高中数学离散型随机变量及其分布列全章复习题型完美版

高中数学离散型随机变量及其分布列全章复习题型完美版
高中数学离散型随机变量及其分布列全章复习题型完美版

第十二讲 随机变量及其分布列

课程类型:□复习 □预习 □习题 针对学员基础:□基础 □中等 □优秀

本章主要内容

1.离散型随机变量的定义;

2.期望与方差;

3.二项分布与超几何分布.

本章教学目标:

1.理解随机变量及离散型随机变量的含义.(重点)

2.会求出某些简单的离散型随机变量的分布列.(重点)

3.理解两点分布和超几何分布及其推导过程,并能简单的运用.(难点)

第一节 离散型随机变量及其分布列

【知识与方法】

一.离散型随机变量的定义

1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量.

①随机变量是一种对应关系; ②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化.

2.表示:随机变量常用字母X ,Y ,ξ,η,…表示.

授课班级

授课日期 学员

月 日 组

“超几何分布”一词来源于超几何数列,就像“几何分布”来源于几何数列。

几何数列又叫等比数列,“几何分布”、'几何数列"名称的来源前面的文章已经解释过,请看一些带"几何"的数学名词来源解释。几何分布( )是离散型机率分布。其中一种定义为:在第n 次伯努利试验,才得到第一次成功的机率。详细的说,是:n 次伯努利试验,前1次皆失败,第n 次才成功的机率。

课外拓展

3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( ) .

4.连续型随机变量:对于随机变量可能取的值,可以取某一区间或某几个区间内的一切值,这样的变量就叫做连续 型随机变量

5.注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,0=ξ,

表示正面向上,1=ξ,表示反面向上

(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量二.离散型随机变量的分布列

1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,,…,, X 取每一个值(1,2,…,n )的概率P (),则称表:

为离散型随机变量X

用等式可表示为P (),1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①≥0,1,2,…,n ;②

11

=∑=n

i i

p

1.两点分布),1(~P B X

若随机变量X (1)为成功概率. 2.超几何分布),,(~n M N H X

一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P ()=n

N

k n M

N k M C C C --,0,1,2,…,

m ,其中{}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *.

【例题与变式】

题型一随机变量

【例1】判断正误:

(1)随机变量的取值可以是有限个,也可以是无限个.()

(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()

(3)随机变量是用来表示不同试验结果的量.()

(4)试验之前可以判断离散型随机变量的所有值.()

【例2】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.

(1)北京国际机场候机厅中2016年5月1日的旅客数量;

(2)2016年5月1日至10月1日期间所查酒驾的人数;

(3)2016年6月1日济南到北京的某次动车到北京站的时间;

(4)体积为1 000 3的球的半径长.

【变式1】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.

(1)某天腾讯公司客服接到咨询电话的个数;

(2)标准大气压下,水沸腾的温度;

(3)在一次绘画作品评比中,设一、二、三等奖,你的一件作品获得的奖次;

(4)体积为64 3的正方体的棱长.

【例3】指出下列随机变量是否是离散型随机变量,并说明理由.

(1)某座大桥一天经过的车辆数X;

(2)某超市5月份每天的销售额;

(3)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;

(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.

【变式2】下列变量中属于离散型随机变量的有.(填序号)

(1)在2 017张已编号的卡片(从1号到2 017号)中任取1张,被取出的编号数为X;

(2)连续不断射击,首次命中目标需要的射击次数X;

(3)在广州至武汉的电气化铁道线上,每隔50 m有一电线铁塔,从广州至武汉的电气化铁道线上将电线铁塔进行编号,其中某一电线铁塔的编号;

(4)投掷一枚骰子,六面都刻有数字8,所得的点数X.

题型二 随机变量的可能取值及试验结果

【例1】口袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X 表示取出的最大号码,则X 的所有可能取值有哪些?

【例2】(2017春?清河区月考)设b ,c 分别是先后抛掷一枚骰子得到的点数.设随机变量ξ,求随机变量ξ的取值情况.

【变式】(2017春?大武口区期中)袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球的1分,现在从袋中随机摸出4个球,列出所得分数X 的所有可能.

题型三 分布列及其性质的应用

【例1】设随机变量X 的分布列为P ()(1,2,3,4),求:

(1)P (1或2);

(2))2721(<

【例2】(2017春?文昌月考)设随机变量X 的分布列为,5,4,3,2,1,25)(==

=i k i X P 则)2

5

21(<

( ) A .

152 B .52 C .51 D .15

1

【例3】已知数列{}n a 是等差数列,随机变量X 的分布列如下表:

求3a .

【变式1】若离散型随机变量X 的分布列为:

求常数a .

【变式2】(2017春?秦都区月考)设随机变量X 的分布列为,3,2,1,)3

2

()(=?==i a i X P i ,则a 的值为( )

A .

3817 B .3827 C .1917 D .19

27 【变式3】(2017春?武陵区月考)若离散型随机变量X 的分布列为:

则实数a 的值为.

【例4】设离散型随机变量X 的分布列为:

求:(1)21的分布列;

(2)1|的分布列.

【变式4】(2017·南宁二模)设随机变量X 的概率分布列如下表,则P (21)=( )

题型四 求离散型随机变量的分布列

【例1】口袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X 表示取出的最大号码,求X 的分布列.

【例2】(2017春?清河区月考)设b ,c 分别是先后抛掷一枚骰子得到的点数.

(1)设{}

R x c bx x x A ∈<+-=,022,求φ≠A 的概率; (2设随机变量ξ,求ξ的分布列.

【例3】(2016·天津卷节选)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.

(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列.

【变式1】将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.

【变式2】某商店试销某种商品20天,获得如下数据:

试销结束后(件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.

(1)求当天商店不进货的概率;

(2)记X 为第二天开始营业时该商品的件数,求X 的分布列.

题型五 两点分布

【例1】(1)利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?

(2)只取两个不同值的随机变量是否一定服从两点分布?

【例2】在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.顾客甲从10张奖券中任意抽取1张,求中奖次数X的分布列.

【变式】设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P(ξ=0)等于()A.0 B.C.D.

题型六超几何分布

【例1】在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.顾客乙从10张奖券中任意抽取2张.

(1)求顾客乙中奖的概率;

(2)设顾客乙获得的奖品总价值为Y元,求Y的分布列.

【例2】老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

(完整word版)高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ?? ≥?0,寿命<1000小时; Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验

高二数学《随机变量的方差(第2课时)》教案

§2.3.2离散型随机变量的方差(第2课时) 一、教材分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据1x ,2x ,…, n x 中,各数据与它 们的平均值x 得差的平方分别是21)(x x -,2 2)(x x -,…,2)(x x n -,那么 [1 2n S = 21)(x x -+2 2)(x x -+…+])(2x x n -叫做这组数据的方差 。 二、学情分析: 学生学习本节应该比较轻松,定义比较简单,初中已经接触过方差,高中阶段是将原先学得知识进一步提升。主要学生能将离散型随机变量的分布列列出来,进行套公式运算就可以,应注意的是要求学生在计算过程中细心。有过探究、交流的课堂教学的尝试。 三、教学目标: 1、知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程和方法: 通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.了解方差公式“D (a ξ+b )=a 2 D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感和价值: 承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n 的概率为()i i P X x p ,则表 (2)分布列的性质:①0,1,2,,i p i n ;②11n i i p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x 为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C 其中min{,}m M n ,且*,,,,)n N M N n M N N ,称分布列为超几何分布列。如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5

【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列;(2)求此员工月工资的期望. 知识点二 1.条件概率及其性质 对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用 符号P(A|B)来表示,其公式为P(A|B)=P(AB) P(B) (P(B)>0). 在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B) . 2.相互独立事件 (1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件. (2)若A与B相互独立,则P(AB)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

高中数学《随机变量及其分布》单元测试

数学选修2-3第二章《随机变量及其分布》单元测试 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的) 1.设X~B(n,p),E(X)=12,D(X)=4,则n,p的值分别为() A.18, B.36, C.36, D.18, 2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为() A. B. C. D. 3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为() A.0.3 B.0.5 C.0.1 D.0.2 4.在区间(0,1)内随机取一个数x,若A=,B=,则P(B|A)等于() A. B. C.D. 5.若离散型随机变量X的分布列为 X123 P

则X的数学期望E(X)=() A. B.2 C. D.3 6.已知某离散型随机变量X的分布列如下表,则随机变量X的方差D(X)等于() X01 P m2m A. B. C. D. 7.同时抛掷两枚质地均匀的硬币10次,设两枚硬币出现不同面的次数为X,则D(X)=() A. B. C. D.5 的值分别为() 8.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1) 与D(2ξ+1) A.13,4 B.13,8 C.7,8 D.7,16 9.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为() A.恰有1只是坏的 B.4只全是好的 C.恰有2只是好的 D.至多有2只是坏的 10.节日期间,某种鲜花进货价是每束 2.5元,销售价是每束5元,节日后没卖出的鲜花以每束1.6元的价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X的分布列为 X200300400500 P0.200.350.300.15 若进这种鲜花500束,则利润Y的均值是() A.706 B.690 C.754 D.720 11.现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率为;向乙靶射击两次,每次命中的概率为.该射手每次射击的结果相互独立.假设该射手完成以上三次射击,该射手恰好命中一次的概率为()

高中理科数学-离散型随机变量及分布列汇编

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表 称为离散型随机变量离散型随机变量X ,简称X 的分布列。 (2)分布列的性质:①0,1,2,,i p i n ?g g g ;②11n i i p ==? (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x ==为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C --===g g g g 其中m i n {,m M n =,且* ,,,,)n N M N n M N N #?,称分布列为超几何分布列。如果随机变量X 的分布列

题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二 由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1) 该顾客中奖的概率; (2)该顾客获得的奖品总价值X 元的概率分布列.

高中数学离散型随机变量综合测试题(附答案)

高中数学离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量 一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X; ④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是() A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量; ③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是() A.小球滚出的最大距离 B.倒出小球所需的时间 C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数 [答案] D

[解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为,则“4”表示的试验结果是() A.第一枚6点,第二枚2点 B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=54,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量描述1次试验的成功次数,则的值可以是() A.2 B.2或1 C.1或0 D.2或1或0 [答案] C [解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故可能取值有两种0,1,故选

高中数学选修2-3随机变量及其分布综合测试题

高中数学选修2-3随机变量及其分布综合测试题 一、选择题 1.①某寻呼台一小时内收到的寻呼次数X ;②长江上某水文站观察到一天中的水位X ;③某 超市一天中的顾客量X 其中的X 是连续型随机变量的是 A .① B .② C .③ D .①②③ 2.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是 A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球 D .至少取到一个红球的概率 3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X ,则 “X >4”表示试验的结果为 A .第一枚为5点,第二枚为1点 B .第一枚大于4点,第二枚也大于4点 C .第一枚为6点,第二枚为1点 D .第一枚为4点,第二枚为1点 4.随机变量X 的分布列为P (X =k )=) 1(+k k c ,k =1、2、3、4,其中c 为常数,则P (15 22X <<) 的值为 A .54 B .65 C .32 D .43 5. 甲射击命中目标的概率是 2 1,乙命中目标的概率是 3 1,丙命中目标的概率是 4 1. 现在三 人同时射击目标,则目标被击中的概率为 10 7 D. 5 4C. 3 2 B. 4 3A. 6.已知随机变量X 的分布列为P (X =k )=3 1,k =1,2,3,则D (3X +5)等于 A .6 B .9 C .3 D .4 7. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以X 表示取出球的最大号码,则EX = A .4 B .5 C .4.5 D .4.75 8.某人射击一次击中目标的概率为35 ,经过3次射击,此人至少有两次击中目标的概率为 A . 81125 B . 54125 C . 36125 D . 27125 9.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为 A. 0 B. 1 C. 2 D. 3 10.已知X ~B (n ,p ),EX =8,DX =1.6,则n 与p 的值分别是 A .100、0.08 B .20、0.4 C .10、0.2 D .10、0.8 11.随机变量2(,)X N μσ ,则随着σ的增大,概率(||3)P X μσ-<将会 A .单调增加 B .单调减小 C .保持不变 D .增减不定 12.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为: A .0.4 B .1.2 C .3 4.0 D .0.6

离散型随机变量的分布列综合题精选(附答案)

离散型随机变量的分布列综合题精选(附答案) 1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从 盒中抽取两张都是“世博会会徽”卡的概率是 18 5 ,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及ξξ,D E 的值。 解:(I )设“世博会会徽”卡有n 张, 由,18 5292 =C C n 得n=5, 故“海宝”卡有4张,抽奖者获奖的概率为6 1 2924=C C …………5分 (II )) 1 ,4(~B ξ的分布列为)4,3,2,1,0()5()1()(44===-k C k P k k k ξ 0.9 )61(4,364=-?==? =∴ξξD E …………12分 2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。 假设每个运动员完成每个系列中的K 和D 两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K 和D 两个动作的情况如下表: 表1:甲系列 表2:乙系列 动作 K 动作 D 动作 得分 90 50 20 0 概率 10 910 110910 1 动作 K 动作 D 动作 得分 100 80 40 10 概率 4 3 4 1 4 341

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

高考数学讲义随机变量及其分布列.知识框架

随机变量及其分布 要求层次重难点 取有限值的离散型 随机变量及其分布 列 C ⑴理解取有限个值的离散型随机变量及 其分布列的概念,了解分布列对于刻画 随机现象的重要性. ⑵理解超几何分布及其导出过程,并能 进行简单的应用. 超几何分布 A 二项分布及其应用 要求层次重难点 条件概率 A 了解条件概率和两个事件相互独立的概 念,理解n次独立重复试验的模型及二 项分布,并能解决一些简单的实际问题.事件的独立性 A n次独立重复试验与 二项分布 B 离散型随机变量的 要求层次重难点 取有限值的离散型随 B 理解取有限个值的离散型随机变量均高考要求 模块框架 随机变量及其分布列

均值与方差 机变量的均值、方差 值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题. 正态分布 要求层次 重难点 正态分布 A 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. 1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值x 与该取值对应的概率p (1,2,,)i n =L 列表表示: X 1x 2x … i x … n x P 1p 2p … i p … n p X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布. X 1 P 0.8 0.2 两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N , M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. 知识内容

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

高中数学离散型随机变量及其分布列全章复习题型完美版

第十二讲 随机变量及其分布列 课程类型:□复习 □预习 □习题 针对学员基础:□基础 □中等 □优秀 本章主要内容 : 1.离散型随机变量的定义; 2.期望与方差; 3.二项分布与超几何分布. 本章教学目标: 1.理解随机变量及离散型随机变量的含义.(重点) 2.会求出某些简单的离散型随机变量的分布列.(重点) 3.理解两点分布和超几何分布及其推导过程,并能简单的运用.(难点) 第一节 离散型随机变量及其分布列 【知识与方法】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量. ①随机变量是一种对应关系; ②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化. 2.表示:随机变量常用字母X ,Y ,ξ,η,…表示. 授课班级 授课日期 学员 月 日 组 “超几何分布”一词来源于超几何数列,就像“几何分布”来源于几何数列。 几何数列又叫等比数列,“几何分布”、'几何数列"名称的来源前面的文章已经解释过,请看一些带"几何"的数学名词来源解释。几何分布( )是离散型机率分布。其中一种定义为:在第n 次伯努利试验,才得到第一次成功的机率。详细的说,是:n 次伯努利试验,前1次皆失败,第n 次才成功的机率。 课外拓展

3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( ) . 4.连续型随机变量:对于随机变量可能取的值,可以取某一区间或某几个区间内的一切值,这样的变量就叫做连续 型随机变量 5.注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,0=ξ, 表示正面向上,1=ξ,表示反面向上 (2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量二.离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,,…,, X 取每一个值(1,2,…,n )的概率P (),则称表: 为离散型随机变量X 用等式可表示为P (),1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①≥0,1,2,…,n ;② 11 =∑=n i i p . 1.两点分布),1(~P B X 若随机变量X (1)为成功概率. 2.超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P ()=n N k n M N k M C C C --,0,1,2,…, m ,其中{}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *.

高中数学-随机变量及其概率分布练习

高中数学-随机变量及其概率分布练习 基础巩固题组 (建议用时:40分钟) 一、填空题 1.(·武汉模拟)从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球,1个红球的概率是________. 解析 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P =C 23C 1 4C 37=12 35. 答案 1235 2.设X 是一个离散型随机变量,其分布列为: 则q 等于________. 解析 由分布列的性质得: ??? 0≤1-2q <1, 0≤q 2 <1, 0.5+1-2q +q 2 =1 ?? ?? ?? 0<q ≤1 2,q =1±2 2.∴q =1- 2 2 . 答案 1- 22 3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于________. 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0), 由P (X =1)+P (X =0)=1,得P (X =0)=1 3. 答案 13

4.在15个村庄有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则P (x =4)的概率为____________(不必化简). 解析 X 服从超几何分布,故P (X =k )=C k 7C 10-k 8 C 1015,k =4. 答案 C 47C 68 C 1015 5.随机变量X 的概率分布规律为P (X =n )=a n n +1 (n =1,2,3,4),其中a 是 常数,则P ? ????12

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列 1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: (2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ② 11 =∑=n i i p 2.两个特殊分布列 (1)两点分布列 如果随机变量X 的分布列是 P (X =1)为成功概率. (2)超几何分布列 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为 P (X =k )=n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布 列 如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布. (3)公式P (X =k )=C k M C n - k N -M C n N 的推导 由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有n N C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有k n M N k M C C --个基本事件,由古典概 型的概率公式可知P (X =k )=C k M C n - k N -M C n N . [知识点拨]1.离散型随机变量分布列表格形式的结构特征 分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点 (1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.

相关文档
最新文档