高一专题一.求数列通项公式的常用方法及例题

高一专题一.求数列通项公式的常用方法及例题
高一专题一.求数列通项公式的常用方法及例题

求数列通项公式的常用方法及例题

一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根

据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.

例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 解:设数列{}n a 的公差为d ,则??

?-=+=+5

4111d a d a 解得???-==23

1d a

∴ ()5211+-=-+=n d n a a n

二、n

s 与n a 的关系式法:已知数列{}n a 的前n

项和

n s 与通项n a 的

关系式,求

n a .

???≥-==-2,1,1

1

n S S n S a n n n

例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 解: 111121a S n ==-==时,当

当2≥n 时,1--=n n n s s a =(

)(

)

12

121

----n n

=12-n

而111==s a 符合上式,1

2-=∴n n a

例3:已知数列{}n a 的前n 项和n s 满足n n s a 3

1

1=

+,其中11=a ,求n a . 解: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即

341=+n n a a ()2≥n 又3

1

3131112===a s a 不适合上式 ∴ 数列{}n a 从第2项起是以

3

4

为公比的等比数列

∴ 2

2

2343134--??

? ??=?

?

? ??=n n n a a ()2≥n ∴()()???

??≥??

? ??==-23431112n n a n n

注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类

比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.

三、累加法:()n f a a n n =--1,()的函数是一个关于n n f

例4:12,011-+==+n a a a n n ,求通项n a

解:

2

1211122311)1(0)2()1(2

)

321)(1()

32(5310

)32(531)

1()2()1()

1(1

112)2(3122)

1()2(321)1(21

2-=∴=≥-=-+-=

-++++=∴=-++++=--+++=-?=-=-?=--≥-=--=-∴-=--+n a a n n n n n a a n a a n a a a a n n n n a a n a a n n n n n n n 也符合上式

四、累乘法:

()1

n

n a f n a -=,()的函数是一个关于n n f 例5:111,1

n n n

a a a n -==- ()2,n n N *≥∈ 求通项n a

解:

1

1123221

132122111

11(2)(1)11

(2)

23(2)22(1)

1(1)(2)(1)3

12221

1

(2)1n n n n n n n n n n n

n n n

a a n a n n n a n a n n a n a a a a n a a a a n n

a a a a n n a n a a a n n a a n

-------=-∴=≥---=

--==???--=???

?--==∴=≥=∴=也符合上式

五、构造法:

㈠、两边加常数:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形

式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:

处理方法:设1n n a ka b λλ-+=++

则1()n n b a k a k

λ

λ-++=+

b k λλ+=令 1

b k λ∴=-

111111n n n n b b a k a k k b a k k b a k --?

?∴+

=+ ?--??+

-∴

=?

?+ ?

-?? ∴数列1n b a k ?

?+

??-??是以k 为公比,11

b

a k +

-以为首项的等比数列,借助它去求n a

例6:已知111,21n n a a a -==+ ()

2,n n N *≥∈ 求通项n a

解:

111111121(2)2112()2

112

12(1)1

2112

1

n n n n n n n n n a a n a a a a a a a a a λλ

λ

λ

λλ-----=+≥∴+=+++=+

+=

∴=∴+=++∴

==∴+=+令

∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()1

1112

2n n n a a -+=+?=

121(2)

121

n n n n a n a a ∴=-≥=∴=-也符合上式 (二)两边加指数函数式:在数列{}n a 中有m n n c ba a +=+1(c b ,为常数且不为0,*

,N n m ∈)”

型的数列求通项n a . 处理方法:两边同除以1

+n c

,得到一个“1n n a ka b -=+”型的数列,再用上面(一)

方法处理,便可求出

n n

c

a 的通式,从而求出n a .

例7:{}1113,232,.n n n n n a a a a a ++==+数列满足:求

解:

{}111111

1111

232322322233

223

32333(1)32223

22(3)(63)22

n n n

n n n n

n n

n

n n n n

n n n n n

n n

n n n n n a a a a a a a c a c c c c c n n a c a c n n +++++++-=+∴

=+-==∴-===

∴∴=+-=-

=∴==-=-令是以为首项,以为公差的等差数列

(三)、取倒数法:适用于11

n n n ka a ma p

--=

+()2,n n N *

≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的

式子.

例8:已知11122,2

n n n a a a a --==

+ ()

2,n n N *

≥∈ 求通项n a

解:

1

122

n n n a a a --=

+

111211122

n n n n a a a a ---+==+ 即1111111

22n n a a a --

==且 ()

2,n n N *≥∈ ∴ 数列1n a ???

?

??

是以12为首项,以1

2为公差的等差数列 ∴

()1111222

n n

n a =+-?=

12

(2)22n n a n n

a a n

∴=

≥=∴=

也符合上式

(四)、取对数法:适用于1(2)p q

n n a a n -=≥(,p q 为非零常数)

例9:已知()2

113,2n n a a a n -==≥ 求通项n a

解:由()2

113,2n n a a a n -==≥知0n a >

2

1n n a a -=的两边同取常用对数得

211lg lg 2lg n n n a a a --==即

1

lg 2lg n

n a a -=

∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列

故1

12lg 2lg3lg3n n n a --==

1

1

2213(2)

33n n n n a n a a --∴=≥=∴=也符合上式

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

数列、数列的通项公式

第三章数列 第一教时 教材:数列、数列的通项公式 目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。K2td4LKQoD 过程: 一、从实例引入

1.数列的有关概念 2.观察法求数列的通项公式 六、作业:练习 P112 习题 3.1

数列的递推公式练习

数列的递推公式练习 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

课时作业5数列的递推公式(选学) 时间:45分钟满分:100分 课堂训练 1.在数列{a n}中,a1=,a n=(-1)n·2a n-1(n≥2),则a5=() A.- C.- 【答案】 B 【解析】由a n=(-1)n·2a n-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=. 2.某数列第一项为1,并且对所有n≥2,n∈N,数列的前n项之积为 n2,则这个数列的通项公式是() A.a n=2n-1 B.a n=n2 C.a n=D.a n= 【答案】 C 【解析】∵a1·a2·a3·…·a n=n2,a1·a2·a3·…·a n-1=(n-1)2,∴两式相除,得a n=. 3.已知数列{a n}满足:a4n-3=1,a4n-1=0,a2n=a n,n∈N+,则a2009= ________,a2014=________. 【答案】10 【解析】考查数列的通项公式. ∵2009=4×503-3,∴a2009=1, ∵2014=2×1007,∴a2014=a1007,

又1007=4×252-1,∴a1007=a4×252-1=0. 4.已知数列{a n},a1=0,a n+1=,写出数列的前4项,并归纳出该数列的通项公式. 【解析】a1=0,a2==,a3===,a4===. 直接观察可以发现,把a3=写成a3=, 这样可知a n=(n≥2,n∈N+). 当n=1时,=0=a1, 所以a n=(n∈N+). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n}满足:a1=-,a n=1-(n≥2),则a4=() C.- 【答案】 C 【解析】∵a1=-,a n=1-(n≥2), ∴a2=1-=1-=5, a3=1-=1-=, a4=1-=1-=1-=-. 2.数列{a n}满足a1=,a n=-(n≥2,n∈N+),则a2013=() B.- C.3 D.-3 【答案】 A

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

递推数列通项公式求法(教案)讲解学习

递推数列通项公式求 法(教案)

由递推数列求通项公式 马鞍中学 --- 李群花 一、课题:由递推数列求通项公式 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出叠加法的试用题型。 ③学生分组讨论完成叠乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、 认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法:激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾:

1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1: 在数列{a n }中 a 1=1,a n -a n-1=2n-1(n ≥ 2),求数列{a n } 的通项公式。 活动:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学生细致讲解整个解题过程。 总结:类型1:)(1n f a a n n =-+,利用叠加法(逐差相加法)求解。 问题2:例2在数列{a n }中 a 1=1, (n ≥ 2),求数列{a n } 的通项公式。 方法归纳:利用叠乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 练习2设{a n }是首项为1的正项数列,且(n+1)a n 2+1 –na n 2 +a n+1a n =0, n n n a a 21 =-

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

人教新课标版数学高二B版必修5素材 预习学案 2.1.2数列的递推公式(选学)

预习导航 1.体会递推公式是数列的一种表示方法. 2.理解递推公式的概念及含义,能够根据递推公式写出数列的前几项. 3.掌握由一些简单的递推公式求数列的通项公式. 1.数列的递推公式 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项1n a (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 名师点拨:(1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式. (2)递推公式也是给出数列的一种重要方法.事实上,递推公式与通项公式一样,都是关于n 的恒等式,我们可用符合要求的正整数依次去替换n ,从而可以求出数列的各项. 【做一做1】 数列2,4,6,8,10,…的递推公式是( ) A .a n =a n -1+2(n ≥2) B .a n =2a n -1(n ≥2) C .a n =a n -1+2,a 1=2(n ≥2) D .a n =2a n -1,a 1=2(n ≥2) 答案:C 2.通项公式与递推公式的区别与联系 区别 联系 通项公式 项a n 是序号n 的函数式a n =f (n ) 都是给出数列的方法,可 求出数列中任意一项 递推公式 已知a 1(或前几项)及相邻项(或相邻几项) 间的关系式 但并不是所有的数列都有递推公式.例如\r(2)精确到1,0.1,0.01,0.001,…的不足近似值排列成一列数:1,1.4,1.41,1.414,…就没有递推公式. 【做一做2-1】 已知在数列{a n }中,a 1=2,a n =a n -1+2(n ≥2),则{a n }的通项公式是 ( ) A .3n B .2n C .n D .n 2 答案:B 【做一做2-2】 在数列{a n }中,a 1=1,a 2=2,且a n +1-a n =1+(-1)n (n ≥2),则a 10=________. 解析:由题意,知a 10-a 9=1+(-1)9,a 9-a 8=1+(-1)8,a 8-a 7=1+(-1)7,…,a 3

求数列通项公式常用的七种方法

创作编号:GB8878185555334563BT9125XW 创作者: 凤呜大王* 求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或1 1-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则?? ?-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =1 2 -n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥?? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析: 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈

数列的递推公式练习

课时作业5 数列的递推公式(选学) 时间:45分钟 满分:100分 课堂训练 1.在数列{a n }中,a 1=1 3,a n =(-1)n ·2a n -1(n ≥2),则a 5=( ) A .-16 3 C .-83 【答案】 B 【解析】 由a n =(-1)n ·2a n -1知a 2=23,a 3=-2a 2=-4 3,a 4=2a 3 =-83,a 5=-2a 4=163. 2.某数列第一项为1,并且对所有n ≥2,n ∈N ,数列的前n 项之积为n 2,则这个数列的通项公式是( ) A .a n =2n -1 B .a n =n 2 C .a n =n 2 n -12 D .a n =n +12 n 2 【答案】 C 【解析】 ∵a 1·a 2·a 3·…·a n =n 2,a 1·a 2·a 3·…·a n -1=(n -1)2,∴两式相除,得a n =n 2 n -12 . 3.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N +,则a 2 009=________,a 2 014=________. 【答案】 1 0 【解析】 考查数列的通项公式.

∵2 009=4×503-3,∴a 2 009=1, ∵2 014=2×1 007,∴a 2 014=a 1 007, 又1 007=4×252-1,∴a 1 007=a 4×252-1=0. 4.已知数列{a n },a 1=0,a n +1=1+a n 3-a n ,写出数列的前4项,并归 纳出该数列的通项公式. 【解析】 a 1=0,a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=1+13 3-13=1 2,a 4=1+a 33-a 3 =1+12 3-12 =3 5. 直接观察可以发现,把a 3=12写成a 3=2 4, 这样可知a n =n -1 n +1(n ≥2,n ∈N +). 当n =1时,1-1 1+1=0=a 1, 所以a n =n -1 n +1 (n ∈N +). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n }满足:a 1=-14,a n =1-1 a n -1(n ≥2),则a 4=( ) C .-14 【答案】 C

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

常见递推数列通项公式求法(教案)

问题 1:已知数列{a } , a 1 = 1 , a n +1 = n + 2 ,求{a n }的通项公式。 2 常见递推数列通项公式的求法 一、课题:常见递推数列通项公式的求法 二、教学目标 (1)会根据递推公式求出数列中的项,并能运用叠加法、叠乘法、待定系数 法求数列的通项公式。 (2) 根据等差数列通项公式的推导总结出叠加法的基本题型,引导学生分 组合作并讨论完成叠乘法及待定系数法的基本题型。 (3)通过互助合作、自主探究培养学生细心观察、认真分析、善于总结的良 好思维习惯,以及积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课时: 1 课时 六、教学手段:黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、区别递推公式与通项公式,从而引入课题 (二)新知探究: a n 变式: 已知数列 {a n } , a 1 = 1 , a n +1 = a n + 2n ,求{a n }的通项公式。 活动 1:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学 生细致讲解整个解题过程。 解:由条件知: a n +1 - a = 2n n 分别令 n = 1,2,3,? ? ? ? ??,(n - 1) ,代入上式得 (n - 1) 个 等式叠加之, 即 (a 2 - a 1 ) + (a 3 - a 2 ) + (a 4 - a 3 ) + ? ? ? ? ? ? +(a n - a n -1 ) = 2 + 2 ? 2 + 2 ? 3 + 2 ? (n - 2) + 2 ? (n - 1) 所以 a - a = (n - 1)[2 + 2 ? (n - 1)] n 1 a = 1,∴ a = n 2 - n + 1 1 n

数列通项公式的十种方法(已打)

递推式求数列通项公式常见类型及解法 对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列,也可以通过构8造把问题转化。下面分类说明。 一、型 例1. 在数列{a n}中,已知,求通项公式。 解:已知递推式化为,即, 所以 。 将以上个式子相加,得 ,

所以。 二、型 例2. 求数列的通项公式。解:当, 即 当,所以。

三、型 例3. 在数列中,,求。解法1:设,对比 ,得。于是,得 ,以3为公比的等比数列。 所以有。 解法2:又已知递推式,得 上述两式相减,得,因此,数列是以 为首项,以3为公比的等比数列。 所以,所以 。

四、型 例4. 设数列,求通项公式。 解:设,则, , 所以, 即。 设这时,所以。 由于{b n}是以3为首项,以为公比的等比数列,所以有。 由此得:。 说明:通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)。

五、型 例5. 已知b≠0,b≠±1,,写出用n和b表示a n的通项公式。 解:将已知递推式两边乘以,得 ,又设, 于是,原递推式化为,仿类型三,可解得,故。 说明:对于递推式,可两边除以,得 ,引入辅助数列 ,然后可归结为类型三。

六、型 例6. 已知数列,求。 解:在两边减去。 所以为首项,以 。 所以令上式,再把这个等式累加,得 。所以。 说明:可以变形为,就是 ,则可从,解得,于是是公比为的等比数列,这样就转化为前面的类型五。 等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。 转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。

常见数列通项公式的求法

常见数列通项公式的求法-中学数学论文 常见数列通项公式的求法 邹后林 (会昌中学,江西赣州342600) 摘要:数列的通项求法灵活多样,需要充分利用化归与转化思想。非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。现举数例。 关键词:数列;通项公式;求法 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-12-0031-01 例1:已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1 (n∈N*),等差数列{bn}中,bn0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列。 (1)求数列{an}、{bn}的通项公式; (2)求数列{an·bn}的前n项和Tn。 解:(1)∵a1=1,an+1=2Sn+1 (n∈N*), ∴an=2Sn-1+1 (n∈N*,n1), ∴an+1-an=2(Sn-Sn-1), 即an+1-an=2an,∴an+1=3an (n∈N*,n1)。 而a2=2a1+1=3,∴a2=3a1。 ∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1 (n∈N*)。∴a1=1,a2=3,a3=9,

在等差数列{bn}中,∵b1+b2+b3=15, ∴b2=5。 又∵a1+b1、a2+b2、a3+b3成等比数列,设等差数列{bn}的公差为d,则有(a1+b1)(a3+b3)=(a2+b2)2。 ∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,∵bn0 (n∈N*),∴舍去d =-10,取d=2,∴b1=3,∴bn=2n+1 (n∈N*)。 (2)由(1)知Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①∴3Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)3n,② ∴①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n=3+2(3+32+33+…+3n-1)-(2n+1)3n

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

相关文档
最新文档