直流电机的电枢电动势与电磁转矩

直流电机的电枢电动势与电磁转矩
直流电机的电枢电动势与电磁转矩

直流电机的电枢电势与电磁转矩

一.直流电机的电枢电势

如前述,直流电机的电枢电势是指电刷两端的直流电势E a ,E a =支路电势,它是电枢旋转时导体切割磁力线感生的。

不要以为只有发电机才有E a ,电动机旋转时,电枢导体同样切割磁力线,同样会感生电势E a 。所不同的是:发电机的电枢电流I a 是E a 产生的,因此I a 与E a 同向;电动机是由于通进了I a 电枢才会旋转、才会感生电势E a 的,因此E a 与I a 反向,故电动机的电势又称为反电势。

由于E a =支路电势,设电枢绕组的总导体数为N ,并联支路数为2a ,则每条支路的导体数为

2N a ,若能求出每根导体的平均电势av e ,则E a =2N

a

av e 。 一根导体的平均电势av e =av B lv ,其中av B 为一个极下的平均磁密,可用每极磁通量Φ除以每个极的面积l τ表示,故av B =

l φ

τ

;v 是导体切割磁力线的速度,即电枢的转速,电枢每分钟n 转,每秒钟n/60转,每转一圈的长度是2p 个τ,故v =

260

p n

τ。 ∴E a =2N a av e =2N a av B lv =2N a l φτ260p n

l τ=

60pN a

φn =e C φn 其中:e C =

60pN

a

对做好的电机为常数,称为电势常数。 电枢电势公式反映了导体切割磁力线感生电势的电磁现象,这是直流机一个非常重要的公式。

二.直流电机的电磁转矩

如前述直流电动机工作原理:载流导体在磁场中受电磁力的作用,电磁力乘以半径就是电磁转矩。但并不是只有电动机才有电磁转矩,发电机只要带上负载,就会有电枢电流就成为载流导体,就会在磁场中受电磁力的作用,就会有电磁转矩。所不同的是:电动机是因为有电磁转矩才会转动,因此电磁转矩是驱动转矩,T 与n 方向相同;而发电机

转起来才会感生电势产生电流,才会有电磁力和电磁转矩,因此电磁转矩是制动转矩,T 与n 方向相反。

设每根导体的平均电磁转矩为av T ,电枢总导体数为N ,故T =N av T , 而av T =av

f 2D ,其中:电枢圆周2D p πτ=,平均电磁力av f =av B a li ,而如上述:av B =l φ

τ

;a i 是支路电流,若用电枢电流表示:a i =2a

I a

, 则:T =N av T =N av f 2D =N av B a li p τπ=N l φτl 2a I a p τπ

=2pN a πa I φ=T C a I φ 其中:T C =

2pN

a

π对做好的电机是常数,称之为转矩常数。 T e C C =6029.55260pN

a pN a

ππ==,即T C =9.55e C ,两个常数只知其一就可求其二。 直流电机的电磁转矩公式与交流电机的电磁转矩公式'22cos T m T C I φ?=非常相似,因为它们都反映了载流导体在磁场中受电磁力作用的电磁现象,这也是直流电机一个非常重要的公式。

正确理解异步电动机电磁转矩的不同表达式

正确理解异步电动机电磁转矩的不同表达式 摘要:电磁转矩是三相异步电动机的最重要的物理量,电磁转矩对三相异步电动机的拖 动性能起着极其重要的作用,直接影响着电动机的起动、调速、制动等性能。正确理解电磁转矩的物理表达式,参数表达式和实用表达式,是正确分析电动机运行特性的关键。正确运用电磁转矩的不同表达式,是正确计算电磁转矩和合理选择电动机的关键。 关键词:理解 电磁转矩 表达式 以交流电动机为原动机的电力拖动系统为交流电力拖动系统。三相异步电动机由于结构简单,价格便宜,且性能良好,运行可靠,故广泛应用于各种拖动系统中。电磁转矩对三相异步电动机的拖动性能起着极其重要的作用,直接影响着电动机的起动、调速、制动等性能,其常用表达式有以下三种形式。 一、电磁转矩的物理表达式 由三相异步电动机的工作原理分析可知,电磁转矩T 是由转子电流I2 与旋转磁场相互作用而产生的,所以电磁转矩的大小与旋转磁通Φ及转子电流的乘积成正比。转子电路既有电阻又有漏电抗,所以转子电流I 2可以分解为有功分C 量I 2OS ?2和无功分量I 2Sin ?2 两部分。因为电磁转矩T 决定了电动机输出的机械功率即有功功率的大小,所以只有电流的有功分量I 2COS ?2才能产生电磁转矩,故电动机的电磁转矩为 T=C T φm I 2COS ?2 (1) 式中,T —电磁转矩(N*m ) φm —每极磁通(Wb ) C T —异步电机的转矩常数 上述电磁转矩表达式很简洁,物理概念清晰,可用于定性分析异步电动机电磁转矩T 与 φm 和I 2 COS ?2之间的关系。 二、电磁转矩的参数表达式 在具体应用时,电流I 2 和COS ?2 都随转差率S 而变化,因而不便于分析异步电动机 的各种运行状态,下面导出电磁转矩的参数表达式。 转子绕组中除了电阻R 2外,也存在着漏感抗X s2,且X s2 =SX 20 ,因此转子每相绕组内的 阻抗为 () 2 202 22 22 22SX R X R Z s +=+= (2) 旋转磁场在转子每相绕组中的感应电动势的有效值为E 2,且E 2=SE 20 , E 20为转子不动时的转子感应电动势,而转子每相绕组的电流 () 220222022 2SE R SE Z E I += = (3)

直流无刷电机反电动势过零检测方法汇总

直流无刷电机反电动势过零检测方法 一般的永磁无刷直流电机是由三相逆变桥来驱动的,根据转子位置的不同,为了产生最大的平均转矩,在一个电角度周期中,具有6个换相状态。在任意一个时间段中,电机三相中都只有两相导通,每相的导通时间间隔为120°电角度。例如,当A相和B相已经持续60°电角度时,C相不导通。这个换相状态将持续60°电角度,而从B相不导通,到C相开始导通的过程,称为换相。换相的时刻取决于转子的位置,也可以通过判断不导通相过零点的时刻来决定。通过判断不导通相反电动势过零点,是最为常用也最为适合的无位置传感器控制方法。 反电动势过零点的检测方法是,通过测量不导通相的端电压,与电机的绕组中点电压进行比较,以得到反电动势的过零点。但对于小电枢电感的永磁无刷直流电机,在许多情况下,绕组中点电压难以获取,并且需要使用电阻分压和进行低通滤波,这样会导致反电动势信号大幅地衰减,与电机的速度不成比例,信噪比太低,另外也会给过零点带来更大的相移。 与上面的方法相比,更为常用的是虚拟中点电压法。假设A相和B相导通,则A和B两相电流大小相等,方向相反,C相电流为零,则根据永磁无刷直流电机数学模型有

根据上述方程,将不导通相的端电压与所计算的虚拟中点电压进行比较,也可以获得反电动势的过零点。这种方法十分简单,实现也比较方便。但是,由于无刷直流电机按一定频率进行PWM斩波控制,其计算出的虚拟中点电压也会随着PWM的高低电平而发生相同频率的在电源和地电平之间的变化。这样,就会带来极大的共模电平和高频噪声,会影响反电动势过零点检测的精确性。同样,和中点比较法一样,这种方法也必须要对绕组端电压进行分压和低通滤波。 这样,在一个PWM周期中,电枢绕组相电流就必然存在断续状态。速度提高时,电枢绕组中会产生峰峰值极大、频率很高的反电动势。由于以上特点,一些普遍采用的BLDC无位置传感器的控制方法均不适合。现有的无位置传感器的控制方法,如端电压检测法和转子位置估计法等,将很难得到良好的控制效果,其理由如下所述: 首先,无刷直流电机要求在电机转速提高的过程中,采用现有的端电压与中点电压比较的方法,要对三相绕组进行分压阻容滤波,计算出不导通相反电动势的过零点,再延后一定时间进行换相。但是,这样得到的反电动势过零点会因为无刷直流电机转速提高而产生过大的相移,导致当检测到反电动势过零点后,真正的换相点已经过去,从而造成换相失误。另外,现有的转子位置估计法,在高速时必须以极高的采样频率对永磁无刷直流电机中多个物理量进行测量,然后运行复杂的算法估计出转子位置,这样即使采用主频较高的控制器,也很难实时得到精确的位置信号。并且,随着电机转速的提高,位置估计算法难以及时地计算出当前电机转子的位置情况,对于转速范围较大的情况,无位置传感器的检测难以实现。 其次,现有的无刷直流电机无位置传感器的控制方法一般只适用于绕组相电流不存在断续状态的情况。而当永磁无刷直流电机电枢电感较小时,在一个PWM 周期中,则可能出现绕组相电流断续状态。当相电流从续流状态向断流状态突变时,由于三相逆变桥中功率管的寄生电容和电枢绕组中的电感和电阻相互作用,端电压会存在二阶阻尼振荡过程。在振荡过程中,将检测到的电枢绕组端电压应用于无位置传感器的换相中,会得到不正确的结果。 因此,使用现有的无位置传感器的控制方法,应用于小电枢电感的磁悬浮飞轮用无刷直流电机上,都无法得到良好的控制效果。

第一章直流电机习题答案

1、说明直流发电机的工作原理。 答:1)用原动机拖动电枢绕组旋转 2)电机内部有磁场存在; 3)电枢绕组旋转切割磁场,产生交变的感应电势(右手定则); 4)通过电刷将交变感应电势引出变成直流; 5)将机械能变为电能。 2、说明直流电动机的工作原理。 答:1)将直流电源通过电刷接通电枢绕组,使电枢导体有电流流过。 2)机内部有磁场存在。 3)载流的转子(即电枢)导体将受到电磁力f 作用f=Bli a(左手定则) 4)所有导体产生的电磁力作用于转子,使转子以n(转/分)旋转,以便拖 动机械负载。 3、直流电机的额定值有哪些? 答:额定值有额定功率、额定电压、额定电流和额定转速等 4、 答:直流电机的励磁方式分为他励和自励两大类,其中自励又分为并励、串励和复励三种形式。 1)他励 他励直流电机的励磁绕组由单独直流电源供电,与电枢绕组没有电的联系,励磁电流的大小不受电枢电流影响。 2)并励 发电机:I a=I f+I 电动机::I =I a+I f 3)串励:I a=I f=I 4)复励 5、直流电机有哪些主要部件?各部件的作用是什么。 答:一、定子 1、主磁极:建立主磁通,包括:铁心:由低碳钢片叠成 绕组:由铜线绕成 2、换向磁极:改善换向,包括:铁心:中大型由低碳钢片叠成。 小型由整块锻钢制成。 绕组:由铜线绕成。 3、机座:固定主磁极、换向磁极、端盖等,同时构成主磁路的一部分,用铸铁、铸钢或钢板卷成。 4、电刷装置:引出(或引入)电流,电刷由石墨等材料制成。

二.转子 1.电枢铁心:构成主磁路,嵌放电枢绕组。由电工钢片叠成。 2.电枢绕组:产生感应电动势和电磁转矩,实现机—电能量转换。由铜线绕成。 3. 换向器:换向用,由换向片围叠而成。 6、直流电机的换向装置由哪些部件构成?它在电机中起什么作用? 答 :换向装置由换向片、换向极铁心和换向极绕组构成。主要作用是改善直流电机的换向,尽可能地消除电火花。 7、 直流电枢绕组由哪些部件构成? 答:电枢绕组是由很多个线圈按照一定的规律连接而成的。 8、 什么是电枢反应?对电机什么影响? 答:直流电机在空载运行时,气隙磁场仅有励磁磁动势产生,而负载运作时,气隙磁场是由励磁磁动势和电枢磁动势共同产生的,显然与空载时不同,因此把电枢磁动势对主极磁场的影响称为电枢反应. 电枢反应结果可能使气隙磁场畸变,同时还可能使气隙磁场削弱或增强。 9、电机产生的的电动势E a =C e Φn 对于直流发电机和直流电动机来说,所起的作 用有什么不同? 答; 直流发电机电枢电动势为电源电动势(a a E I 与同向),直流电动机为反电 动势(a a E I 与反方向)。 10、电机产生的的电磁转矩T=C e ΦI a 对于直流发电机和直流电动机来说,所起的 作用有什么不同? 答:在发电机中,电磁转矩的方向与电枢转向相反,对电枢起制动作用;在电动机中,电磁转矩的方向与电枢转向相同,对电枢起推动作用。 11、 答:电流电动机的输入功率P 1是从电枢两端输入的电功率,P 1=UI ;电磁功率P M 是扣除励磁回路的损耗和电枢回路的损耗后剩余部分的功率, )(1Cuf Cua M p p P P +-=; 输出功率P 2是转轴上输出的机械功率,即电磁功率扣除机械损耗Ωp 、铁损耗Fe p 和附加损耗ad p 后的机械功率,02)(p P p p p P P M ad Fe M -=++-=Ω。

电枢反应

§2.3负载时直流电机的磁场――电枢反应 直流电机负载后,电枢绕组有电流通过,简称电枢磁场,而电枢磁场对主磁场的影响就称为电枢反应。具体分析如下: 当电机带上负载后,电枢绕组中有电流通过,电枢电流将产生电枢磁动势,此时电机的气隙磁场由主磁场和电枢两个磁场共同决定。电枢磁动势的出现,使气隙磁场发生畸变,即电枢反应。在直流电机中,不论电枢绕组是哪种型式,各支路电流都是通过电刷引入获引出,因此电刷是电枢表面上电流分布的分界线。电枢磁势的轴线总是与电刷轴线相重合。 一、交轴电枢磁势Faq 电枢磁场如左图,若电枢上半周的电流为流出, 下半周为流入,根据右手螺旋定则,该电枢磁动 势建立的磁场如虚线所示。从图可见,电枢磁动 势的轴线总是与电刷轴线重合。与主极轴线正交的轴线通常称为交轴,与主极轴线重合的轴线称为直轴;所以当电刷位于几何中性线上时,电枢磁动势时交轴电枢磁动势。 左图是直流电机电流分布和电枢磁场情况示意图,为便于分析让其展开成右图。 设直轴线上与电枢外圆的交点为0点,在距0点的 x 处作一闭

合磁力线回路。 据安培回路定律研究该闭路,该闭路可包围的总电流数即为总磁势Fa:因为设 A 是沿电枢表面周长方向单位长度上的安培导体数: Zaia A=-------(安培导体数/cm) ∏Da 式中: Za――电枢绕组的总导体数; D――电枢外径; ia――电枢电流。 则闭路总磁势为Fa=2xA ,略去铁内磁阻则每个气隙所消耗的磁势为Faq=A×x。

交轴电枢磁势Faq(x)的分布为呈三角波(略去齿槽影响时),则电枢磁密的分布波形是――"马鞍形"波。如上右图ba(x)。 二、直轴电枢磁势Fad 如下图此图当电刷不在几何中线时,设移过一个小角度β,除了交轴电枢磁动势外,还会产生直轴电枢磁动势。 电枢磁势分解成两个分量Faq和Fad 即Fa=Fad+Fad 三、直轴电枢反应 若电机为发电机时,电刷顺转向移动β角。直轴 电枢反应仅存在于电刷不与几何中线处导体接触 时,此时也存在交轴电枢反应(以后分析),现

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

同步电机电枢反应

同步电机电枢反应 磁场分析 一.课题内容 通过电磁场仿真计算明确同步电机电枢反应概念,仿真,分析和理解在同步电机定子电流为交轴,直轴去磁,直轴助磁情况下电机磁场的

分布情况,并重点分析气隙磁场的分布波形以及电枢反应对磁场大小的影响,总结电机电枢反应的规律。 二.课题背景 在同步电机中,电枢反应既是学习的难点也是重点。当同步电机作为发电机运行时,在空载时只有励磁绕组通有电流,主极磁场为直轴磁场,对称分布。若带三相对称负载,电枢绕组中通过三相对称电流时,会产生相应的电枢磁场。气隙内的磁场由电枢磁场和主极磁场合成。电枢反应的性质取决于电枢磁场和主磁场在空间的相对位置,其变化情况较为复杂,因此,利用仿真软件对同步电机的电枢反应进行分析,有利于加深对电枢反应的理解,并熟练掌握不同的情况下电机内磁场的分布规律。 三.探究方式 利用Maxwell 电磁场数值计算软件,建立两极同步电机的二维模型。通过改变定转子绕组电流,利用软件自带的作图系统,分布绘制电枢磁场分布,气隙磁场分布等图,对比分析得出同步电机磁场分布以及电枢反应影响的规律。 探究步骤 1单独给转子绕组通电流进行电磁场计算,画出空载时磁力线分布图和气隙磁场的磁密分布波形; 2单独定子绕组通交轴电流,画出电枢磁场的分布。同时给转子绕组通电流,观察交轴电枢反应时磁场的扭斜情况,画出磁力线分布图和气隙磁密的分布波形;

3单独定子绕组通去磁直轴电流,画出电枢磁场的分布。同时给转子通电流,画出磁场的分布,观察直轴电枢反应时磁场是否减小,画出磁力线分布图和气隙磁密的分布波形; 4单独定子绕组通助磁直轴电流,画出电枢磁场的分布。同时给转子绕组电流,画出电枢磁场的分布,观察直轴电枢反应时磁场的变化,画出磁力线分布图和气隙磁密的分布波形; 5比较上述几种情况下的磁力线分布和气隙磁密分布波形,对照电枢电流情况总结同步电机电枢反应规律。 6根据上述结果,分析当发电机负载为阻感性负载时,电枢反应情况.并自己设定电枢电流数值,计算此种情况下的气隙合成磁场分布,画出磁力线图,气隙磁密分布图,比较计算结果与理论分析结果是否相符。 四.仿真结果 交轴电流,去磁直轴电流,助磁直轴电流三种情况下,在所建模型中每相电流的数值如下:(取转子电流1000A定子最大200A) I A I B I C 交轴100 -200 100 直轴去磁173 0 -173 直轴助磁-173 0 173 1.单独给转子绕组通电流 空载时磁力线分布图如下

直流电机问答

第十四章 直流电机基本工作原理和结构 14-1 直流发电机是如何 发出直流电的如果没有换向器,直流发电机能否发出直流电 答: 直流发电机电枢绕组内的感应电动势实为交变电动势(如图示瞬间以导体a 为例), 电枢绕组的a 导体处于N 极底下, 由“右手发电机”定则判得电动势方向为⊙, 转半圈后, 处于S 极下, 电动势方向变为⊕ , 再转半圈, 又回到原来位置, 电动势又为⊙。。。。。。, 它通过换向装置后, 才把电枢绕组的交流变为 外电路的直流。 换向装置的结构特点是电枢绕组尽管旋转, 而 A 、B 电刷固定不转(电刷与磁极相对静止), 且A 刷恒与N 极下导体相连,B 刷恒与S 极底 下导体相连),则由A 刷引出的电动势方向恒 为⊙(流出), 若定义为正极, 则B刷引出的 电动势方向恒为⊕ (流入), 为负极,因此, 由A,B两刷得到的就是直流。 14-2“直流电机实质上是一台装有换向装置的交流电机”,你怎样理解这句话 答:由上题可知,无论是直流发电机还是直流电动机,它们在电枢绕组内的电流均为交流(而电刷两端的外电路均为直流),故直流电机实为一台交流电机。 这种交(内电路)、直(外电路)流的转换就是靠换向装置来实现的。 发电机 交流(内电路) 直流(外电路) 电动机 因此说,直流电机实质上是一台带有换向装置的交流电机。 14-3试判断下列情况,电刷两端电压的性质: (1) (1)磁极固定,电刷与电枢同时旋转; ( 2) (2)电枢固定,电刷与磁极同时旋转。 答:由直流发电机原理可知,只有电刷和磁极保持相对静止,在电刷两端的电压才为直流,由此: ① 交流:因为电刷与磁极相对运动。 ② 直流:因为电刷与磁极相对静止。 14-4 直流电机有哪些激磁方式各有何特点不同的激磁方式下,负载电流、电枢电流与激磁电流有何关系 答: 他励 并励 自励 串励 复励 U 并励 I a =I f +I I f =U/R f U 他励 I=I a I f =U f /R f

电机学概念以及公式总结

一、直流电机 A. 主要概念 1. 换向器、电刷、电枢接触压降2U b 2. 极数和极对数 3. 主磁极、励磁绕组 4. 电枢、电枢铁心、电枢绕组 5. 额定值 6. 元件 7. 单叠、单波绕组 8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式 12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场 14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E、转矩常数C T 16. 电磁功率P em 电枢铜耗p Cua 励磁铜耗p Cuf 电机铁耗p Fe 机械损耗p mec 附加损耗p ad 输出机械功率P2 可变损耗、不变损耗、空载损耗

17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车” 19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、软特性 20. 稳定性 21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动 22. DM 的调速方法:电枢回路串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式: 发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势: 60E a E E C n pN C a Φ== 电磁转矩: em a 2T a T T C I pN C a Φπ== 直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 : 12 ()()a f a f a a a f a a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++ 12em Cua Cuf em Fe mec ad P P p p P P p p p =++=+++ DM 的转矩方程:20d d em T T T J t Ω --= DM 的效率:21112 100%100%(1)100%P P p p P P P p η-∑∑= ?=?=-?+∑

直流电机原理

直流电机是机械能和直流电能相互转换的旋转机电设备,它可以使机械能和电能之间相互转换; 如果将直流电能转换为机械能时,则为直流电动机,如:用在升降提取物品时,在上升的过程中,直流电机提起物品,电机用力方向与物品的位移方向一致,电机正向用力,进入电动状态;又如冷轧机,主机和卷取机,电机的力矩方向与电机旋转方向一致,电机正向用力,进入电动状态; 电动状态也分正电动状态和反电动状态,即电机正反转; 如果将机械能转换为直流电能时,则为直流发电机,如:用在升降提取物品时,在下降的过程中,直流电机会被重物拖动,电机反向用力,进入发电状态;又如冷轧机,放卷机被主机拖动旋转,放卷机反向用力,进入发电状态; 虽然两者都工作在发电状态,但两者的工作方式也有所不同; (可以插图四象限运行) 电机为什么会转动?为什么电流越大,力矩就越大?电机反电动势?(附图)直流电机的励磁部分简化为两个固定的磁极N-S,磁场方向是从N到S的,如图; 当电机电枢通入直流电时,根据左手定则,电枢上半部分力矩为左,下半部分力矩为右,上下部分配合就使电机电枢,向同一个方向转动,所以通有励磁电流的直流电机,只要电枢上用电流流过,电机就会转动;而电机的力矩与电流是成正比,所以电流越大,力矩就越大; 通有电流的导体在切割磁感线时会产生一个反向的电压,称为反向电动势; 当电机转动时,因为电机电枢部分通有电流,根据电机的旋转方向和磁场方向,再由右手定则,可以确定电机电枢中会产生一个反电动势,其电压方向与外加在电枢的电压方向相反; 1、直流电机的铭牌 电机型号:Z4 电机功率:Pn=500KW 电机电压:Un=440V 电机电流:In=1136A 近似地:Pn=Un*In 电枢电阻:Ra= Un/In 励磁电压:Uf=310V 励磁选择恒压供电时的稳定供电电压 励磁电流:If=20A 励磁选择恒流供电时的稳定供电电流 励磁反馈选择电压模式时,由于电机转动时,定子磁通量会微微减少,且变化不稳定,所以造成电机运转不稳定;且不能进行弱磁升速; 励磁反馈选择电流模式时,由于定子磁通量与励磁电流近似线性变化,所以只要励磁电流稳定不变,定子磁通量就会稳定,所以电机输出力矩也稳定;且可以进行弱磁升速; 电机转速:n=500/1500 R/Min 2、直流电机各公式 电压平衡公式:Un=E+Ia*Ra 反电动势公式:E=Ce*Φ*n 电枢电流:Ia=(Un—E)/Ra 电机转动与不转动情况? 励磁回路:If=Uf/Rf 用电流或电压反馈的不同处; 力矩公式:T=Ce*Φ* Ia T=9.55*Pn/n

电动机的额定转矩的计算

筑龙网 W W W .Z H U L O N G .C O M 电动机的额定转矩的计算 在额定电压、额定负载下,电动机转轴上产生的电磁转矩称为异步电动机的额定转矩,用T。表示。其数值的多少电动机的铭牌上不标注,一般电动机技术数据资料中也没有。要想知道其大小,可用下述两公式近似计算: 式中 P e ——电动机的额定功率,kW; n e ——电动机的额定转速,r/min。 从上述两式都可看出,额定功率相同的电动机,转速低,转矩就大;又由于转速与磁极数成反比,所以,极数多,转速就低,转矩也 就大。 公式(3—22)和式(3—23)中的电动机的额定功率P e 和额定转速n e ,在电动机的铭牌上均有标注。计算时,需用系数9550或975去除以4或3位数的转速值竹。,既麻烦又费时,并且计算结果也是近似值。电工在实际工作中所要求知的电动机额定转矩,也是近似值。为此,我们看公式(3—23):T e ≈975P e /n e 中的系数975,它很近似地等于6极电动机的额定转速,旧型号J81—6型、28kW;JO 2—82—6型、40kW 电动机及Y200L 一6型、30kW 电动机的额定转速就是975(r/rain)。且糸数975和1000的差是25,25与1000的比是2.5%,恰是电动机转速与旋转磁场转速的转差率l%~6%中间值略偏小些。故将系数

筑龙网 W W W .Z H U L O N G .C O M 975变换为1000,即60f/(p/2),这时n e 近似等于60f/(p/2),则公式(3—23)T e ≈975P e /n e ≈pP e /6。即: 式中 p——电动机的磁极数。 公式(3—24)电动机的额定转矩的单位是千克力米(kgf·m),1kgf·m=9.80665N·m≈10N·m,公式(3—22)和式(3—23)两系数9550与975的关系是9550÷975=9.79≈9.8≈10。这样得出近似公式: 公式(3—25)就是已知电动机容量和磁极数,求算其额定转矩的计算式,其口诀为: 电动机额定转矩,十倍容量磁极数。 三数之积除以六,单位采用牛顿米。 从上述公式(3—24)和式(3—25)可看出,6极电动机的额定转矩极易计算,单位用千克力·米表示时,其数值就是电动机的额定功率千瓦数;若用法定单位牛顿·米,则是10倍额定功率千瓦数。由此可看出公式(3—23)的计算系数975与表3—3所示部分6极异步电动机 的额定转速数值近似相等。故得简算口诀: 电动机额定转矩,六极电机较特殊。 用千克力米表示,电机容量千瓦数。 法定单位牛顿米,千瓦数值添个零。

直流电机工作原理

第二章直流电机的基本结构和运行分析 直流电机是电能和机械能相互转换的旋转电机之一。将机械能转换为直流电能的电机称为直流发电机;将直流电能转换为机械能的电机称为直流电动机。直流发电机可作为各种直流电源;直流电动机具有宽广的调速范围,较强的过载能力和较大的起动转矩等特点,广泛应用于对起动和调速要求较高的生产机械,如电力机车、内燃机车、工矿机车、城市电车、电梯、轧钢机等的拖动电机。 本章介绍直流电机的工作原理和基本结构;分析直流电机的磁路系统、电路系统和电磁过程;导出感应电势和电磁转矩的一般计算方法;得出直流电机在不同运行状态的各种平衡方程式和运行特性。 第一节直流电机基本工作原理 直流电机是直流发电机和直流电动机的总称。直流电机具有可逆性,既可作直流发电机使用,也可作直流电动机使用。作直流发电机使用时,将机械能转换成直流电能输出;作直流电动机使用时,则将直流电能转换成机械能输出。 一、直流电机的模型结构 图2—1所示为一台直流电机简单模型图。N、S为定子上固定不动的两个主磁极,主磁极可以采用永久磁铁,也可以采用电磁铁,在电磁铁的励磁线圈上通以方向不变的直流电流,便形成一定极性的磁极。 图2-1 直流发电机工作原理

在两个主磁极N 、S 之间装有一个可以转动的、由铁磁材料制成的圆柱体,圆柱体表面嵌有一线圈(称为电枢绕组),线圈首末两端分别连接到两个弧形钢片(称为换向片)上。换向片之间用绝缘材料构成一整体,称为换向器,它固定在转轴上(但与转轴绝缘),随转轴一起转动,整个转动部分称为电枢。为了接通电枢内电路和外电路,在定子上装有两个固定不动的电刷A 和B ,并压在换向器上,与其滑动接触。 二、直流发电机的工作原理 1.感应电势的产生 当直流发电机的电枢被原动机拖动,并以恒速v逆时针方向旋转时,如图2-2(a)所示,线圈两个有效边ab 和cd 将切割磁力线,而感应产生电势e。其方向用右手定则确定,导体ab 位于N 极下,导体cd 位于S 极下,产生电势方向分别为b →a ,d →c 。若接通外电路,电流从换向片1→A →负载→B →换向片2。电流从电刷A 流出,具有正极性,用“+”表示;从电刷B 流入,具有负极性,用“一”表示。 当电枢转到90o 时,线圈有效边ab 和cd 转到N 、S 极之间的几何中心线上,此处磁密为零,故这一瞬时感应电势为零。 当电枢转到180o 时,导体ab 和cd 及换向片1、2位置互换,如图2-1(b)所示。导体加位于S 极下,导体cd 位于N极下,线圈两个有效边产生的感应电势方向分别为a →b ,c →d ,电势方向恰与开始瞬时相反。外电路中流过的电流从换向片2→A →负载→B →换向片1。由此可见,电刷A(B)始终与转到N(S)极下的有效边所连接的换向片接触,故电刷极性始终不变A 为“+”,B 为“―”。 由以上分析可知,线圈内部为一交变电势,但电刷引出的电势方向始终不变,为一单方向的直流电势。 2.电势的波形 根据电磁感应定律,每根导体产生的感应电势e为: Lv B e X = (V ) (2-1) 式中x B ——导体所在位置的磁通密度(T ); L ——导体切割磁力线的有效长度(m); v ——导体切割磁力线的线速度(m/s)。 要想知道电势的波形,先得找出磁密的波形,前已设电枢以恒速v 旋转,v=常数,L 在电机中不变,则x B e ∝,即导体电势随时间的变化规律与气隙磁密的分布规律相同。设想将

电机转矩计算

第三章 交流笼型电动机软起动设备的工程应用 3.1 交流电动机软起动参数计算基础 3.1.1 交流电动机软起动转矩平衡方程 交流电动机软起动转矩平衡方程也称电动机惯性系统运动方程。 当负载转矩为M L ,电机转速额定值为N 时,电动机惯性系统运动方程为 M B = · · = · (kg ·m) (3-1) 式中M B 加速转矩=M M — M L (kg — m); M M 电机转矩 (kg — m); M L 负载转矩 (kg — m); GD 2电机飞轮转矩+换算到电机轴上的负载飞轮转矩; N 转速(转/分); T 时间(秒); g 重力加速度m 2/s 。 3.1.2 加速、减速时间的确定 由式3-1可知由于由零速加速至速度N 所用的时间t t = ∫N (3-2) 根据式3-2,如能给出加速转矩M B ,则能求出加速时间t 加,而若给出减速转矩,则能求出减速时间t 减。若计算式3-2积分时,以最简单的情况,当阻力矩M L =常量,GD 2 为常量,则 t = (3-3) GD 2 4g 2Л 60 dN dt GD 2 375 dN dt GD 2 375 (M -M C ) (N -0). GD 2 375M B dN dt O

实际上考虑到转矩的变动,转矩M 用其平均值给出。 下面举例说明: 例一:一传送带的传动电机3.7KW,四极电机,归算到电机轴上的转动总惯量GD 2=0.212kg ·m 2,负载转矩最大M Lmax =1.5kg ·m ,最小负载转矩M Lmin =1.2kg ·m ;求电机加、减速时间。 解:求取速度变化差ΔN (其中0.03为转差率) ΔN = (1-0.03)-0 =1450转/分 求取电机电磁转矩M M M M = =2.49kg ·m. 求取加速时间 t 加= =1.07秒 其中系数1.1为实际整定加速系数。 求取减速时间t 减 t 减= =0.13秒 其中系数0.2为减速系数 显然本例讨论的是负载转矩为恒值常数。而对平方转矩负载,可见下例。 例二:平方转矩下的加减速时间计算 由于平方转矩的性质,负载转矩随速度大幅度变化,仅用平均加、减速转矩做为加速时的做功转矩,是不合适。为此提出下面公式: 加速时间t 加= (秒) (3-4) 其中M Amin 最小加速转矩(kg ·m) N max 最高转速(转/分) 减速时间t 减 120×50 4 975×3.7 1450 0.212×1450 375×(2.06×1.1-1.5) GD 2 N max 375?M Amin GD 2 N max 0.212×1750 375(2.06×0.2+1.2)

直流无刷电机反电动势过零检测方法汇总精选文档

直流无刷电机反电动势过零检测方法汇总精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

直流无刷电机反电动势过零检测方法 一般的永磁无刷直流电机是由三相逆变桥来驱动的,根据转子位置的不同,为了产生最大的平均转矩,在一个电角度周期中,具有6个换相状态。在任意一个时间段中,电机三相中都只有两相导通,每相的导通时间间隔为120°电角度。例如,当A相和B相已经持续60°电角度时,C相不导通。这个换相状态将持续60°电角度,而从B相不导通,到C相开始导通的过程,称为换相。换相的时刻取决于转子的位置,也可以通过判断不导通相过零点的时刻来决定。通过判断不导通相反电动势过零点,是最为常用也最为适合的无位置传感器控制方法。 反电动势过零点的检测方法是,通过测量不导通相的端电压,与电机的绕组中点电压进行比较,以得到反电动势的过零点。但对于小电枢电感的永磁无刷直流电机,在许多情况下,绕组中点电压难以获取,并且需要使用电阻分压和进行低通滤波,这样会导致反电动势信号大幅地衰减,与电机的速度不成比例,信噪比太低,另外也会给过零点带来更大的相移。 与上面的方法相比,更为常用的是虚拟中点电压法。假设A相和B相导通,则A和B两相电流大小相等,方向相反,C相电流为零,则根据永磁无刷直流电机数学模型有

根据上述方程,将不导通相的端电压与所计算的虚拟中点电压进行比较,也可以获得反电动势的过零点。这种方法十分简单,实现也比较方便。但是,由于无刷直流电机按一定频率进行PWM斩波控制,其计算出的虚拟中点电压也会随着PWM的高低电平而发生相同频率的在电源和地电平之间的变化。这样,就会带来极大的共模电平和高频噪声,会影响反电动势过零点检测的精确性。同样,和中点比较法一样,这种方法也必须要对绕组端电压进行分压和低通滤波。 这样,在一个PWM周期中,电枢绕组相电流就必然存在断续状态。速度提高时,电枢绕组中会产生峰峰值极大、频率很高的反电动势。由于以上特点,一些普遍采用的BLDC无位置传感器的控制方法均不适合。现有的无位置传感器的控制方法,如端电压检测法和转子位置估计法等,将很难得到良好的控制效果,其理由如下所述: 首先,无刷直流电机要求在电机转速提高的过程中,采用现有的端电压与中点电压比较的方法,要对三相绕组进行分压阻容滤波,计算出不导通相反电动势的过零点,再延后一定时间进行换相。但是,这样得到的反电动势过零点会因为无刷直流电机转速提高而产生过大的相移,导致当检测到反电动势过零点后,真正的换相点已经过去,从而造成换相失误。另外,现有的转子位置估

直流电机习题答案

第二篇直流电机 一、填空题: 1.直流电机电枢导体中的电动势是电动势,电刷间的电动势是电动势。 交流;直流 2.直流电机电枢绕组中流过的电流方向是___________的,产生电磁转矩的方向是___________的(填变化 或不变)。 变化;不变 3.直流电机的主磁路不饱和时,励磁磁动势主要消耗在________上。 气隙 4.直流电机空载时气隙磁密的波形曲线为____________波。 平顶 5.直流电机的磁化特性曲线是指电机空载时______________与______________之间的关系曲线。 每极气隙磁通0与励磁磁动势2F f(F0) 6.一台6极他励直流发电机,额定电流为150A,若采用单叠绕组,则电枢绕组的支路电流为 A,若 采用单波绕组,则电枢绕组的支路电流为 A。 25;75 7.一直流电机,Q u=S=K=22,2p=4,右行单叠绕组,绕组节距y=y K= ,y1= ,y2= 。 5;1;4或6;1;5 8.一台四极直流电机,元件数为21,换向片数为____________,构成左行单波绕组,则合成节距为 ____________,第一节距为____________,第二节距为____________,并联支路数为______________。 21;10;5;5;2 9.直流电机电刷放置的原则是:。 空载时正负电刷间的感应电动势最大 10.直流电机的励磁方式分为____________、____________、____________、____________。 他励;并励;串励;复励 11.直流电机负载运行时,___________ 对__________ 的影响称为电枢反应。 电枢磁动势;励磁磁场 12.直流发电机的电磁转矩是___________转矩,直流电动机的电磁转矩是___________转矩。 制动;驱动(或拖动) 13.直流发电机,电刷顺电枢旋转方向移动一角度,直轴电枢反应是___________的;若为电动机,则直轴电 枢反应是___________的。 去磁;助磁(或增磁) 14.直流电机电刷在几何中性线上时,电枢反应的作用为:(1)_____________________________;(2)使物 理中性线_____________________________ ;(3)当磁路饱和时起_____________作用。 使气隙磁场发生畸变;;偏移几何中性线一个角度;;去磁作用 15.并励直流发电机自励建压的条件是:_____________________________,__________________________, __________________________________ 。 电机有剩磁;励磁绕组并联到电枢两端的极性正确;励磁回路的电阻小于与电机转速相应的临界电阻16.他励直流发电机的外特性是一条下垂的曲线,其原因有:(1)___________________;(2) ____________

电机拖动公式(非常重要)

1第二章 折算后二次绕组电流、电压、电动势 2 2'I I k = 22'U kU = 22'E kE = 折算后二次绕组 0X = 222'X k X = 2'L L Z k Z = 低压空载试验 励磁阻抗模1 00U Z I = 励磁电阻 0020 P R I = 励磁电抗0X = 高压短路试验 cu S P P = 75S Z = 2 1s s P R I = s X = 铜线绕组75234.575234.5s s R R θθ+= + 铝线绕组7522875 228s s R R θθ +=+ 75S Z = 电压调整率1221(cos sin ) *100%N R s s N I V R X U ??=+ 效率2 2 20N N S s s P P βληβλβ=++ 产生最大效率的条件:2 0S p P β=即Fe Cu P P = 产生最大效率时的负载系数max β= 理想运行条件 (1)两台变压器的功率比 11:::I II LI LII SI SII S S I I Z Z == (2) ::I II NI NII S S S S = ::LI LII NI NII I I I I = (3)总负载和总负载功率 L LI LII I I I == I II S S S =+ 第三章 同步转速:1 060f n p = 转差率:00n n s n -= 电磁转矩的大小:22cos T m T C I ?=Φ 槽距角:.360 p z α= 极距:2z p τ= 每极每相槽数:2z q pm = 额定功率因素:N λ= 定子电路的电动势平衡方程式 11111()U E R jX I E Z I ? ? ? ? ? =-++=-+ 每相绕组中的感应电动势E1在数值上为 11114.44w m E k N f =Φ 忽略R1和X1,1 111 4.44m w U k N f Φ= 22s N E s E = 21N f s f =

永磁无刷直流电机电枢反应综述与分析_谭建成

中图分类号:T M 36+1 文献标志码:A 文章编号:1001-6848(2009)11-0052-08 永磁无刷直流电机电枢反应综述与分析 谭建成 (中国电器科学研究院,广州 510300) 摘 要:就电枢反应对永磁无刷直流电动机性能的影响进行归纳和分析,指出一些值得商榷的地方,如采用基于电枢反应磁势分布图方法分析电枢反应对气隙磁场的影响,与将基于电枢反应磁势分解为直轴和交轴分量的传统分析方法相比,可得到更直观的理解和更准确的认识。电枢反应影响程度大小的关键是转子磁路结构。最后讨论了分数槽集中绕组无刷电机电枢反应的特殊问题。 关键词:无刷直流电动机;电枢反应;去磁效应;磁势谐波;转子涡流损耗 S u mm a r y a n dA n a l y s i s o n t h e A r m a t u r e R e a c t i o n o f P e r m a n e n t Ma g n e t B r u s h l e s s D Cm o t o r T A NJ i a n -c h e n g (C h i n a E l e c t r i c a l A p p a r a t u s R e s e a r c h I n s t i t u t e ,G u a n g z h o u 510300,C h i n a ) A b s t r a c t :S u m m a r i z e d a n d a n a l y s e d o n t h e a r m a t u r e r e a c t i o n o f t h e p e r m a n e n t m a g n e t b r u s h l e s s D C m o -t o r ,a n d d i s c u s e d s o m e q u e s t i o n s a b o u t a r m a t u r e r e a c f i o n o f P e r m a r e n t m a g n e t b r u s h l e s s D Cm o t o r .K e y Wo r d s : B r u s h l e s s D Cm o t o r ;A r m a t u r e r e a c t i o n ;M M Fh a r m o n i c ;D e m a g n e t i z i n g e f f e c t ;E d d y -c u r r e n t l o s s 收稿日期:2009-09-290 引 言 永磁电机气隙磁场是由永磁磁势和电枢绕组磁势共同作用产生的。电机负载运行时电枢电流产生的磁势对气隙磁场的影响称为电枢反应。对有刷直流电机,其电枢反应磁场与主磁极磁场是正交的。电枢磁场使主磁极磁场发生歪扭。电动机状态时的电机极前端磁场加强,极后端磁场消弱,并且消弱和加强的磁动势基本相等。由于磁路饱和的影响,结果使主磁极总磁通有所消弱,并且负载越大,磁路越饱和,去磁作用越明显。电枢反应不仅对主磁极磁场有去磁作用,还引起主磁极磁通歪扭,使磁极物理中性面处磁场不再为零,给换向带来不利因素。而对永磁无刷直流电动机,毕竟其运行机理和结构不同,其电枢反应除与磁路结构及饱和程度有关外,还与电枢绕组形式、导通方式和状态角的大小等因素有关。而且,如下面分析可以看到,在一个状态角不同时刻电枢反应磁场和永磁磁场空间相对关系不是固定的,也和有刷直流电动机情况不同,所以无 刷直流电动机的电枢反应同有刷直流电动机的有区别。无刷直流电动机磁路设计时,如果还按有刷直流电动机那样考虑电枢反应来确定永磁体负载工作点,将会引起较大误差。有相当数量的文献就永磁无刷直流电动机的电枢反应对气隙磁通、感应电势、电磁转矩波动和正常换相的影响进行了研究。本文对此进行归纳和分析,并指出一些值得商榷的地方。 1 电枢反应磁势分解为直轴和交轴分量的分析方法 不少文献采用将电枢反应磁势分解为直轴分量和交轴分量的传统方法分析无刷直流电动机电枢反应的影响。为分析方便,先观察采用星形接法、整数槽绕组、三相六状态换相方式的两极内转子结构电机,如图1所示。这种接法的特点是每一工作周期有6个状态,每个状态占60°电角度。当电机转子逆时针方向旋转时,图1分别为一个状态的初始点、中间点和最终点时刻永磁转子的位置和电枢反应磁势的分解图。图中,F r 表示永磁磁势;每一状态有两相绕组串联导通(这里是A 相和B 相导通),电流I 产生的电枢反应磁势以F a 表 · 52·

相关文档
最新文档