高等有机有机酸碱理论B溶剂效应

有机化合物的紫外吸收光谱及溶剂效应

实验九有机化合物的紫外吸收光谱及溶剂效应 实验目的: (1)学习有机化合物结构与其紫外光谱之间的关系; (2)了解不同极性溶剂对有机化合物紫外吸收带位置、形状及强度的影响。 (3)学习紫外—可见分光光度计的使用方法 实验原理: 与紫外-可见吸收光谱有关的电子有三种,即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。跃迁类型有:σ→σ*,n→σ* ,n→π*,π→π* 四种。在以上几种跃迁中,只有π-π*和n-π*两种跃迁的能量小,相应波长出现在近紫外区甚至可见光区,且对光的吸收强烈,是我们研究的重点。 影响有机化合物紫外吸收光谱的因素有内因和外因两个方面。 内因是指有机物的结构,主要是共轭体系的电子结构。随着共轭体系增大,吸收带向长波方向移动(称作红移),吸收强度增大。紫外光谱中含有π键的不饱和基团称为生色团,如有C=C、C=O、NO2、苯环等。含有生色团的化合物通常在紫外或可见光区域产生吸收带;含有杂原子的饱和基团称为助色团,如OH、NH2、OR、Cl等。助色团本身在紫外及可见光区域不产生吸收带,但当其与生色团相连时,因形成n→π*共轭而使生色团的吸收带红移,吸收强度也有所增加。 影响有机化合物紫外吸收光谱的外因是指测定条件,如溶剂效应等。所谓溶剂效应是指受溶剂的极性或酸碱性的影响,使溶质吸收峰的波长、强度以及形状发生不同程度的变化。这是因为溶剂分子和溶质分子间可能形成氢键,或极性溶剂分子的偶极使溶质分子的极性增强,从而引起溶质分子能级的变化,使吸收带发生迁移。例如异丙叉丙酮的溶剂的溶剂效应如表1所示。随着溶剂极性的增加K带红移,而R带向短波方向移动(称作蓝移或紫移)。这是因为在极性溶剂中π→π * 跃迁所需能量减小,吸收波长红移(向长波长方向移动)如图(a)所示;而n→π * 跃迁所需能量增大,吸收波长蓝移(向短波长方向移动),溶 剂效应示意图如(b)所示。 图1 电子跃迁类型 σ π * σ * n π?

有机化学酸碱理论

有机化学酸碱理论 1、阿伦尼乌斯酸碱理论: 水中离解的局限性 2、J.N.Brфnsted酸碱理论: 定义:在反应中能提供质子的分子或离子为酸;接受质子的分子或离子为碱。 酸碱的相对性:同一种物质,在一个反应中是酸,在另一个反应中也可能是碱。 共轭酸碱对:酸给出质子成为碱(酸的共轭碱),碱得到质子成为酸(碱的共轭酸) 酸越强,则酸的共轭碱越弱;碱越强,碱的共轭酸越弱。反应的结果就是强酸与强碱反应生成弱酸和弱碱。 3、G.N.Lewis酸碱理论: 定义:能够接受电子的分子和离子即Lewis酸;能够提供电子的分子和离子即Lewis碱。 Lewis酸:具有空轨道和未充满外层笛子轨道,电子受体,亲电试剂; AlCl3 BF3 FeCl3 ZnCl2 Ag+ R+ NO2+ Lewis碱:具有孤对电子和π电子,电子供体,亲核试剂。

NH3 ROH X- OH- RO- 酸碱理论 酸碱理论(acid-base theory) 阐明酸、碱本身以及酸碱反应的本质的各种理论。在历史上曾有多种酸碱理论,其中重要的包括: 阿伦尼乌斯酸碱理论——酸碱电离理论布朗斯特-劳里酸碱理论——酸碱质子理论路易斯酸碱理论——酸碱电子理论酸碱溶剂理论软硬酸碱理论最早提出酸、碱概念的是英国R.玻意耳。法国A.L.拉瓦锡又提出氧是所有酸中普遍存在的和必不可少的元素,英国H.戴维以盐酸中不含氧的实验事实证明拉瓦锡的看法是错误的,戴维认为:“判断一种物质是不是酸,要看它是否含有氢。”这个概念带有片面性,因为很多有机化合物和氨都含有氢,但并不是酸。德国J.von李比希弥补了戴维的不足,为酸和碱下了更科学的定义:“所有的酸都是氢的化合物,但其中的氢必须是能够很容易地被金属所置换的。碱则是能够中和酸并产生盐的物质。”但他不能解释为什么有的酸强,有的酸弱。这一问题为瑞典S.A.阿伦尼乌斯解决。 阿伦尼乌斯酸碱理论[1]在阿伦尼乌斯电离理论的基础上提出的酸碱理论是:“酸、碱是一种电解质,它们在水溶液中会离解,能离解出氢离子的物质是酸;能离解出氢氧根离子的物质是碱。”由于水溶液中的氢离子和氢氧根离子的浓度是可以测量的,所以这一理论第一次从定量的角度来描写酸碱的性质和它们在化学反应中的行为,指出各种酸碱的电离度可以大不相同,有的达到90%以上,有的只有1%,于是就有强酸和弱酸;强碱和弱碱之分。强酸和强碱在水溶液中完全电离;弱酸和弱碱则部分电离。阿伦尼乌斯还指出,多元酸和多元碱在水溶液中分步离解,能电离出多个氢离子的酸是多元酸;能电离出多个氢氧根离子的碱是多元碱,它们在电离时都是分几步进行的。这一理论还认为酸碱中和反应乃是酸电离出来的氢离子和碱电离出来的氢氧根离子之间的反应:H++OH- ===H2O 阿伦尼乌斯酸碱理论也遇到一些难题,如:①在没有水存在时,也能发生酸碱反应,例如氯化氢气体和氨气发生反应生成氯化铵,但这些物质都未电离。②将氯化铵溶于液氨中,溶液即具有酸的特性,能与金属发生反应产生氢气,能使指示剂变色,但氯化铵在液氨这种非水溶剂中并未电离出氢离子。③碳酸钠在水溶液中并不电离出氢氧根离子,但它却是一种碱。要解决这些问题,必须使酸碱概念脱离溶剂(包括水和其他非水溶剂)而独立存在。其次酸碱概念不能脱离化学反应而孤立存在,酸和碱是相互依存的,而且都具有相对性。解决这些难题的是丹麦J.N.布仑斯惕和英国T. M.劳里,他们于1923年提出酸碱质子理论。

天津高考化学复习资料 有机化学基本概念

专题十八有机化学基本概念 挖命题 【考情探究】 考点内容解读 5年考情预测热 度 考题示例难度关联考点 有机化学基本概念1.掌握研究有机化合物的一般方法。 2.知道有机化合物中碳原子的成键 特点,认识有机化合物的同分异构现 象及其普遍存在的本质原因。 3.了解有机化合物的分类并能根据 有机化合物命名规则命名简单的有 机化合物。 2018天津理综,3、 8(1) 2014天津理综,4 中★★★ 同系物和同分异构体1.根据官能团、同系物、同分异构体 等概念,掌握有机化合物的组成和结 构。 2.判断和正确书写有机化合物的同 分异构体(不包括手性异构体)。 2018天津理 综,8(4) 2017天津理 综,8(2) 2016天津理 综,8(4) 2015天津理 综,8(4) 较难 有机合 成 ★☆☆ 分析解读高考对本专题知识的考查主要有有机物分子中官能团的种类判断、同分异构体的书写、简单有机化合物的命名等,其中限定条件下同分异构体的书写是本专题考查的重点。考查学生的证据推理与模型认知的化学学科核心素养。

【真题典例】 破考点 【考点集训】 考点一有机化学基本概念 1.下列有机化合物的分类正确的是( ) A.乙烯(CH2 CH2)、苯()、环己烷()都属于脂肪烃

B.苯()、环戊烷()、环己烷()同属于芳香烃 C.乙烯(CH2 CH2)、乙炔()同属于烯烃 D.同属于环烷烃 答案 D 2.下列物质的分类中,不符合“X包含Y、Y包含Z”关系的是( ) 选项X Y Z A 芳香族化合物芳香烃的衍生物(苯酚) B 脂肪族化合物链状烃的衍生物CH3COOH(乙酸) C 环状化合物芳香族化合物苯的同系物 D 不饱和烃芳香烃(苯甲醇) 答案 D 3.下列关于有机化合物的说法正确的是( ) A.乙酸和乙酸乙酯可用Na2CO3溶液加以区别 B.戊烷(C5H12)有两种同分异构体 C.乙烯、聚氯乙烯和苯分子中均含有碳碳双键 D.糖类、油脂和蛋白质均可发生水解反应 答案 A 考点二同系物和同分异构体 1.下列各组物质不互为同分异构体的是( ) A.2,2-二甲基丙醇和2-甲基丁醇 B.邻氯甲苯和对氯甲苯 C.2-甲基丁烷和戊烷 D.甲基丙烯酸和甲酸丙酯 答案 D 2.某只含有C、H、O、N的有机物的简易球棍模型如图所示,下列关于该有机物的说法不正确的是( )

溶剂概述和溶剂效应

溶剂概述和溶剂效应 摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。 关键词:溶剂溶剂效应吸收光谱液相色谱 1,溶剂 1.1溶剂的定义 溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。 1.2溶剂的分类 溶剂按化学组成分为有机溶剂和无机溶剂 有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。(本文主要概述有机溶剂在化学反应以及波谱中的应用) 2,溶剂效应 2.1溶剂效应的定义 溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。溶剂对化学反应速率常数 的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。 2.2溶剂效应在紫外,荧光,红外,核磁中的应用 2.2.1溶剂效应在紫外吸收光谱中的应用[5] 有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。通常,溶 剂的极性可以引起谱带形状的变化。一般在气态或者非极性溶剂(如正己烷)中,尚能观察 到振动跃迁的精细结构。但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱 带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。这一现象称为溶剂效应。例如, 苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平 滑的曲线,如图所示

2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2] n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下: 会发生n→π*跃迁的分子,都含有非键电子。例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O (激发态)。所以,与极性溶剂的偶极偶极相互作用强度基态大于激发态。被极性溶剂稳定而下降的能量也是基态大于激发态。跃迁能量增加而发生吸收峰蓝移,如图2所示;溶剂对n→π*跃迁的另一个影响是形成氢键,例如羰基与极性溶剂发生氢键缔合的作用程度,极性强的基态大于极性弱的激发态,致使基态的能级的能量下降较大,而激发态能级的能量下降较小,使吸收峰蓝移。 2.2.1.2溶剂极性对π→π*跃迁谱带的影响[2] π→π*跃迁的吸收谱带随溶剂极性的增大而向红移。一般来说,从以环烷烃为溶剂改为以乙醇为溶剂,会使该谱带红移10 20nm.增大溶剂的极性引起π→π*跃迁的吸收谱带红移的原因如下。大多数会发生π→π*跃迁的分子,其激发态的极性总是比基态的极性大,因而激发态与极性溶剂之间发生相互作用从而降低其能量的强度,要比极性小的基态与极性溶剂发生作用降低的能量大。也就是说,在极性溶剂的作用下,基态与激发态之间的能量差别变小了,因而要实现这一跃迁所需要的能量相应地小了,故引起吸收峰红移,2图可以加以说明。

(完整版)有机化学复习(人卫第八版)

第一章绪论 第二章立体化学 1、费歇尔投影式书写原则 连接原子或原子团的水平线代表伸向纸面前方的化学键,垂直线代表纸面后方。 2、外消旋体、非对映异构体、内消旋化合物概念(区别和联系) 3、R/S构型标记法 第四章烷烃和环烷烃 一、烷烃 1、构象异构(锯架式和纽曼投影式的书写) 2、化学性质①稳定性 ②卤代反应(自由基的反应)链引发——链增长——链终止 二、环烷烃 1、化学性质取代、开环加成(一般为三元环或四元环)原则(连氢最多和连氢最少的两个碳原子之间) 2、构象环己烷的构象:椅式和船式(书写<两种>椅式的顺式和反式以及取代反应的稳定性即优势构象) 第五章烯烃和炔烃 一、烯烃 1、顺反异构及其命名 2、化学性质①亲电加成反应 (1)与卤素加成(在四氯化碳中进行):反应机制烯烃与氯或溴的加成反应通常生成反式加成产物 (2)与卤化氢的加成反应的活性顺序:HI>HBr>HCl>HF 不对称加成(马氏规则)正碳离子的稳定性诱导效应 (3)与硫酸加成_______________________________________________________________生成烷基硫酸氢酯在水中加热可以水解生成醇稀硫酸下即可反应,硫酸越浓越不易加成不对称加成也遵循马氏规则 (4)与水加成在酸催化下(如磷酸或硫酸)与水加成生成醇 ②催化加氢常用Pt、Pd、Ni等金属作催化剂主要生成顺式加成产物取代基增多空间位阻增大越不利于加成 ③自由基加成反应 (1)过氧化物存在下加溴化氢只有溴化氢反马氏规则 (2)烯烃的自由基聚合反应 ④氧化反应 (1)高锰酸钾氧化酸性条件下、稀冷条件下(顺式、褐色MnO2沉淀) (2)臭氧氧化最终生成醛或酮以及过氧化氢

现代酸碱理论在有机化学中的应用

现代酸碱理论在有机化学中的应用 摘要简要介绍现代酸碱理论的建立及其基本概念。现代酸碱理论包括了 Br nsted Lowry酸碱理论、Lewis酸碱理论、HSAB理论和超酸理论。举例介 绍了与物理有机化学、有机合成、有机催化等领域相关的现代酸碱理论的广泛应用。 关键词现代酸碱理论有机化学超酸理论酸碱反应有机合成 现代酸碱理论是指20世纪以后产生的、从本质上认识酸碱的、具有普适意义的无机化学理论。从广义的角度看,除了协同反应和自由基反应外,有机化合物及其衍生物间的化学反应均可看成是酸碱反应。因此,现代酸碱理论被广泛地应用于有机化学的各个方面。现代酸碱理论成为了用无机化学经典理论来研究有机化学反应机理以及反应活性中间体、选择高效绿色催化剂和指导有机合成的重要依据和工具。 1 现代酸碱理论的建立及其基本概念 现代酸碱理论的建立是一个从现象到本质、从感性到理性、从片面到全面的过程。其反映了化学家探索未知世界、从事科学研究的方法和态度。对各种现代酸碱概念的理解是进一步了解其在有机化学中应用的基础。 1.1 Br nsted Lowry酸碱理论 1923年丹麦化学家J.N.Br nsted和英国化学家T.M.Lowry在近代酸碱理论的基础上,几乎同时并独立地提出了酸碱质子理论,该理论因此又称为Br nsted Lowry酸碱理论。 Br nsted Lowry酸碱定义为:酸是质子的给予体(即任何能释放出质子的 含有氢原子的分子或离子都是酸);碱是质子的接受体(即任何能与质子相结合的分子或离子都是碱)。酸给出质子后生成的碱是这种酸的共轭碱;碱接受质子后生成的酸是这种碱的共轭酸。例如:

学习参考:有机化学中的电子效应

有机化学中的电子效应 电子效应是影响有机化合物反应活性和反应规律的重要因素之一,深入理解有机化学中的电子效应,可以对有机化学的认识由感性向理性方向发展。 电子效应包括诱导效应、共轭效应和超共轭效应;有时三种效应同时存在,表现共同作用的综合结果。 一、诱导效应(Inductive effect ) 诱导效应是电子效应的一种,是由路易斯(Lewis )首先提出。路易斯认为,对于有机化合物,诱导效应是由一个电负性较强的原子X 取代了碳原子上的氢原子后,在C -X 键上产生一个极性分布,这个极性分布通过电性诱导作用,在分子中其它键上引起一系列的极性变化,结果在整个分子中产生一个向着X 原子方向的较大范围的电子运动,这种电子运动称为诱导效应: C δ- 电负性比碳弱的元素原子也可以在分子中引起一系列的极性变化,只是所产生的诱导效应的方向刚好相反。 诱导效应是指在有机化合物分子中引入一个基团或原子后,由于原子的电负性差异,导致σ键电子的移动,使分子中的电子云密度分布发生变化,而这种变化不但发生在直接相连的部分,也可以影响到不直接相连的部分。这种因某一原子或基团的极性而引起电子沿碳链向某一方向移动的效应,称为诱导效应。 如氯丙烷分子中,取代在碳上的氯原子的电负性较强, C -Cl 键产生偶极,使与氯原子连接的第一个碳原子(α-碳原子)产生部分正电荷(δ+),也使第二个碳原子带有部分正电荷,第三个碳原子带有更少的正电荷,依次影响下去。这种影响的特征是沿着碳链传递,并随着碳链的增长而迅速减弱或消失,一般传递到第三个碳原子就可忽略不计。诱导效应是一种静电作用,共用电子并不能完全转移到另一原子,只是电子云密度分布发生变化,亦即键的极性发生变化。 δ + δ+ δ+ δ- CH 3—CH 2—CH 2→Cl 1.静态诱导效应(I s ) 诱导效应分为静态诱导效应和动态诱导效应。静态诱导效应是由分子本身结构决定的,是分子本身所固有的极化效应,与由极性溶剂或反应试剂等产生的外电场无关。 ⑴ –I 效应和+I 效应 静态诱导效应通常采用烷烃H -CR 3上的氢作为比较标准,规定其为0。如果用电负性较碳原子大的X 取代了H -CR 3中的氢原子后,化合物X -CR 3中-CR 3部分的电子云密度比在H -CR 3中小,X 叫做吸电子基团。由吸电子基团引起的诱导效应,叫做吸电子诱导效应,用-I 表示。如果用电负性较碳原子小的Y 取代了H -CR 3中的氢原子,化合物Y -CR 3中-CR 3部分的电子云密度比在H -CR 3中大,Y 叫做给电子基团。由给电子基团引起的诱导效应,叫做给电子诱导效应,用+I 表示。

高中化学选修五——有机化学基础入门(知识点总结)

有机化学基础入门 一、有机物概述 1.概念:有机化合物简称有机物,是指含碳的化合物,除CO、CO2、碳酸盐等之外。 2.特点:①一般不溶于水,易溶于有机物; ②熔沸点较低,易气化; ③一般可燃; ④一般为非电解质,故其水溶液一般不导电; ⑤有机反应速率小,副反应多,故化学反应方程式一般用“→”。 3.成键方式:有机化合物中的原子的化学键数必须满足: 原子 C H O/S N/P 卤素原子 键数 4 1 2 3 1 形成物质时,可以是单键,双键,三键,也可以是链状或者环状,如: 4.表达方式:同一有机物有多种不同的表示方法,其中最常用的为结构简式。 表达方式特点实例注意事项 分子式/化学 式C x H y O z N w C3H8、C10H16O3N2等 ①由分子组成的物质才有分子 式,有机物一般都有。②其中O、 N的次序不限。 最简式/实验 式所有原子最简 整数比 C4H8的最简式为CH2; C6H12O6的最简式为 CH2O C3H8的最简式和分子式相同 结构式画出所有的键

结构简式能体现结构,但 省略了一些键 ①仅.能省略单键,双键、三键均 不可省略;②单键中仅横着的键 可省略,竖着的键不能省略;③ 碳氢键均可省略;④支链(即竖 直方向的键)写在上下左右均 可,且无区别 键线式用线表示键,省 略碳氢原子 ①仅.碳和氢可以省略;②每个转 角和端点均表示碳原子,但若 端点写出了其它原子,则表示碳 原子被取代 球棍模型球表示原子,键 表示化学键 ①必须符合每种原子的键数;② 球的大小必须与原子半径对应 一致 比例模型化学键被省略球的大小表示原子的相对大小 绝大多数情况下,有机化学方程式中除燃烧用分子式外,其它方程式有机物一律写结构简式。5.同分异构现象:即相同分子式,不同结构的现象。相互间互称为同分异构体。如: 6.取代基与官能团 (1)取代基:指有机物去氢后剩余的原子或原子团,它们均是一个有机片段,可以相互连接成有机物。如:

13 有机化学的基本概念

高 三 化 学 等 级 考 专 题 复 习 4.1 有机化学的基本概念 一、选择题 1.“垃圾是放错了位置的资源”,应该分类回收利用。废弃的塑料袋、废旧轮胎等可以做为同类物质加以回收利用。它们属于() A.无机物B.有机物C.糖类D.蛋白质

2.液化石油气的主要成分是烷烃和烯烃的混合物。在液化石油气用完后,有人将残留在钢瓶内的液体倒出来擦洗油污。关于这种做法理解正确的是() 几种烃的沸点 A B.不可行,由于气温高时会变为气体 C.可行与否需要看气温的高低 D.无论在什么情况下都不可行 3.城市禁止汽车使用含铅汽油,其主要原因是() A.提高汽油的燃烧效率B.降低汽油成本 C.避免铅污染大气D.铅资源短缺 4.1992年海湾战争期间,科威特大批油井被炸起火燃烧,我国救援人员在灭火工作中作出了贡献。下列措施不可能用于油井灭火的是() A.设法降低石油的着火点B.设法使火焰隔绝空气 C.设法阻止石油喷射D.设法降低油井井口的温度 5.可以用分液漏斗分离的一组液体混合物是() A.溴和四氯化碳B.苯和溴苯 C.水和硝基苯D.苯和汽油 6.通常用来衡量一个国家的石油化学工业发展水平的标志是() A. 石油的产量 B. 硫酸的产量 C. 合成纤维的产量 D. 乙烯的产量 7.有A、B两种烃,含碳元素的质量分数相等,下列关于A和B的叙述正确的是()A.A和B一定是同分异构体B.A和B不可能是同系物 C.A和B最简式一定相同 D.A和B各1 mol完全燃烧后生成的CO2的质量一定相等 8.下列化学式中只能表示一种物质的是() A.C3H7Cl B.CH2Cl2C.C2H6O D.C2H4O2 9.一种新型的灭火剂叫“1211”,其分子式是CF2ClBr。命名方法是按碳、氟、氯、溴的顺序分别以阿拉伯数字表示相应元素的原子数目(末尾的“0”可略去)。按此原则,对下列几种新 型灭火剂的命名不正确 ...的是() A.CF3Br ─ 1301 B.CF2Br2─ 122 C.C2F4Cl2─ 242D.C2ClBr2─ 2012 10.关于同分异构体的下列说法中正确的是()

溶剂对有机化学反应的影响

溶剂对有机化学反应的影Ⅱ向 摘要介绍1溶剂对反应速率反应历程竞争反应产物比例和选择性的影 在有机化学中,大多数反应是在溶剂中进行的,溶剂在有机化学反应中的作用越来越受到重视,特别是在合成中如何有效的使用溶剂,己成为一个很重要的问题。一般可以把溶剂分为 质子溶剂、极性非质子溶剂非极性非质子溶剂三种。同一反应使用不同的溶剂,反应效果相差 甚大。例如,1一溴辛烷和氰化铺可以发生取代反应,但是如果简单地把1 溴辛烷和氰化铺的水溶液混在一起,既使于100 C回流两个星期也不反应。这是因为溴代烷不溶于水,底钧不能 接触试剂,因而不发生反应}如果用醇类做溶剂,反应虽可以进行,但反应速率很慢,产率低;若改用DMF作溶剂.其反应速度比以醇作溶剂时快10 倍。可见溶剂,对反应速率有很大影响。 不仅如此,溶剂对反应历程、竞争反应产物比例立体化学选择性也有很大的影响。 l 溶剂对反应速率的影响 1.1 溶剂对离解反应的影响 当化合物在溶剂中溶解时,溶剂和溶质之间就会产生持殊的作用力,这些作用力包括:库 仑引力、色散力感应力、氢键和电荷的传递作用等。不同的溶剂知溶质之间产生的作用力也有 区别,由于这些作用力的存在,使溶质改变原来的状态成为溶液对于在溶剂中进行的反应,溶剂的改变,必然强烈地影响反应物和过渡态的稳定性,强烈地影响反应过程和反应速度.影响反应的活化能。 在所有涉及离子的反应中,极性溶剂对参与反应的离子都有很大的稳定化作用。溶剂的离 子化能力主要决定于质子溶剂的给质子能力和极性非质溶剂的给电子能力。在气相中没有溶 剂的离子反应是高度活泼的,反应一般按自由基历程进行。例如:在气相中,HC1离解为自由基只需要430.95kJ/tool,离解为离子需要1393.27kJ/tool,而HC1在极性溶剂中极易离解。又如叔丁基溴在溶液中离子化疑需要83.68kJ/tool的能量.而在气相中离子化则需要836.8kJ/ mol的能量,二者相差10倍。由于极性溶剂如水和乙醇能有效地溶剂化和稳定化离子,因此能 降低离解反应的活化能,促进离解反应的进行。而在非极性溶剂如苯和环已烷中离子不能很好的溶剂化,因此离解反应需要较大的活化能。因而阻碍离解反应的进行。 1.2 溶剂对取代反应速率的影响 溶剂的极性效应对反应速率的影响.可根据溶剂效应理论概述如下:①对过渡态涉及电荷 的产生与集中的反应,提高溶剂的极性将促进反应的进行;②对过渡态涉及电荷的消失与分散 的反应,提高溶剂极性将压抑反应的进行。 对于按s l历程进行的反应,增加溶剂的极性和离子化能力(如使用质子溶剂)反应速度 显著增大。因为溶剂的极性有利于碳正离子的形成,溶剂极性越大,电离作用越大,对反应越有利。 在极性非质子溶剂中进行的s l反应,反应速度较慢.因为反应中的碳正离子形成时,需 要吸电子溶剂的“帮助”才能使c—x键异裂,而极性非质子溶剂是给电子的,无助于反应物的价键的异裂,因而影响s 1反应的反应速率。 对于按s 2历程进行的反应有三种情况:在第l类中.反应物和产物的电荷相等,但在过 渡态时有电荷分散.溶剂极性对反应速度有微小的影响,降低溶剂极性对反应略微有利。在第 类中,由中性反应物变为离子型产物.过渡态中有电荷产生.溶剂极性有利于反应的进行,极 性越强,对反应越有利。在第1V类中,电荷变化情况与第1I类相反,溶剂的极性使反应速度减 小,极性越大.对反应越不利 对于亲电取代反应.s 1历程为离子型历程,中间体为负离子。溶剂的极性有利于碳负离子 的形成,所以增加溶剂极性或离子化强度能使反应加速。二级历程不涉及离子.溶剂对se2(前

溶剂效应图解

溶剂效应图解 图解很好! 其实是样品,样品溶剂,流动相和固定相综合作用的关系.当样品在样品溶剂中的相对溶解度大于在流动相时(可以理解为样品溶剂的洗脱能力大于流动相),样品就更喜欢在样品溶剂中,并很想随之流动.但同时与固定相的强作用只能使之形成追赶样品溶剂的效果.最终导致前延峰或裂峰的出现.(如图2:高溶解性溶剂).但当样品与固定相作用很弱时,大部分样品可能会赶上样品溶剂,但又由于与固定相的弱作用,导致其不可能与样品溶剂同时流出,最终导致拖尾峰的出现. 这也就是为什么在一般反相色谱中要用低有机相(比流动相低)溶解样品的原因!其效果就如图1:低溶解性溶剂 样品溶剂效应 很多因素可以导致峰形变差。样品溶液的组成与进样体积很可能就是导致此种现象的原因。 问题 色谱图上较早洗脱的峰扭曲变形或者开叉,与此同时较晚洗脱的峰则较为尖锐与对称,这些现象显示一个比较特殊的起因――样品溶液的溶剂很可能强于流动相。此种强溶剂效应的例子在图10-1A中可见。此处的样品溶液的溶剂是100%乙腈(100%的强溶剂),而流

动相的组成则较弱,18%的乙腈与72%的水。第一个峰是开叉的,并且与第二个峰相比,明显地变宽了。当样品溶液的溶剂变成流动相时,所有的峰形都改善了,且变得尖锐。见图10-1B。 解释 当样品进样时,有可能出现峰展宽,最佳的样品溶液组成和体积将会保持在10%甚至更低,在这个例子里,当样品溶剂与流动相溶剂强度不同时,换句话来说,也就是样品未用流动相溶解,因此,有些样品分子溶解在强溶剂(100%ACE),并随强溶剂流过柱子,而有些则溶解在流动相中,从而导致峰分叉. 当样品与流动相强度相差较小,进样影响也会小,第一个峰可能会宽于第二个峰,而当这种展宽导致必要的分离度降低时,这样情况应引起注意,在图10-2A中, 使用一根短柱,和5UL进样,这与最佳进样体积4UL相近,用了极性更强的溶剂导致分离度明显的降低,从2.1降到1.5(如图10-2B),分离度为2 或更大是评估一个完善方法的一个必要参数,也是每天方法的验证参数,1.5只是一个基本的分离度,任何一个方法或一根柱子都必需满足这个条件,当进样为一倍时,也就是10UL时,分离度更一步降低,此方法就不行了 尽量用流动相去溶解样品,如果样品在流动相中溶解性差不得不用强溶剂溶解,那就尽量减少进样量。

有机化学中用来研究反应机理的方法

有机反应机制的研究方法 有机化学中用来解释反应机理的传统方法主要集中在Kinetics和Dynamics两方面,即理解势能面、深入研究分子运动和碰撞、测定活化参数、测定速率常数、确定某个反应机理中一系列化学步骤的顺序、确定反应限速步骤和决速步骤。 研究机理的关键目的是反应机理知识可以对如何在原子或分子水平上操纵物质给出最快速的洞察,而不是依靠运气来获得偶然性的变化从而获得想要的结果。由于动力学在辨别机理方面起着关键作用,所以动力学是整个有机反应机理研究领域中最重要的分支之一。 传统的反应机理研究方法除了动力学分析之外,还有同位素效应、结构-功能分析等。这些都是研究有机反应机理的标准实验工具,然后实验化学家可以根据其想象力和化学创造性,设计出一些完全不同于之前出现过的研究方法。因此,本文总结了一些最为常见的方法。首先分析最简单的实验,例如产物和中间体的鉴定。但也会分析一些更为微妙、精细的实验,如交叉和同位素置乱(cross-over and isotope scrambling)实验。 1.改变反应物结构以转变或捕获预想的中间体 有时可以通过合成一种类似于所研究的反应物的新反应物来破译中间体的性质,但是这需要所预测的中间体能以一种可预想的方式进行反应。没有标准的方式来处理这一类实验,所以实验者必须根据具体实验情况来设计实验。下面以酶反应作为此方法的应用实例。 Lin[1]等人设计了一种转变中间体的方法。扁桃酸消旋化酶可使扁

桃酸根离子的对映体(2-羟基苯甲酸)互换。位于羧酸跟α位的碳负离子被认为是中间体。为了测试此中间体是否存在,作者合成设计了扁桃酸跟离子的类似物i,并用酶对其进行了外消旋化。其过程是首先形成碳负离子,然后经过溴化物的1,6-消除,最后经过互变异构化,分离得到产物ii。此结果支持了在扁桃酸根离子路径中碳负离子中间体iii的存在。 2.捕获实验和竞争实验 鉴定中间体的一种常见方法是通过加入额外的试剂来捕获中间体。目前存在着几种自由基不伙计,许多好的亲核试剂是半衰期很短的亲电试剂(如碳正离子)的可行的捕获剂。必须以自己的化学知识来设计捕获中间体(如碳正离子、卡宾等)的捕获剂。但是活泼中间体的半衰期很短,所以捕获剂必须是具有很高的活性,并能与活泼中间体的标准反应路径进行竞争。同样,因为捕获反应是典型的双分子反应,所以要求捕获剂具有高的浓度。另外,还可以将捕获剂与反应物共价结合,以便更容易地捕获活泼中间体。

有机化学基本概念

同系物 1. 同系物 (1)定义:________相似,在分子组成上相差一个或若干个________原子团的物质互称为同系物。 (2)注意: ①结构相似,并不是完全相同,如CH3CH2CH3(无支链)与(有支链)是 同系物。 ②通式相同,但符合同一通式的不一定是同系物,如羧酸和酯。 2.有机物CH3CH3、CH3CH===CH2、CH3CH2C≡CH、CH3C≡CH、C6H6、 中,与乙烯互为同系物的是____________和_______。 同分异构体 一、定义 1. 同分异构现象 化合物具有相同的__________,但具有不同__________的现象。 2. 同分异构体 具有____________现象的化合物互称为同分异构体。 异构类型异构方式示例 碳链异构碳链骨架不同 CH3CH2CH2CH3和 位置异构官能团位置不同CH2===CHCH2CH3和CH3CH===CHCH3 官能团异 构 官能团种类不同CH3CH2OH和CH3OCH3 写出C4H8同分异构体: 特别提醒: (1)同分异构体分子式相同,相对分子质量相同,但相对分子质量相同的化合物不一定是同分异构体,如CH3CH2OH与HCOOH不属于同分异构体。

(2)同分异构体的最简式相同,但最简式相同的化合物不一定是同分异构体,如C2H2与C6H6,HCHO与 CH3COOH不是同分异构体。 (3)同分异构体不仅存在于有机物和有机物之间,也存在于有机物和无机物之间,如尿素[CO(NH2)2, 有机物]和氰酸铵(NH4CNO,无机物)互为同分异构体。 常见的类别异构 组成通式可能的类别典型实例 C n H2n烯烃、环烷烃 CH2=CHCH3与 C n H2n-2炔烃、二烯烃CH≡C—CH2CH3与CH2=CHCH=CH2 C n H2n+2O 饱和一元醇、醚C2H5OH与CH3OCH3 C n H2n O 醛、酮、烯醇、环醚、环 醇 CH3CH2CHO、CH3COCH3、CH=CHCH2OH与 C n H2n O2羧酸、酯、羟基醛CH3COOH、HCOOCH3与HO—CH3—CHO C n H2n-6O 酚、芳香醇、芳香醚与 C n H2n+1NO2硝基烷、氨基酸CH3CH2—NO2与H2NCH2—COOH C n(H2O)m单糖或二糖葡萄糖与果糖(C6H12O6)、蔗糖与麦芽糖(C12H22O11) 三、寻找同分异构体的数目 1.记忆法 记住已掌握的常见的异构体数目,例如:①凡只含一个碳原子的分子均无异构体。甲烷、乙烷、新戊烷(看作CH4的四甲基取代物)、2,2,3,3-四甲基丁烷(看作C2H6的六甲基取代物)、苯、环己烷、C2H2、C2H4等分子的一卤代物只有1种;②丁烷、丁炔、丙基、丙醇有2种;③戊烷、丁烯、戊炔有3种;④丁基、C8H10(芳香烃)有4种。 2.基元法 如丁基有4种,则丁醇、戊醛、戊酸都有4种。 3.换元法 即有机物A的n溴代物和m溴代物,当m+n等于A(不含支链)中的氢原子数时,则n溴代物和m 溴代物的同分异构体数目相等。例如二氯苯C6H4Cl2有3种,当二氯苯中的H和Cl互换后,每种二氯苯对应一种四氯苯,故四氯苯也有3种。 4.等效氢法

有机化学中的电子效应

有机化学中的电子效应电子效应是影响有机化合物反应活性和反应规律的重要因素之一,深入理解有机化学中的电子效应,可以对有机化学的认识由感性向理性方向发展。电子效应包括诱导效应、共轭效应和超共轭效应;有时三种效应同时存在,表现共同作用的综合结果。一、诱导效应(Inductive effect)诱导效应是电子效应的一种,是由路易斯(Lewis)首先提出。路易斯认为,对于有机化合物,诱导效应是由一个电负性较强的原子 X 取代了碳原子上的氢原子后,在 C-X 键上产生一个极性分布,这个极性分布通过电性诱导作用,在分子中其它键上引起一系列的极性变化,结果在整个分子中产生一个向着 X 原子方向的较大范围的电子运动,这种电子运动称为诱导效应:δ+ C C X δC C 电负性比碳弱的元素原子也可以在分子中引起一系列的极性变化,只是所产生的诱导效应的方向刚好相反。诱导效应是指在有机化合物分子中引入一个基团或原子后,由于原子的电负性差异,导致σ 键电子的移动,使分子中的电子云密度分布发生变化,而这种变化不但发生在直接相连的部分,也可以影响到不直接相连的部分。这种因某一原子或基团的极性而引起电子沿碳链向某一方向移动的效应,称为诱导效应。如氯丙烷分子中,取代在碳上的氯原子的电负性较强, C-Cl 键产生偶极,使与氯原子连接的第一个碳原子(α-碳原子)产生部分正电荷(δ+),也使第二个碳原子带有部分正电荷,第三个碳原子带有更少的正电荷,依次影响下去。这种影响的特征是沿着碳链传递,并随着碳链的增长而迅速减弱或消失,一般传递到第三个碳原子就可忽略不计。诱导效应是一种静电作用,共用电子并不能完全转移到另一原子,只是电子云密度分布发生变化,亦即键的极性发生变化。δ+ δ+ δ+ δCH3—CH2—CH2→Cl 1.静态诱导效应(Is)诱导效应分为静态诱导效应和动态诱导效应。静态诱导效应是由分子本身结构决定的,是分子本身所固有的极化效应,与由极性溶剂或反应试剂等产生的外电场无关。⑴–I 效应和+I 效应静态诱导效应通常采用烷烃 H-CR3 上的氢作为比较标准,规定其为 0。如果用电负性较碳原子大的 X 取代了 H-CR3 中的氢原子后,化合物 X-CR3 中-CR3 部分的电子云密度比在 H -CR3 中小,X 叫做吸电子基团。由吸电子基团引起的诱导效应,叫做吸电子诱导效应,用-I 表示。如果用电负性较碳原子小的 Y 取代了 H-CR3 中的氢原子,化合物 Y- CR3 中-CR3 部分的电子云密度比在 H-CR3 中大,Y 叫做给电子基团。由给电子基团引起的诱导效应,叫做给电子诱导效应,用+I 表示。 1

有机化学:大学基础有机化学的基本概念

有机化学的基本概念 一、化合物类名 2双烯烃:碳碳双键数目最少的多烯烃是二烯烃或称双烯烃。可分为三类:两个双键连在同一个碳原子上的二烯烃称为累积二烯烃,两个双键被两个或两个以上单键隔开的二烯烃称为孤立二烯烃,两个双键被一个单键隔开的二烯烃称为共轭二烯烃。 3内酯:分子内的羧基和羟基失水形成的产物称为内酯。 7半缩醛或半缩酮:醇具有亲核性,在无水和酸性催化剂如对甲苯磺酸、氯化氢的作用下,很容易和醛酮发生亲核加成,一分子醛或酮和一分子醇加成的生成物称为半缩醛或半缩酮。 8有机化合物:除一氧化碳、二氧化碳、碳酸盐等少数简单含碳化合物以外的含碳化合物。 9多肽:一个氨基酸的羧基与另一分子氨基酸的氨基通过失水反应,形成一个酰氨键,新生成的化合物称为肽,肽分子中的酰氨键叫做肽键。二分子氨基酸失水形成的肽叫二肽,多个氨基酸失水形成的肽叫多肽。 10杂环化合物:在有机化学中,将非碳原子统称为杂原子,最常见的杂原子是氮原子、硫原子和氧原子。环上含有杂原子的有机物称为杂环化合物。分为两类,具有脂肪族性质特征的称为脂杂环化合物,具有芳香特性的称为芳杂环化合物。因为前者常常与脂肪族化合物合在一起学习,所以平时说的杂环化合物实际指的是芳杂环化合物。杂环化合物是数目最庞大的一类有机物。 11多环烷烃:含有两个或多个环的环烷烃称为多环烷烃。 12共轭烯烃:单双键交替出现的体系称为共轭体系,含共轭体系的多烯烃称为共轭烯烃。 13纤维二糖是由两分子葡萄糖通过1,4两位上的羟基失水而来的,纤维二糖是β-糖苷。 14纤维素:由多个纤维二糖聚合而成的大分子。 15多稀烃:含有多于一个碳碳双键的烯烃称为多稀烃。 16亚硫酸氢钠加成物:亚硫酸氢钠可以和醛或某些活泼的酮的羰基发生加成反应,生成稳定的加成产物,该产物称为亚硫酸氢钠加成物。 17交酯:二分子α羟基酸受热失水形成的双内酯称为交酯。 18肟:醛或酮与羟胺反应形成的产物称为肟。 19卤代烃:烃分子中的氢被卤素取代后的化合物称为卤代烃。一般用RX表示。X表示卤素(F、Cl、Br、I)。 20麦芽糖是由两分子葡萄糖通过1,4两位上的羟基失水而来的,麦芽糖是α-糖苷,21芳香族化合物:具有一种特殊的性质——芳香性的碳环化合物称为芳香族化合物。

有机化学习题答案

第7章芳烃及非苯芳烃 思考题答案 思考题7-1苯具有什么结构特征? 它与早期的有机化学理论有什么矛盾? 答案:苯分子具有高度的不饱和性,其碳氢比相当于同分子量的炔烃,根据早期的有机化学理论,它应具有容易发生加成反应、氧化反应等特性。但事实上,苯是一种高度不饱和却具异常稳定性的化合物。因此,要能够很好地解释这一矛盾是当时有机化学家所面临的重大挑战。[知识点:苯的结构特征]思考题7-2早期的有机化学家对苯的芳香性认识与现代有机化学家对苯的芳香性认识有什么不同? 答案:早期的有机化学把那些高度不饱和的苯环类结构并具有芳香气味的化合物称为芳香化合物,这些化合物所具有的特性具称为芳香性。随着对事物认识的 不断深入,人们已经意识到,除了苯环以外还有一些其他类型的分子结构也 具有如苯一样的特别性质。现在仍然迫用芳香性概念,但其内涵已超出了原 来的定义范围。现在对芳香性的定义为:化学结构上环状封闭的共轭大π键,不易被氧化,也不易发生加成反应,但是容易起亲电反应的性质。[知识点:苯的芳香性] 思考题7-3 关于苯分子的近代结构理论有哪些?其中,由Pauling提出的共振结构理论是如何解释苯分子结构? 答案:现代价键理论:苯分子中的六个碳原子都以sp2杂化轨道和相邻的碳和氢原子形成σ键,此sp2杂化轨道为平面其对称轴夹角为120°,此外每个碳原子还

有一个和平面垂直的p轨道,六个p轨道相互平行重叠形成了一个闭合共轭体系。 分子轨道理论:基态时,苯分子的六个π电子都处在成建轨道上,具有闭壳 层电子结构。离域的π电子使得所有的C-C键都相同,具有大π键的特殊性 质因此相比孤立π键要稳定得多。 Pauling提出的共振结构理论:苯的每个1,3,5-环己三烯都是一种共振结构体,苯的真实结构是由这些共振结构式叠加而成的共振杂化体。【知识点:苯近代结构理论】 思考题7-4什么是休克尔规则? 如何利用休克尔规则判别有机分子的芳香性? 答案:休克尔规则:单环化合物具有同平面的连续离域体系,且其π电子数为4n+2,n 为大于等于0的整数,就具有芳香性; 如果π电子数为芳香性,符合4n,为反芳香性,非平面的环状共轭烯烃则为 非芳香性。【知识点:休克尔规则】 思考题7-5为什么有些有机分子的π电子数符合4n+2规则但却不具备芳香性? 答案:有些有机分子如[10]轮烯,其π电子为10,满足4n+2规则,但无芳香性。 其原因在该分子内由于空间拥挤,整个分子不共平面影响共轭,故无芳香性。 具有芳香性必须是共轭的平面分子。【知识点:休克尔规则应用条件】 思考题7-6什么是亲电取代反应? 为什么苯环上容易发生亲电取代反应而不是亲核取代反应?

总复习:有机化学基本概念

专题:有机化学 第一讲有机化学基本概念 一.有机物的分类、概念、命名 类别官能团典型代表物类别通式 结构名称结构简式名称 烃烷烃CH4甲烷 烯烃碳碳双键乙烯 炔烃碳碳三键乙炔 芳香烃苯 类别 官能团 典型代表物类别通式结构 名称结构简式名称 烃的衍生物卤代烃—X 卤素原子CH3CH2Br 溴乙烷醇羟基CH3CH2OH 乙醇酚(酚)羟基苯酚醚醚键乙醚 醛醛基CH3CHO 乙醛酮羰基丙酮羧酸羧基CH3COOH 乙酸 酯酯基 CH 3 COOC 2 H 5 乙酸 乙酯 2、基本概念: (1)有机物 (2)烃 (3) 脂肪烃 (4) 芳香烃 芳香族化合物 (5) 简单甘油酯 混合甘油酯 1.北京奥运会期间对大量盆栽鲜花施用了S-诱抗素制剂,以保证鲜花盛开,S-诱抗素的分子结构如图,下列关于该分子说法正确的是: A.含有碳碳双键、羟基、羰基、羧基

B.含有苯环、羟基、羰基、羧基 C.含有羟基、羰基、羧基、酯基 D.含有碳碳双键、苯环、羟基、羰基 2.下列叙述正确的是() A.汽油、柴油和植物油都是碳氢化合物 B.乙醇可以被氧化为乙酸,二者都能发生酯化反应 C.甲烷、乙烯和苯在工业上都可通过石油分馏得到 D.含5个碳原子的有机物,每个分子中最多可形成4个C-C单键 3.下图表示4-溴环己烯所发生的4个不同反应,其中产物只含有一种官能团的反应是() A.①②B.②③C.③④D.①④ 4.由于C60具有碳碳双键,所以命名为“足球烯”。C60的二苯酚基化合物结构如图,下列关于C60的二苯酚基化合物的叙述正确的是()A.属于芳香烃 B.分子式为C73H10O2 C.能与NaOH溶液反应 D.不能和氢气发生加成反应 5.下列说法正确的是() A.乙烯和乙烷都能发生加聚反应 B.蛋白质水解的最终产物是多肽 C.米酒变酸的过程涉及了氧化反应 D.石油裂解和油脂皂化都有高分子生成小分子的过程 6.下列物质一定不是天然高分子的是() A.橡胶B.蛋白质C.尼龙D.纤维素 7.某期刊封面上有如下一个分子的球棍模型图,图中“棍”代表单键或双键或三键。不同颜色的球代表不同元素的原子,该模型图可代表一种()

溶剂效应

溶剂效应 百科名片 溶剂效应图解 溶剂效应是溶剂对于反应速率、平衡甚至反应机理的影响,绝大多数在溶剂中发生的有机化学反应中,溶剂的性质不仅对反应速率而且对反应平衡都是非常重要的。溶剂可分极性溶剂和非极性溶剂,极性溶剂又可分为质子溶剂和非质子偶极溶剂。溶剂效应对反应速度常数的影响依赖于溶剂化反应物分子和相应溶剂化过渡态的相对稳定性。 目录 Solvent Effect 考虑溶剂效应,可以采用三种策略: IPCM SCIPCM CPCM或COSMO IEFPCM 液相色谱中的溶剂效应 Solvent Effect 考虑溶剂效应,可以采用三种策略: IPCM SCIPCM CPCM或COSMO IEFPCM 液相色谱中的溶剂效应 Solvent Effect

对于等级性过滤态和自由基过滤态反应,溶剂效应较小;对于偶极过渡态反应,溶剂效应较大,例如非质子偶极溶剂的特点是正端藏于分子内部,负端露于分子外部,负端可以与正离子起作用,而正端却不能与负离子起作用,因此,在非质子溶剂中,用负离子作为试剂时,由于它不被溶剂分子包围,可以很容易地进行反应,成为加快反应速度的重要手段。 溶剂效应对反应的影响的关注历史悠久。不同的溶剂可以影响反应速率,甚至改变反应进程和机理,得到不同的产物。溶剂对反应速率的影响十分复杂,包括反应介质中的离解作用、传能和传质、介电效应等物理作用,)和化学作用,溶剂参与催化、或者直接参与反应(有人不赞成将溶剂参与反应称作溶剂效应)。 通常我们对溶剂效应的静态模拟,关心的是溶剂效应的两个方面:一是溶剂分子反应中心有键的作用,包括配位键和氢键等,这种作用属于短程作用,另一个是极性溶剂的偶极距和溶质分子偶极距之间的静电相互作用,这个属于远程作用,当然溶剂和溶质之间的色散力作用也是重要的远程作用,特别是对于非极性溶剂而言,但是色散力的描述是量子化学模拟的一个难题。 考虑溶剂效应,可以采用三种策略: 1. 对于短程作用十分重要的体系,我们采用microsolvation model,或者称为explicit Solvation model。直接考虑溶剂分子和反应中心的作用。 2. 对于没有短程作用的体系,我们直接用虚拟溶剂模型(Implicit Solvation Model)来模拟远程作用。这种虚拟溶剂模型通常是把溶剂效应看成是溶质分子分布在具有均一性质的连续介质(Continuum)当中,也称为反应场(Reaction Field)。 3. 短程作用的microsolvation model和远程作用的连续介质(Continuum)模型结合起来的方法渐渐为人们所青睐。这种方法得到的结果更为可靠,因为它综合考虑的溶剂的短程作用和

相关文档
最新文档