五种方法求二面角及练习题

五种方法求二面角及练习题
五种方法求二面角及练习题

五种方法求二面角及练习题

一、 定义法:

从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

1.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求: (1)二面角C 1—BD —C 的正切值(2)二面角11B BC D --

~

2.如图,四棱锥中,底面为矩形,底面,,

,点M 在侧棱上,=60,M 在侧棱的中点

(1)求二面角的余弦值。

S ABCD -ABCD SD ⊥ABCD 2AD =

2DC SD ==SC ABM ∠SC S AM B --A

B

C D A

~

C

B

二、三垂线法:三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。

1. 如图,在直四棱柱ABCD-A B C D 中,底面ABCD 为等腰梯形,AB 图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知

60,22,2,2,3=∠====PAB PD PA AD AB .

(Ⅰ)证明⊥AD 平面PAB ;

(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.

三.补棱法

本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面

的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决

1.已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600

的角,侧面BCC 1B 1⊥底面ABC 。

(1)求证:AC 1⊥BC ;

(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。

111111

1111

E A

<

C

F

E 1

A 1

B 1

C 1

D 1

A

C

B

B 1

C 1

L

·

2:如图5,E为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面AB1E和底面A1B1C1D1所成锐角的余弦值.

3如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.

(Ⅰ)证明:平面PBE⊥平面PAB;

(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.

角的平面角(锐角).

:A

B

E

D

P

A1

D1

B1

C1

E

B

C A

图5

-

分析 平面AB 1E 与底面A 1B 1C 1D 1交线即二面角的棱没有给出,要找到二面角的平面角,. 四、向量法

向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。

1如图,在五面体ABCDEF 中,FA 平面ABCD, AD 111ABC A B C -ABC ⊥11A ABB (Ⅰ)求证:AB BC ⊥;

(Ⅱ)若直线AC 与平面1A BC 所成的角为θ,二面角1A BC A --的大小

为?,试判断θ与?的大小关系,

⊥⊥

1

2

~

3.如图,在棱长为a的正方体ABCD—A1B1C1D1中,求:

—C1

(1)二面角C 1—BD —C 的正切值(2)二面角11B BC D --

,

}

4.过正方形ABCD 的顶点A 作PA ABCD 平面,

设PA=AB=a ,(1)求二面角B PC D 的大小;

(2)求二面角C-PD-A

·

5. 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA =3

.(1) 证明: BE ⊥平面PAB ; (2) 求二面角A -BE -P 的大小 (3)PB 与面PAC 的角

;

6 如图,在底面为直角梯形的四棱锥

,//,BC AD ABCD P 中-,90?=∠ABC

ABCD PA 平面⊥,32,2,3===AB AD PA ,BC=6

(1) 求证:;PAC BD 平面⊥ (2) 求二面角A BD P --的大小.

(3)求二面角B-PC-A 的大小

7.如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的

E

P

A

B

c

D

点,且BF ⊥平面ACE. (Ⅰ)求证AE ⊥平面BCE ; (Ⅱ)求二面角B —AC —E 的大小; (Ⅲ)求点D 到平面ACE 的距离.

8.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.已知3AB =,2AD =,

2PA =,22PD =,60

PAB =∠.

(Ⅰ)证明AD ⊥平面PAB ;

(Ⅱ)求异面直线PC 与

AD 所成的角的大小;

(Ⅲ)求二面角P BD A --的正切值.

A

B

C

D

P

F

E

D B

A

(完整版)二面角求解方法

二面角的作与求 求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。下面就对求二面角的方法总结如下: 1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。 2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。 3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。 4、投影法:利用s 投影面 =s 被投影面 θcos 这个公式对于斜面三角形,任意多边形都成立, 是求二面角的好方法。尤其对无棱问题 5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos 例1:若p 是ABC ?所在平面外一点,而PBC ?和ABC ?都是边长为2的正三角形, PA=6,求二面角P-BC-A 的大小。 分析:由于这两个三角形是全等的三角形, 故采用定义法 解:取BC 的中点E ,连接AE 、PE Θ AC=AB ,PB=PC ∴ AE ⊥ BC ,PE ⊥BC ∴PEA ∠为二面角 P-BC-A 的平面角 在PAE ?中AE=PE=3,PA=6 P C B A E

∴PEA ∠=900 ∴二面角P-BC-A 的平面角为900。 例2:已知ABC ?是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。 [思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。 解1:(三垂线定理法) 取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF Θ⊥PA 平面ABC ,PA ?平面PAC ∴平面 PAC ⊥平面ABC, 平面PAC I 平面ABC=AC ∴BE ⊥平面 PAC 由三垂线定理知BF ⊥PC ∴BFE ∠为二面角A-PC-B 的平面角 设PA=1,E 为AC 的中点,BE= 23,EF=4 2 ∴tan BFE ∠= 6=EF BE ∴BFE ∠=arctan 6 解2:(三垂线定理法) 取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FM ΘAB=AC,PB=PC ∴ AE ⊥BC,PE ⊥BC ∴ BC ⊥平面PAE,BC ?平面PBC ∴ 平面PAE ⊥平面PBC, 平面PAE I 平面PBC=PE 由三垂线定理知AM ⊥PC P C B A E F M E P C B A F 图1 图2

二面角求法及经典题 专题训练

立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L垂直平面α,取直线L的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法:(1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(3)、三垂线法:过一个半平面内一点(记为A)

α βa O A B 做另一个半平面的一条垂线,过这个垂足(记为B)再做棱的垂线,记垂足为C,连接AC,则∠ACB即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图 形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取 点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S—AM—B中半平面ABM上的一已知点(B)向棱AM作垂线,得垂足(F);在另一半平面ASM内过该垂足(F)作棱AM的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD—A1B1C1D1中,求(1)二面

高中数学二面角求法及经典题型归纳

αβa O A B 立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这 两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A --的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

二面角的几种方法及例题

二面角大小的求法(例题) 二面角的类型和求法可用框图展现如下: 一、定义法: 直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. O OA PA OB PAOB OA AOB AOB=120APB=60OB PB PB βαβ⊥⊥∴⊥⊥⊥∴⊥∴⊥∠∠?∠?做交线,交于点,连接平面交线同理交线又交线交线面交线即可得为面的二面角,所以 例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。 提示:PAB PCD ?,而且是直角三角形 P

二、三垂线定理法: 已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的tag 大小。 A AH BC BC H PH ABCD PA AB PA BC PHA PHA H ABH=30AB=a AH=a/2 tag PHA 2 PA BC AB ⊥⊥∴⊥⊥∴⊥∴∠∠?∴∴∠=过做,交于,连接面,面为二面角在中 , 例:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 提示:CO ⊥DE ,而且是长方体!!! p A B L H A B C D A 1 B 1 C 1 D 1 E O

专题二:二面角的五种方法

专题二:二面角的五种方法 一、定义法:由图形的特殊条件按定义直接作出. 例1.如图, 过正方形ABCD的顶点A作P A⊥平面ABCD, 设P A=A B=a,求二面角B-PC-D 的大小. 例2.二面角α-BC-β大小为120°, A∈α,B∈β, 且AB⊥BC,BC⊥CD, AB=BC=CD=1, 求二面角A-BD-C的正切值. 二、垂面法:通过作二面角棱的垂面, 此垂面与二面角的两个面所交的两条射线构成的角就是这个二面角的平面角. 例3.⑴空间三条射线P A,PB,PC不共面, 若∠APC=∠APB=60°,∠BPC=90°, 则二面角B-P A-C的大小是______; ⑵已知∠AOB=90° , 过O点引∠AOB所在平面的斜线OC, 使它与OA,OB分别成45°,60°的角, 则二面角A-OC-B的余弦值为______. 例4.如图, 在△ABC中, AB⊥BC, SA⊥平面ABC, DE垂直平分SC, 且分别交AC,SC 于D,E, 又SA=AB, SB=BC, 求二面角E-BD-C的大小. 三、延伸法:若所求的两个面只有一个公共点是已知的, 所以要把两个面延伸面得到二面角的棱, 然后再求出它的平面角. 例5.直角梯形ABCD中, AB⊥AD, AD⊥CD, AB=2, CD=4, 平面P AD⊥平面ABCD, △PBC是边长为10的正三角形, 求平面P AD和平面PBC所成二面角的大小. 例6.设正方体ABCD-A1B1C1D1中, E为AA1中点, 求平面B1DE和底面ABCD所成二面角的大小. 四、垂线法:利用三垂线定理或其逆定理作出平面角. 例7.已知由O点出发的三条射线OA,OB,OC不共面,且∠AOB=∠AOC, 求证:二面角A-OB-C与二面角A-OC-B相等. 例8.二面角M-CD-N中, A为平面M上一定点, △ADC的面积为定值S, DC=a, B为 平面N内一点, AB⊥CD, 若AB与平面N成30°角;求△BCD面积的最大值, 并求此时二面角M-CD-N的大小. 五、射影法:若多边形面积为S, 它在一个平面上的射影的面积为S0, 则多边形所在平面与这个平面

最新版,二面角求法与经典题型归纳

αβa O A B 立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这 两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A --的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

求二面角大小的直接计算法(讲稿)

求二面角大小的直接计算法 肖德凯 利用向量求二面角,如何判断所求二面角是锐角或钝角?现行中学数学教材或教辅资料给出的方法是通过观察图形来确定;常见的大学数学教材亦未涉及此问题. 由于一个平面有共线且方向相反的两个法向量,所以两个平面所成二面角的平 面角的大小与其法向量所成之角可能相等, 也可能互补;而现行中学数学教材是用点积的办法来求法向量的, 点积法的缺陷是不能控制法向量的方向, 所以也就无法准确判断所求二面角究竟是钝角或锐角. 本文介绍一种利用向量外积控制平面法向量方向,借助两平面法向量所成角与两平面所成二面角的关系,直接计算二面角并判断其为锐角或钝角的方法. 为此我们首先介绍向量外积概念及运算法则. 1 二阶行列式的概念及运算法则 由于二阶行列式与向量外积的计算密切相关,故我们先简要介绍二阶行列式. 二阶行列式源于解二元一次方程组,它的定义是: 1112212 2 x y x y x y x y =- 例1.1 计算 3437(2)421829 2 7 =?--?=+=-. 2 向量外积 2.1设a 、b 为同一平面内起点重合的非共线向量,则a 、b 外积n 表示为n =a ?b ,其结果n 仍然是一个向量,方向与a 、b 所在平面垂直.向量外积的确切的方向根据右手法则确定(如图2.1): 伸开右手

掌,使拇指与其余四指垂直,将手腕与a 和b 的始端重合,拇指之外的四指与a 同向,使得手掌弯曲指向b ,但这时a 到b 的角度必须小于180 ,此时大拇指指向的方向就是a ?b 的方向,即a 、b 所在平面的法向量的一个方向[一个平面的法向量的方向共有两个(共线的两个),指向平面的两侧,通常并不确定是其中哪一个方向]. 2.2 向量外积的计算法则 若 ()111x ,y ,z a =,()222x ,y ,z b =,则 () () ()1112221111112 2 2 2 2 2122112211221x ,y ,z x ,y ,z y z x z x y ,, y z x z x y y z y z ,x z x z ,x y x y . a b ?= ??? =- ??? =--+- 例2.1 已知11(,,1)2 2 a =-,11 (,,1)2 2 b =---;求a b ?. 1 1,, 12211,,1221 111112222,, 11111 12 2 2 211,0,. 2a b ?? ?=- ??? ?? ?--- ? ?? ?? - - ? ?=- ?----- - ???? ?=- ?? ?解 3 求二面角大小的直接算法 如图1, 设二面角C-AB-E 的大小为θ,平面ABEF 的法向量为n , 平面ABCD 的法向量为m 1;

二面角的计算(方法加经典题型)

二面角的求法 (1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。注:o 点在棱上,用定义法。 (2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。注:o 点在一个半平面上,用三垂线定理法。 (3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。注:点O 在二面角内,用垂面法。 (4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ S A 图3 α β O B l O 图5 β α C B A

例题讲解 1、(本小题满分14分)如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱 PD ⊥底面,,ABCD PD CD E =是PC 的中点,作EF PB ⊥交PB 于点F 。 (I )求证://PA 平面EDB ; (II )求证:PB ⊥平面EFD ; (III )求二面角P BC D --的大小。 2、 如图1-125, PC ⊥平面ABC ,AB =BC=CA =PC ,求二面角B -PA -C 的平面角的正切值。(三垂线定理法) 3.在棱长为1的正方体1AC 中, (1)求二面角11A B D C --的大小的余弦值; (2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小 的正切值。 18、(本题满分14分) 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,, 60ABC ∠=°,PA AB BC ==,E 是PC 的中点. (Ⅰ)求PB 和平面PAD 所成的角的大小; (Ⅱ)证明⊥AE 平面PCD ; (Ⅲ)求二面角A PD C --的正弦值. O 1 A 1 C 1 D 1 B 1 D C B A A C D P E

(完整)高中立体几何二面角的几种基本求法例题.doc

二面角的基本求法例题 一、平面与平面的垂直关系 1.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 例 1.在空间四边形ABCD 中, AB=CB ,AD=CD ,E、F、G 分别是 AD 、 DC、CA 的中点。 求证:平面 BEF ^ 平面 BDG 。 A A F E E G D B F D B C C 例 2. AB ^ 平面 BCD,BC = CD ,? BCD 90°,E、F分别是AC、AD的中点。 求证:平面 BEF ^ 平面 ABC 。D1 C1 A1 B1 2.性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线 垂直于另一个平面。中,求和平面所成的角。 例 3.在正方体 ABCD—A1 1 1 1 1 1 1 B C D A B A B CD . D C A B 二、二面角的基本求法D1 C1 1.定义法:在棱上取点,分别在两面内引两条射线与棱垂直。A1 B1 例4.在正方体 ABCD—A1B1 C1D1中, 求( 1)二面角A- B1C - A1的大小; ( 2)平面A1DC1与平面 ADD1 A1所成角的正切值。 D C A B P 练习:过正方形ABCD 的顶点 A 作 PA ^ 平面 ABCD ,设 PA=AB= a,求 二面角 B - PC - D 的大小。 A D 2.三垂线法 B C 例 5 .平面ABCD ^平面ABEF,ABCD是正方形, ABEF 是矩形且 D C AF= 1 AD= a,G 是 EF 的中点, 2 ( 1)求证:平面AGC ^平面BGC; ( 2)求 GB 与平面 AGC 所成角的正弦值;A B 1 G E

立体几何典型例题精选[含答案解析]

F E D C B A ; 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥ 平面ABCD , 1EF =,,90FB FC BFC ? =∠=,3AE = . (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. · ! 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值.

] 变式2:[2014·福建卷] 在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1-5所示. (1)求证:AB⊥CD; (2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. ? (1)证明:CF⊥平面ADF; (2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2. — (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小. 【

二面角的计算方法精讲

图1 二面角的计算方法精讲 二面角是高中数学的主要内容之一,是每年高考数学的一个必考内容,本文主要通过一些典型的例子说明二面角的三种基本计算方法,供同学们学习参考。 一 、直接法:即先作出二面角的平面角,再利用解三角形知识求解之。通常作二面角 的平面角的途径有: ⑴定义法:在二面角的棱上取一个特殊点,由此点出发 在二面角的两个面内分别作棱的垂线; ⑵三垂线法:如图1,C 是二面角βα--AB 的面β内 的一个点,CO ⊥平面α于O ,只需作OD ⊥AB 于D ,连接CD ,用三垂线定理可证明∠CDO 就是 所求二面角的平面角。 ⑶垂面法:即在二面角的棱上取一点,过此点作平面γ,使γ垂直于二面角的棱,则γ 与二面角的两个面的交线所成的角就是该二面角的平面角。 例1 如图2,在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形, 平面V AD ⊥底面ABCD . (1)证明AB ⊥平面V AD ; (2)求面V AD 与面VDB 所成的二面角的大小. 解:(1)证明: V A D A B C D A B A D A B V A D A B A B C D A D V A D A B C D ⊥? ?⊥??⊥????=? 平面平面平面平面平面平面 (2)解:取VD 的中点E ,连结AF ,BE , ∵△V AD 是正三形,四边形ABCD 为正方形, ∴由勾股定理可知, BD VB,= == ∴AE ⊥VD ,BE ⊥VD , ∴∠AEB 就是所求二面角的平面角. 又在Rt △ABE 中,∠BAE=90°, AB ,

因此,tan ∠AEB= .3 3 2=AE AB 即得所求二面角的大小为.33 2arctan 例2 如图3,AB ⊥平面BCD ,DC ⊥CB ,AD 与平面 BCD 成30°的角,且AB=BC. (1)求AD 与平面ABC 所成的角的大小; (2)求二面角C-AD-B 的大小; (3)若AB=2,求点B 到平面ACD 的距离。 解:(1) ∵AB ⊥平面BCD , ∴∠ADB 就是AD 与平面BCD 所成的角,即∠ADB=300,且CD ⊥AB , 又∵DC ⊥BC ,AB BC B = , ∴ CD ⊥平面ABC , ∴ AD 与平面ABC 所成的角为∠DAC , 设AB=BC=a,则AC=a 2, BD=acot300=a 3,AD=2a, a BC BD CD 222=-=, ∴ tan ∠DAC=122== a a CD AC , ∴ 0 45=∠DAC , 即,AD 与平面ABC 所成的角为450. (2)作CE ⊥BD 于E ,取AD 的中点F ,连CF , ∵ AB ⊥面BCD ,ABD AB ?面, ∴ 面ABD ⊥面BCD , 又∵ 面ABD 面BCD=BD ,BCD CE ?面,CE ⊥BD , ∴ CE ⊥面ABD , 又∵AC=BC=a 2,AF=FD ,∴AD ⊥EF , 有三垂线定理的逆定理可知,∠CFE 就是所求二面角的平面角. 计算可知, BC CD CE BD ?=,2AD a,==1 2 CF AD a ==, ∴ CE sin CFE CF ∠= =,∴∠. 故,所求的二面角为

求二面角的五种方法

五法求二面角 从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份, 并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,0 60=∠ABM ∴△ABM 是等边三角形,∴3= BF 在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG F G

二面角的几种方法及例题

二面角大小的求法(例题)二面角的类型和求法可用框图展现如下: 、定义法: 甬 片+—*■垂面法 化 T不见播型 直接在二面角的棱上取一点(特殊点),分别在两个半平面内作 棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、如图,已知二面角a - a - B等于120° ,PA丄a ,A €a ,PB丄B ,B .求/ APB的大小. 做OB 交线,交于点O,连接OA Q PB 平面 PB 交线 同理PA 交线 又Q OB 交线 交线面PAOB 交线OA 即可得AOB为面的二面角,AOB=120 所以APB=60 例、在四棱锥P-ABCD中, ABCD是正方形,PA!平面 ABCQPA=AB=a 求二面角B-PC-D的大小。 提示:VPAB VPCD,而且是直角三角形 可见槻型I解法? f三垂线法 A

、三垂线定理法: 已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或 逆定理作出二面角的平面角; 例、在四棱锥P-ABCD中,ABCD是平行四边形,P从平面ABCD PA=AB=a / ABC=30,求二面角P-BC-A的tag 大小。 过A做AH BC,交BC于H,连接PH Q PA 面ABCD PA AB, PA BC BC 面PHA PHA为二面角 在VABH中 ABH=30 , AB=a AH=a/2 tag PHA 2 例:如图,ABCD-ABGD是长方体,侧棱AA长为1,底面为正方体且边长为2,E是棱BC勺中点,求面CD%面CD所成二面角的正切值. 提示:CO DE而且是长方体! !!

例、△ ABC 中,/ A=90°, AB=4 AC=3 平面 ABC 外一点 P 在平 面ABC 内的射影是AB 中点M 二面角P-AC — B 的大小为45°。 求(1) 二面角P-BC — A 的大小;(2)二面角C-PB-A 的大小 提示:角PAB 是二面角,找到每个面的直角! 射影,那么PM 为面ABC 的垂线! 例、如图4,平面丄平面,A =l , A € , B € ,点A 在 直线I 上的射影为A,点B 在I 的射影为B,已知AB=2AA=1,BBp/2, 求:二面角A — AB- B 的大小. 提示:AA1与BB1互相垂直 AF 是辅助线且垂直AB,FE 平行BB 四、射影法:(面积法) 利用面积射影公式S 射=S 原cos ,其中 为平面 B D i' M 图4

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)3 6arccos(- F G F G

(完整版)二面角典型习题

二面角 1.二面角的计算: 1)定义法; 2)三垂线定理法; 3)垂面法; 4)面积射影法; 例1、已知P 是二面角AB αβ--棱上一点,过P 分别在αβ、内引射线PM ,PN ,且45,60BPM BPN MPN ∠=∠=?∠=?,求此二面角的度数。 例2、已知P 为锐二面角l αβ--棱上的点,,4530PQ PQ l αβ???与成,与成,则二面角l αβ--的度数是多少。 例3、已知二面角l αβ--的度数为θ,在面α内有一条射线AB 与棱l 成锐角δ,与面βγ成角,则必有( ) (A )sin sin sin θδγ= (B )sin sin cos θδγ= (C )cos cos sin θδγ= (D )cos cos cos θδγ=

例4、在120?的二面角l αβ--的面α、β内分别有A 、B 两点,且A 、B 到棱l 的距离AC 、BD 分别长2、4,AB=10,求: (1)直线AB 与棱l 所成角的正弦值。 (2)直线AB 与平面β所成角的正弦值。 例5、已知二面角MN αβ--为60?,,,A B BC AB αββ∈∈为在上的射影,且C 在棱MN 上,AB 与β所成角为60?,且5,45AC MCB = ∠=?,求线段AB 的长。 例6、已知二面角DC αβ--的度数为θ,,,A B ADC αβ∈∈?的面积为S ,且DC=m ,AB DC ⊥,AB 与平面β成30?角,当θ变化时,求DBC ?面积最大值。

例7、已知C 是以AB 为直径的圆周上的一点,30ABC ∠=?, 45PA ABC PBA ⊥∠=?面,,求二面角A-PB-C 的正弦值。 例8、在正方体1111ABCD A B C D -中,利用cos S S θ=射影 解下列各题 1)P 、Q 分别为1,A A AB 的中点,求平面1C PQ 与底面ABCD 所成角的余弦值 2)求二面角11C BD C --的大小; 3)M 是棱BC 的中点,求二面角111D B M C --的余弦值。

五种方法求二面角及练习题

五种方法求二面角及练习题 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 1.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求: (1)二面角C 1—BD —C 的正切值(2)二面角11B BC D -- 2.如图,四棱锥中,底面为矩形,底面,, ,点M 在侧棱上,=60,M 在侧棱的中点 (1)求二面角的余弦值。 二、三垂线法:三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 1. 如图,在直四棱柱ABCD-A B C D 中,底面ABCD 为等腰梯形,AB//CD , AB=4, BC=CD=2, AA =2, E 、E 、F 分别是棱AD 、AA 、AB 的中点。 (1) 证明:直线EE //平面FCC ;(2)求二面角B-FC -C 的余弦值。 S ABCD -ABCD SD ⊥ ABCD AD 2DC SD ==SC ABM ∠SC S AM B --1111111111E A B C F E 1 A B 1 C 1 D D A B C D A D C B

2.如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 1.已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC ; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 2:如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值. 3如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中 点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ; (Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 角的平面角(锐角). A B C E D P A B B 1 C 1 A 1 L A 1 D 1 B 1 C 1 E D B C A 图5

二面角问题求解方法大全

五法求二面角 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 例1如图,四棱锥S ABCD -中,底面 ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=?,E ,F 分别是BC , PC 的中点.(Ⅰ)证明: AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为 6 2 ,求二面角E —AF —C 的余弦值. 二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 例2. 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 (1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。 练习2如图,在四棱锥ABCD P - 中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用 补棱法解决 例3如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点, PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ; (Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. C E D P E A B C F E 1 A 1 B 1 C 1 D 1 D

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 (二)、二面角的通常求法 1、由定义作出二面角的平面角; 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, а?α ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA ?平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. ∠PAO=∠POB=90°, 所以∠APB=60°

2、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1 C 1 D 1 中 由三垂线定理可得: ∴ CD =2 CE=1, DE=5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD ?平面PCD , B C 所以 平面PCD ⊥平面PAD . 同理可证 平面PAB ⊥平面PAD . 因为 平面PCD ∩平面PAD =PD ,平面PAB ∩平面PAD =PA ,所以PA 、PD 与所求二面角的棱均垂直,即∠APD 为所求二面角的平面角,且∠APD =45°. A B C D A 1 B 1 C 1 D 1 E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 ? 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, · ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

相关文档
最新文档