解实系数方程及复数的几何表示

解实系数方程及复数的几何表示
解实系数方程及复数的几何表示

解实系数方程及复数的几何表示

一.教学目标

1.知识与技能:

(1)复数开平方运算,在复数集中求解是系数一元二次方程

(2)了解复平面的概念,复数bi

=两种集合表示:点P)

z+

a

(b

a及向量

,

(3)了解模的定义,并会简单运用

2.过程与方法:

(1)让学生感受行与数之间的和谐统一

(2) 体会思考问题的方式和方法,提高实践动手操作能力

3.情感、态度与价值观:

通过对复数的代数语言与几何语言相互转换的情景学习,体会解决复数问题的手段,培养学生勇于创新的精神

二.教学重难点

1.教学重点:

(1)复数开平方、求平方根问题

(2)实系数一元二次方程求根公式

(3)复数的几何表示

2.教学难点:

(1)复数求平方根问题

(2)复平面概念的建立

三.教学方式:讲授式

四.教学手段:多媒体、板书

解析几何中求参数取值范围的5种常用方法

解析几何中求参数取值范围的5种常用方法 解析几何中求参数取值范围的5种常用方法及经典例题详细解析: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0) 求证:-a2-b2a ≤ x0 ≤ a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. (x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 解: 设A,B坐标分别为(x1,y1),(x2,y2), =-b2a2 ?x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得 x0=x1+x22 ?a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 ∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a ∴ -a2-b2a ≤ x0 ≤ a2-b2a

例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围. 分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题. 解: 依题意有 ∴tanθ=2S ∵12 < S <2 ∴1< tanθ<4 又∵0≤θ≤π ∴π4 <θ< p> 例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是() A a<0 B a≤2 C 0≤a≤2 D 0<2< p> 分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解. 解: 设Q( y024 ,y0)由|PQ| ≥a 得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0 ∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立 又∵ y02≥0 而 2+ y028 最小值为2 ∴a≤2 选( B ) 二、利用判别式构造不等式

初中数学几何证明技巧资料讲解

辅助线的添加 一、添辅助线有二种情况: 1.按定义添辅助线: 如:证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2.按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质,但基本图形不完整时。因此“添线”应该叫做“补图”!这样可防止乱添线 也有规律可循。 (1)平行线是个基本图形: 当几何中出现平行线时,添辅助线的关键是:添与二条平行线都相交的第三条直线 (2)等腰三角形是个基本图形: 当几何问题中出现一点发出的二条相等线段时,往往要补全完整的等腰三角形; (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点,添底边上的中线; (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点,往往添斜边上的中线。 (5)三角形中位线基本图形 几何问题中出现多个中点时,往往添加三角形中位线基本图形 (6)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时,(中点可看成比为1)可添加平行线得平行线型相似三角形。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为 1:1:√2;30度角直角三角形三边比为1:2:√3 (9)半圆上的圆周角 出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径; 二、基本图形的辅助线的画法 1.三角形问题添加辅助线方法 方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。 方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。 方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。 方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段2.平行四边形中常用辅助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理 (1)连对角线或平移对角线 (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

参数方程与齐次化方法在解析几何问题中的应用探究

参数方程与齐次化方法在解析几何问题中的应用探究 复旦实验中学 袁青 2013年高考上海理科试卷第22题为解析几何问题,研究讨论直线与曲线位置关系问题,很多学生看着感觉能做,一做却又做错.其实该题并不用于高三阶段一般的解析几何训练题,简单地将问题转化为联立直线与曲线方程,对方程的根进行讨论,与一般直线与圆锥曲线的关系练习题中联立方程之后直接利用根与系数关系研究弦长、面积、定点等问题有是有很大区别的.尤其在(3)中,如果没有办法利用图像先得知1k >,则会很难寻找到与1k ≤的这样一对矛盾关系,而这体现了学生对“解析几何问题毕竟是个几何问题”这一实质的理解.本文对此题解法做进一步探究,研究一下在把握住“解析几何问题毕竟是个几何问题”这一大原则的基础上,参数方程和齐次化方法可能给解题带来的方便. 考题再现:(2013年理科第22题,文科第23题) 如图,已知双曲线1C :2 212 x y -=,曲线2C :1y x =+.P 是平面内一点,若存在过点P 的直线与1C 、 2C 都有公共点,则称P 为“12C C -型点”. (1)在正确证明1C 的左焦点是“12C C -型点”时,要使 用一条过该焦点的直线,试写出一条这样的直线的方程 (不要求验证); (2)设直线y kx =与2C 有公共点,求证:1k >,进而证 明原点不是“12C C -型点”; (3)求证:圆2212 x y +=内的点都不是“12C C -型点”. 标准答案所给解法:(1)1C 的左焦点为(),写出的直线方程可以是以下形式: x = (y k x = ,其中k ≥ (2)因为直线y kx =与2C 有公共点,所以方程组1y kx y x =??=+?有实数解,因此1kx x =+,得11x k x +=>. 若原点是“12C C -型点”,则存在过原点的直线与1C 、2C 都有公共点. 考虑过原点与2C 有公共点的直线0x =或y kx =(1k >). 显然直线0x =与1C 无公共点. 如果直线为y kx =(1k >),则由方程组2212 y kx x y =???-=??得222012x k =<-,矛盾. 所以,直线y kx =(1k >)与1C 也无公共点. 因此,原点不是“12C C -型点”.

复数集内一元二次方程的解法

复数集内一元二次方程的解法 一、实系数一元二次方程 只有实系数一元n 次方程的虚根才成对共轭, 1.判定下列方程根的情况,并解方程 (1)022=++x x ,0722=++x x ,0452=+-x x (2)0122=+-x x 答:4 71i x ±=,05322=+-x x ,09222=+-x x 2.若关于x 的方程x 2+5x+m=0的两个虚数根x 1,x 2满足|x 1-x 2|=3,求实数m 的值. |x 1-x 2|=3,|(x 1-x 2)2|=9;则|(x 1+x 2)2-4x 1x 2|=9,即|25-4m|=9. 3.已知实系数一元二次方程2x 2 +rx +s=0的一个根为2i-3,求r ,s 的值. 二、复系数一元二次方程 虚根不一定成对,成对也不一定共轭。 1.求方程x 2-2ix-5=0的解.(当b 2-4ac ≥0时,方程的解都是实数吗?) 求方程x 2-2ix-7=0的解 解方程:x 2-4ix+5=0; 解方程:0)2(25222=--++-i x x x x 答:i x x 5 351,221-==(应用求根公式,不能用复数相等) 06)32(2=+++i x i x 答:i x x 3,221-=-=(b 2-4ac 为虚数,) 2.解方程:x 2+(1+i )x +5i=0. 2511 22=+++x x x x 答:4151,13,21i x x ±== 2311 22=+-+x x x x 答:4151,13,21i x x ±=-= 三、方程有实根或纯虚根的问题 1.方程x 2+(m+2i )x+2+mi=0至少有一实根,求实数m 的值和这方程的解.

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

初中几何证明常用方法归纳

初中几何证明常用方法 归纳 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法 1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。

解析几何中求参数取值范围的方法_答题技巧

解析几何中求参数取值范围的方法_答题技巧 近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-aa,-bb,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆x2a2 + y2b2 = 1 (a0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0) 求证:-a2-b2a a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. 解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得x0=x1+x22 a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 -aa, -aa, x1x2 以及-ax1+x22 a -a2-b2a a2-b2a 例2 如图,已知∵OFQ的面积为S,且OFFQ=1,若12 2 ,求向量OF与FQ的夹角的取值范围. 分析:须通过题中条件建立夹角与变量S的关系,利用S的范围解题.

矩阵与参数方程

精锐教育学科教师辅导讲义 年级:高三辅导科目:数学课时数:3 课题选修部分复习 教学目的熟练掌握高考数学中选修部分矩阵以及极坐标参数方程的应用 教学内容 一、矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表 示该元素在矩阵中的位置。比如,或表示一个矩阵,下标表 示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是 零,则称为单位矩阵,记为,即:。

二、矩阵的运算 1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说 ),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:。 (1)交换律:; (2)结合律:; (3)存在零元:; (4)存在负元:。 2 、数与矩阵的乘法: (1 ); (2 ); (3 ); (4 )。 3 、矩阵的乘法: 设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵德列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且 。 矩阵的乘法满足下列运算律(假定下面的运算均有意义):

( 1)结合律: ; ( 2)左分配律: ; ( 3)右分配律: ; ( 4)数与矩阵乘法的结合律: ; ( 5)单位元的存在性: 。 若 为 阶方阵,则对任意正整数 ,我们定义: ,并规定: 由于矩阵乘法满足结合 律,我们有: , 。 注意: 矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是: (1 )矩阵乘法不满足交换律:一般来讲即便 有意义, 也未必有意义;倘使 都有意义,二者 也未必相等(请读者自己举反例)。正是由于这个原因,一般来讲, , 。 (2 )两个非零矩阵的乘积可能是零矩阵,即 未必能推出 或者。 (3 )消去律部成立:如果 并且 ,未必有 。 【例】求矩阵 1111A ??= ?--?? 与 1111B -??= ? -?? 的乘积AB 及.BA 解 按公式(1.10),有 111100, 111100111122. 111122AB BA -??????== ??? ?---??????-??????== ??? ?-----??????

复数与方程

复数与方程 重点难点:一元二次方程 一、二项方程:形如(a0, a n∈C,a n≠0, n∈N)的方程 基本解法:化为的形成,利用复数开方求出它的根。 例1.在复数集中解下列方程 解1)法1、求方程的解,即求复数的4次方根, ∵ ∴其4次方根为(k=0,1,2,3) ∴原方程的解为下面4个复数: 法2、求方程的解,即求复数的4次方根。 ∵由知1-i为的一个4次方根, ∴由复数的次方根的几何意义有的其余三个4次方根分别为: ∴方程的解分别为1+i, -1+i, -1-i, 1-i。 解2) 令,∴, ∴解之有,∴原方程的根为2-i或-2+i。 注:解二项方程实质就是求一复数的次方根,所以要注意一复数Z的次方根的几种基本求法:<一>,则可用公式

(k=0,1,2,……,n -1) 求其n 个n 次方根。如例(1)解法1,此n 个复数的几何意义是复平面上n 个点,这n 个点均匀分布在以原点为圆心,以 为半径的圆上,组成一个正n 边形。 <二> 若能由已知中找出个Z 的n 次方根Z 0,则可由n 次方根的几何意义求其余n-1个n 个次根如下: , 。如例(1)解 法2。 <三>若Z 的辐角非特殊值,不好转化为三角形式或也不好看出Z 的n 次方根时,则可以考虑用n 次方根的定义利用代数形式及复数相等直接求。如例(2)。 二、一元二次方程 1. a,b,c ∈R 时基本解法 时,两不等实根可由求根公式 求出, 时,两相等实根。可由上面公式求出, 时,两互为其轭虚根,可由求根公式求出。另:韦达定理仍成立。 2. a,b,c ∈C 时基本解法 判别式定理不成立,所以不能由此判别根的情况。但可由求根公式, δ是b 2-4ac 的一个平方 根 另:韦达定理仍成立。 例2.在复数集中解方程 。 解:∵,∴ =, ∴ 原方程的根为。 注:∵ (x-1)(x 2+x+1)=x 3-1 ∴ x 2+x+1=0的根也是x 3=1的根,即1的两个立方虚根。 记,则,其有如下特征: ① ; ② ; ③ ;

初中几何证明常用方法归纳

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法

1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。 2、等就在:有两个点它们到这条线段的两个端点的距离相等。重复强调是有两个点 十、证明线段垂直的常用方法。 1、两线的夹角90度。 2、等就在:有两个点它们到这条线段的两个端点的距离相等。重复强调是有两个点十一、证明线平行的常用方法内错角相等,同位角相等,同旁内角互补。十二、证明三角形全等的常用方法 SSS,SAS,AAS,ASA, 十三、证明直角三角形全等的常用方法 HL , SSS,SAS,AAS,ASA, 十四、证明两条线段等于第三线段的常用方法截一段证一段

高中数学教学论文在解析几何中求参数范围的种方法

从高考解几题谈求参数取值范围的九个背景 解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。 背景之一:题目所给的条件 利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。这是求范围问题最显然的一个背景。 例1:椭圆),0(1 22 22为半焦距c b c a b y a x >>>=+的焦点为F 1、F 2,点P(x , y )为其 上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。 解:设P(x 1, y ),∠F 1PF 2是钝角?cos∠F 1PF 2 =||||2||||||2 12 212221PF PF F F PF PF ?-+ 222212221)(||||||0y c x F F PF PF ++?<+?<2)(c x -+2 2224y x c y +?<+22 22222222 2 )(x a b a c x a a b x c -?<-+?<)(2 222222b c c a x b c -

定积分复数极坐标参数方程理

第三讲 定积分 微积分 【ME 恒学课堂之定积分微积分基础把控】 1. 和式()5 11i i y =+∑可表示为( ) A.(y 1+1)+(y 5+1) B.y 1+y 2+y 3+y 4+y 5+1 C.y 1+y 2+y 3+y 4+y 5+5 D.(y 1+1)(y 2+1)…(y 5+1) 2. 关于定积分3 321(2)x x dx -+?下列说法正确的是( ) 3. 求由曲线y=3e x 与直线x=2,y=3围成的图形的面积时,若选择x 为积分变量,则积分区间为________ 4. 下列各阴影部分面积s 不可以用()()b a s f x g x dx =-??? ??表示的是( ) A. B.

C. D.

5. 计算3 2 (32)= x dx +? 6. 定积分20162015(2016)= dx ? 7. 定积分2 1 ()= x dx -? 8. 用定积分的几何意义求 420 (16)=x dx -?的值 9. 曲线x y cos =与直线0=x ,π=x ,0=y 所围成平面图形面积等于________. 10. 若?=+1 02)2(dx k x ,则__________=k . 11. 根据?=π 200sin xdx 推断:求直线x=0,x=π2,y=0和正弦曲线y=sinx 所围 成的曲边梯形面积下列结论正确的是( ) A .面积为0 B .曲边梯形在x 轴上方的面积大于在x 轴下方的面积 C .曲边梯形在x 轴上方的面积小于在x 轴下方的面积 D .曲边梯形在x 轴上方的面积等于在x 轴下方的面积 12. 由曲线y =x 2,y =x 3围成的封闭图形面积为 13. 分如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sinx(0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的 概率是( ) A. 1 π B.2 π C.3 π D.π4 14. 甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c(b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,

一元三次方程与复数

浅谈解一元三次方程 江苏省泰州中学袁蕴哲 一、由几个方程引出的讨论 解下列方程: 1、x-1=0 2、x2-1=0 3、x2+1=0 4、x3-1=0 易知,方程1的解为x=1,方程2的解为x=±1,方程3无实数根,方程4的解为x=1。对于2、3两个一元二次方程,有根的判别式Δ=b2-4ac,根据Δ的正负来判断方程根的个数。那么,对于形如ax3+bx2+cx+d=0的方程,我们要判断根的个数,最好的方法就是图像法:令f(x)=ax3+bx2+cx+d,可直观地看出f(x)的零点数,就是方程的根。 如方程5x3+x2-6x+1=0(见下图),易知,该方程有三个根。 将此函数平移,可得到与x轴分别有1个、2个、3个交点,说明任意一元三次方程可能有1~3个实根。 即:一元n次方程最多有n个实根。 再来看方程3,可移项为x2=-1,两边开方,得到。负数的偶次方根是没有意义的,但为了使这个方程有解,我们规定,就有i2=-1。易知,原方程的解就为x=±i。 由于数i没有实际的意义,只在解方程时为了使方程有解才引入,故把i称为虚数

(imaginary number),意为虚幻的、不存在的数;相对的,我们之前接触的所有数都叫实数(real number)。 规定了虚数以后,类似x2+1=0的方程也可以解了,而且有2个根。 二、解高次方程的数学史话 一元三次方程,乃至更高次方程的解法,经过了漫长的时间才得以给出,塔尔塔利亚、卡当(也译作卡尔丹)、费拉里、阿贝尔等人对这一问题的解决做出了卓越的贡献。 数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛·冯塔纳。冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一。由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔利亚”,也就是意大利语中“结巴”的意思。后来的很多数学书中,都直接用“塔尔塔利亚”来称呼冯塔纳。 经过多年的探索和研究,塔尔塔利亚利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法。这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲。但是塔尔塔利亚不愿意将他的这个重要发现公之于世。 当时的另一位意大利数学家兼医生卡当,对塔尔塔利亚的发现非常感兴趣。他几次诚恳地登门请教,希望获得塔尔塔利亚的求根公式。后来,塔尔塔利亚终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡当。卡当通过解三次方程的对比实践,很快就彻底破译了塔尔塔利亚的秘密。 卡当把塔尔塔利亚的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到塔尔塔利亚的名字。随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法,因此后人就把这种求解方法称为“卡当公式”。 塔尔塔利亚知道卡当背信弃义的行为后非常生气,要与卡当辩论,卡当排出了他的学生费拉里应战。费拉里也是天资过人,他在老师的基础之上,进一步研究了一元四次方程的解法。由于塔尔塔利亚不会解四次方程,这场论战也就不了了之了。 后来挪威学者阿贝尔终于证明了:一般的一个代数方程,如果方程的次数n≥5 ,那么此方程不可能用根式求解。即不存在根式表达的一般五次方程求根公式。这就是阿贝尔定理。高次方程求解的工作就此告一段落。 值得注意的是,卡当在研究三次方程时,遇到了给负数开根的问题,就首次引入了复数的概念,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。 三、复数与一元方程的解 将实数与虚数相加,就得到复数(complex number),一般用z表示,可写作: z=a+bi 其中a为复数的实部,b为复数的虚部。当b=0时为实数,a=0,b≠0时为虚数,又叫纯虚数。由此,数的概念又扩展了一步:从实数集到复数集(用C表示)。表示如下: 复数实数 有理数 整数 自然数正整数 负整数 分数 无理数 虚数

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

解析几何中定值与定点问题

解析几何中定值与定点问题 【探究问题解决的技巧、方法】 (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究. 【实例探究】 题型1:定值问题: 例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的 焦点,离心率等于 (Ⅰ)求椭圆C的标准方程; (Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值. 解:(I)设椭圆C的方程为,则由题意知b= 1. ∴椭圆C的方程为 (II)方法一:设A、B、M点的坐标分别为 易知F点的坐标为(2,0). 将A点坐标代入到椭圆方程中,得

去分母整理得 方法二:设A、B、M点的坐标分别为 又易知F点的坐标为(2,0). 显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是 将直线l的方程代入到椭圆C的方程中,消去y并整理得 又 例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0). 1)求椭圆方程 2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值 (1)a2-b2=c2 =1 设椭圆方程为x2/(b2+1)+y2/b2=1 将(1,3/2)代入整理得4b^4-9b2-9=0 解得b2=3 (另一值舍) 所以椭圆方程为x2/4+y2/3=1 (2) 设AE斜率为k 则AE方程为y-(3/2)=k(x-1)①

第一章-复数与复变函数

复变函数教案 2012—2013学年度第二学期 任课教师郭城 课程名称复变函数 采用教材高教三版(钟玉泉编) 周课时数 4 数统学院数学教育专业2010 年级1班

引言 数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。 我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac

48、复数中方程问题.doc

三、复数中的方程问题 【教学目标】 1.掌握判别式小于零的实系数一元二次方程的复数根的求法. 2.掌握一元二次方程根与系数的关系并能用于解决一些方程根的问题. 3.在解决问题的过程中体会转化与分类讨论的数学思想的应用. 【教学重点】 一元二次方程的根的讨论. 【教学难点】 含字母系数的方程根的情况的讨论, x 3 1 的根的应用. 【教学过程】 一.知识整理 1.实系数一元二次方程的根的情况 设方程 ax 2 bx c 0 ( a , b , c R 且 a 0 ),判别式△ b 2 4ac . (1)当△ 0 时,方程有两个不相等的实数根: x 1 b b 2 4a c b b 2 4ac 2a , x 2 2a . (2)当△ 0 时,方程有两个相等的实数根: x 1 x 2 b . (3)当△ 0 2a 时,方程有两个共轭虚根: x 1 b 4ac b 2 i b 4ac b 2 i 2a , x 2 2a . 2.代数式 a 2 b 2 ( a , b R )的因式分解 利用 | z |2 z z ,有 a 2 b 2 (a bi )( a bi ) 3.复系数一元二次方程根与系数的关系 设方程 ax 2 bx c 0 ( a , b , c C 且 a 0 )的两个根为 x 1 , x 2 ,则 x 1 x 2 b x 1 x 2 a . c a

4.方程 x 3 1 的根 方程 x 3 1 有三个根, 1 1 , x 2 1 3 i , x 3 1 3 i .若记 1 3 i , x 2 2 2 2 2 2 则 有性质: 3 1( 3 n 1, n Z ), 2 , 1 2 0. 二.例题解析 【属性】高三,复数,复数集中的因式分解,解答题,易,运算 【题目】 在复数范围内分解因式. (1) a 4 b 4 ; (2) 1 x 2 x 3 . 2 【解答】 解:( 1) a 4 b 4 ( a 2 b 2 )( a 2 b 2 ) ( )( )( a bi )( a bi ) . a b a b (2) 1 x 2 x 3 1 ( x 2 2x 6) 1 [( x 1) 2 ( 5) 2 ] 2 2 2 1 ( x 1 5 )( x 1 5 ) . 2 i i 【属性】高三,复数,复数中的方程问题,解答题,易,运算 【题目】 (1)若 3 2i 是实系数方程 2x 2 bx c 0 的根,求实数 b 与 c ; (2)若 3 2i 是方程 2x 2 bx c 4i 0 的根,求实数 b 与 c . 【解答】 (3 2i ) b (3 2i ) 解;( 1)由题意, 3 2i 是方程的另一根,则 2 , (3 2i )(3 c 2i ) 2 所以 b 12 , c 26 . (2)将 3 2i 代入方程得 2(3 2i )2 b(3 2i ) c 4i 0 ,整理得,

初中数学几何证明题小妙招

初中数学几何证明题小妙招几何证明题入门难,证明题难做,是很多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不但要标记,还要记在脑海中,做到不看题,就能够把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还能够得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在

图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。 五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。 以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。 (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举能够做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。使用逆向思维解题,能使学生从不同角度,不同方向思考问题,

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

相关文档
最新文档