回大地回春 大跌眼镜大动干戈大动肝火大动公惯大斗小秤大度包容大度豁达 大度汪洋大恩大德大而化之大而无当大而言之大发慈悲大发横财 大发雷霆大发谬论大发议论大法小廉大臣尽忠大凡小事大方之家 大放悲声大放光明大放厥词大放异彩大费周章大费周折大风大浪 大福不再大富大贵大腹便便大干物议大工告成大公无私大功毕成 大功告成大光其火大海捞针大含细入大寒索裘大喊大叫大汗淋漓 大旱望霓大旱云霓大旱之望大行大市大好河山大喝一声大轰大嗡 大红大绿大红大紫大呼小喝大呼小叫大户人家大话欺人大获全胜 大祸临头大惑不解大吉大利大计小用大家风度大家风

第一讲 合(1和2)

高中数学 第一讲 集合(一) 1.理解集合的概念,知道常用数集的概念及其记法,会判断一组对象是否构成集合。 2.理解元素与集合的“属于”关系,会判断某一个元素属于或不属于某一个集合,了解数集的记法,掌握元素的特征,理解列举法和描述法的意义。 3理解子集、真子集概念,会判 断 和证明两个集合包 4.会判断简单集合的相等关系 ⑴结合集合的图形表示,理解交集与并集的概念; ⑵掌握交集和并集的表示法,会求两个集合的交集和并集。 二.重点知识分析: 1.集合的基本概念及表示方法。 2.交集和并集的概念,集合的交、并的性质。 3.子集的概念、真子集的概念。 三.难点知识分析: 1.运用集合的两种常用表示方法——列举法与描述法,正确表示。 2.元素与子集、属于与包含间区别、描述法给定集合的运算。 3.交集和并集的概念、符号之间的区别与联系。 4.集合的交、并的性质。 三.知识要点精讲 1.集合的概念 ⑴集合:某些指定的对象集在一起就形成一个集合。

⑵元素:集合中每个对象叫做这个集合的元素。 2.集合元素的性质:元素具有确定性、互异性、无序性。 ◆确定性 我们把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合是一个“整体”,构成集合的对象必须是“确定的”。 怎样理解集合的“确定的”性呢? 其中“确定”是指构成集合的对象具有非常明确的特征,这个特征不能是模棱两可的,通过这个特征,我们能很容易判断一个元素是否是这个集合的元素。 例1 判断下列对象能否构成集合。 1.某校的年轻教师 2.某校大于50岁的教师 3.某校的女教师 ◆互异性 集合中的元素是互不相同的,不能重复出现。 通俗地讲就是一个集合中不存在相同的元素,每个元素都是独一无二的。 例2 已知{ }12,12-∈a a ,则a = . ◆无序性 集合中的元素是没有顺序的。 这个是从集合表示方法的角度来强调的。比如{1,2}和{2,1}其实表示的是同一个集合。元素前后顺序的不同并不影响相同集合的判断。 注意:数列的表示从外观看象集合的列举法表示,但是数列中元素的顺序不同,他所表示的数列也不一样。 例3 (湖北高考)设P 、Q 为两个非空数集,定义集合P+Q={}Q b P a b a ∈∈+,|,若 P={}5,2,0,Q={ }6,2,1,则P+Q 中元素的个数是( ) A.9 B.8 C.7 D.6 2.集合的分类及表示方法 ⑴集合通常用大写拉丁字母A 、B 、C ……表示,元素通常用小写拉丁字母a 、b 、c ……表示。 这只是一个约定俗成,使用的时候便于区分。 ⑵常见数集的表示: 自然数集,即非负整数集,记作N ;(注:包括“0”) 正整数集,记作N + 或者N *;(注:不包括“0”) 整数集,记作Z ;

相关文档
最新文档