北航材料力学实验讲义A

北航材料力学实验讲义A
北航材料力学实验讲义A

实验一 材料在轴向拉伸、压缩和扭转时的

力学性能

预习要求:

1、预习教材中有关材料在拉伸、压缩、扭转时力学性能的内容;

2、预习本实验内容及微控电子万能试验机的原理和使用方法;

一、实验目的

1、观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ;

2、观察铸铁在轴向拉伸时的各种现象;

3、观察低碳钢和铸铁在轴向压缩过程中的各种现象;

4、观察低碳钢和铸铁在扭转时的各种现象;

5、掌握微控电子万能试验机的操作方法。

二、实验设备与仪器

1、微控电子万能试验机;

2、扭转试验机;

3、50T 微控电液伺服万能试验机;

4、游标卡尺。

三、试件

试验表明,试件的尺寸和形状对试验结果有影响。为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。根据国家标准(GB6397—86),将金属拉伸比例试件的尺寸列表如下:

试 件

标距长度

L 0

横截面积 A 0 圆试件直径 d 0 表示延伸

率的符号 比例/长短

03

.11A 或10d 0 任 意 任 意 δ10 0

65

.5A 或5d 0

任 意

任 意

δ

5

本实验的拉伸试件采用国家标准中规定的长比例试件(图一),试验段直径d 0=10mm ,标距l 0=100mm.。

本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件h /d 0=2, d 0=15mm, h =30mm (图二)。

本实验的扭转试件按国家标准(GB6397-86)制做。

四、实验原理和方法

(一)低碳钢的拉伸试验

实验时,首先将试件安装在试验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量试验段的变形。然后开动试验机,缓慢加载,同时,与试验机相联的微机会自动绘制出载荷—变形曲线(F —?l 曲线,见图三)或应力—应变曲线(σ—ε曲线,见图四)。随着载荷的逐渐增大,材料呈现出不同的力学性能:

1、线性阶段

在拉伸的初始阶段,σ—ε曲线为一直线,说明应力σ与应变ε成正比,即满足胡克定律。线性段的最高点称为材料的比例极限(σp ),线性段的直线斜率即为材料的弹性模量E 。

若在此阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe )。一般对于钢等许多材料,其弹性极限与比例极限非常接近。

2、屈服阶段

超过比例极限之后,应力与应变不再成正比,当载荷增加到一定值时,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象称为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs )。

图二

h

d 0 l 0

d 0

图一

?l

F

图三

ε

σ σb

σs

σp

B

B ’

D

E

图四

C

实验曲线在屈服阶段有两个特征点,上屈服点B和下屈服点B’(见图五),上屈服点对应于实验曲线上应力波动的起始点,下屈服点对应于实验曲线上应力完成首次波动之后的最低点。上屈服点受加载速率以及试件形状等的影响较大,而下屈服点B’则比较稳定,故工程上以B’点对应的应力作为材料的屈服极限σs。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45o的斜纹。这是由于试件的45o斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

3、硬化阶段

经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸试验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

在硬化阶段应力应变曲线存在一最高点,该最高点对应的应力称为材料的强

度极限(σ

b )。强度极限所对应的载荷为试件所能承受的最大载荷P

b

4、缩颈阶段

试样拉伸达到强度极限σ

b

之前,在标距范围内的变形是均匀的。当应力增大

至强度极限σ

b

之后,试样出现局部显著收缩,这一现象称为缩颈。缩颈出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在E 点断裂。试样的断裂位置处于缩颈处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力,还有切应力,这是由于缩颈处附近试件截面形状的改变使横截面上各点的应力状态发生了变化。

(二)铸铁的拉伸试验

铸铁的拉伸实验方法与低碳钢的拉伸实验相同,但

是铸铁在拉伸时的力学性能明显不同于低碳钢,其应力

——应变曲线如图五所示。铸铁从开始受力直至断裂,

变形始终很小,既不存在屈服阶段,也无颈缩现象。断

口垂直于试样轴线,这说明引起试样破坏的原因是最大

图五ε

σ

拉应力。

(三)低碳钢和铸铁的压缩实验

实验时,首先将试件放置于试验机的平台上,然后开动试验机,缓慢加载,同时,与试验机相联的数据采集系统会自动绘制出载荷—变形曲线(F —?l 曲线)或应力—应变曲线(σ—ε曲线),低碳钢和铸铁受压缩时的应力应变曲线分别见图六和图七。

低碳钢试件在压缩过程中,在加载开始段,从应力应变曲线可以看出,应力与应变成正比,即满足虎克定律。当载荷达到一定程度时,低碳钢试件发生明显的屈服现象。过了屈服阶段后,试件越压越扁,最终被压成腰鼓形,而不会发生断裂破坏。

铸铁试件在压缩过程中,没有明显的线性阶段,也没有明显的屈服阶段。铸铁的压缩强度极限约为拉伸强度极限的3~4倍。铸铁试件断裂时断口方向与试件轴线约成55o 。一般认为是由于切应力与摩擦力共同作用的结果。

(四)低碳钢和铸铁的扭转实验

实验时,首先将试件安装在试验机的左、右夹头内,并在试件实验段表面沿轴线方向划一条直线,以观察试验段的变形。然后开动试验机,缓慢加载,同时,自动绘图装置绘制出扭矩—转角曲线(T —?曲线)。

低碳钢试件受扭时,在加载开始段,从T —?曲线可以看出,扭矩与转角成正比,即满足扭转虎克定律。当载荷达到一定程度时,低碳钢试件发生明显的屈服现象,即扭矩不增加,而转角不断增大。过了屈服阶段后,试件抵抗变形的能力又有所加强,到最后试件被连续扭转几圈后才沿着与轴线方向垂直的截面被剪断,这说明,导致低碳钢试件破坏的原因是扭转切应力。

铸铁试件受扭时,整个过程变形不明显,启动扭转试验机后不久,试件就发生断裂破坏,断口为沿着与轴线成45o 方向的螺旋面,这说明导致铸铁试件扭转破坏的原因是拉应力。

图七

ε

σ

图六

ε

σ

σs σp

B B ’

五、实验步骤(低碳钢拉伸实验)

1.试件准备

用划线机在标距l 0范围内每隔10毫米刻划一根圆周线,将标距分成十等分。 2.测量试件尺寸

用游标卡尺测量标距两端及中间三个横截面处的直径,每一横截面分别沿两个互垂方向各测一次取平均值。取所测得三个横截面直径中的最小值作为实验值。

3.试验机准备

根据低碳钢强度极限бb 的估计值和横截面面积A 0估算实验的最大载荷。以此来选择合适的测力量程。 4.安装试件 5.安装引伸仪 6.检查及试车

检查以上步骤的完成情况后,开动试验机,预加少量载荷(应力不应超过材料的比例极限)然后卸载至零点,以检查试验机工作是否正常。 7.进行试验

① 开动试验机使之缓慢匀速加载。注意观察应力—应变曲线,以了解材料在拉伸时不同阶段的力学性能。

② 在比例极限以下卸载,观察试件的弹性变形情况。 ③ 继续加载,在屈服阶段观察试件表面的滑移线。

④ 进入强化阶段后。卸载至零,再加载,观察冷作硬化现象。 ⑤ 继续加载,当达到强度极限后,观察缩颈现象。 ⑥ 加载直至试件断裂。

⑦ 取下试件,用游标卡尺测量断裂后的标距l 1,测量断口(颈缩)处的直径d 1。 8.整理各种仪器设备,结束实验。

六、实验结果处理(低碳钢拉伸实验)

1. 比例极限、屈服极限和强度极限可由实验报表自动给出。 0

A P A P A P b p

s s

p p

=

=

=

σ

σ

σ

2. 测量试件断裂后的标距长度和最小横截面直径,以计算延伸率δ和断面收 缩率Ψ。

%

1000

1?-=

l l l δ

%

1000

1

0?-=

A A A ψ

断裂后,试件的最小横截面即位于缩颈处,将断裂试件的两段对齐并尽量挤 紧,用游标卡尺测量断口处直径。

若断口到最邻近标距端点的距离大于1/3 l 0,则直接测量标距端点的距离l 1,若小于或等于1/3 l 0,则需按下述方法进行断口移中测定l 1:

在长段上从断口o 处取基本等于短段的格数得B 点,若所余格数为偶数(图8-1)则取其一半得C 点。此时:

l 1= AB + 2BC

若所余格数为奇数(图8-2),则分别取所余格数减一的1/2得C 点和所余格数加一的1/2得C ˊ点。此时

l 1= AB + BC + B C ’ 若断口在标距以外时,则此次实验结果无效。

七、思考题

1.根据不同的断口形状说明材料的两种基本断裂形式,并说明破坏原因。

2.用材料和直径相同而标距长度分别为5d 0和10d 0两种试件测定延伸率δ,试验结果有何差别?为什么?

3. 在低碳钢的拉伸σ—ε曲线(图四)中,标出试件的弹性变形与塑性变形。

图8-1

图8-2

实验二 材料弹性常数E 、μ的测定

——电测法测定弹性模量

E 和泊松比μ

预习要求:

1、预习电测法的基本原理(见本节实验讲义后所附内容);

2、设计本实验的组桥方案;

3、拟定本实验的加载方案;

4、设计本实验所需数据记录表格。

一、实验目的

1. 测量金属材料的弹性模量E 和泊松比μ;

2. 验证单向受力虎克定律;

3. 学习电测法的基本原理和电阻应变仪的基本操作。

二、实验仪器和设备

1. 微机控制电子万能试验机;

2. 电阻应变仪;

3. 游标卡尺。

三、试件

中碳钢矩形截面试件,名义尺寸为b ?t = (30?7.5)mm 2。

材料的屈服极限MPa

s 360=σ。

四、实验原理和方法

1、实验原理

材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:

ε

σE = (1)

图二 实验装置图

图一 试件示意图

b

t

上式中的比例系数E 称为材料的弹性模量。

由以上关系,可以得到:

P E A σε

ε

=

=

(2)

材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数:

ε

εμ'=

(3)

上式中的常数μ称为材料的横向变形系数或泊松比。

本实验采用增量法,即逐级加载,分别测量在各相同载荷增量?P 作用下,产生的应变增量?εi 。于是式(2)和式(3)分别写为:

i

i A P E ε??=

0 (4)

i

i i

εεμ

?'?=

(5)

根据每级载荷得到的E i 和μi ,求平均值:

n

E E n

i i

∑=

=1

(6)

n

n

i i

∑=

=1

μμ (7)

以上即为实验所得材料的弹性模量和泊松比。上式中n 为加载级数。

2、实验方法

2.1电测法(见本节实验讲义后所附内容) 2.2加载方法——增量法与重复加载法

增量法可以验证力与变形之间的线性关系,若各级载荷增量ΔP 相同,相应的应变增量?ε也应大致相等,这就验证了虎克定律,如图三所示。

利用增量法,还可以判断实验过程是否正确。若各次测出的应变不按线性规律变化,则说明实验过程存在问题,应进行检查。

采用增量法拟定加载方案时,通常要考虑以下情况: (1)初载荷可按所用测力计满量程的10%或稍大于此值来选定;(本次实验试验机采用50KN 的量程)

(2)最大载荷的选取应保证试件最大应力值不能大于比例极限,但也不能小于它的一半,一般取屈服载荷Ps 的

P P 0 P 1 0

P n

?P

70%~80%,即

m ax (0.7~0.8)

s

P P

=;

(3)至少有4-6级加载,每级加载后要使应变读数有明显的变化。

本实验采用增量法加载。

重复加载法为另一种实验加载方法。采用重复加载法时,从初载荷开始,一级加至最大载荷,并重复该过程三到四遍。初载荷与最大载荷的选取通常参照以下标准:

(1) 初载荷可按所用测力计量程的10%或稍大于此值来选定;

(2) 最大载荷的选取应保证试件的最大应力不大于试件材料的比例极限,

但也不要小于它的一半,一般取屈服载荷的70~80%。

(3) 每次实验重复遍数至少应为3~4遍。

重复加载法不能验证力与变形之间的线性关系。

五、实验步骤

1.设计实验所需各类数据表格;

2.测量试件尺寸;

分别在试件标距两端及中间处测量厚度和宽度,将三处测得横截面面积的算术平均值作为试样原始横截面积。

3.拟定加载方案;

4.试验机准备、试件安装和仪器调整;

5.确定组桥方式、接线和设置应变仪参数;

6.检查及试车:

检查以上步骤完成情况,然后预加载荷至加载方案的最大值,再卸载至初载荷以下,以检查试验机及应变仪是否处于正常状态。

7.进行试验:

加初载荷,记下此时应变仪的读数或将读数清零。然后逐级加载,记录每级载荷下各应变片的应变值。同时注意应变变化是否符合线性规律。重复该过程至少两到三遍,如果数据稳定,重复性好即可。

8.数据经检验合格后,卸载、关闭电源、拆线并整理所用设备。

六、试验结果处理

1.在坐标纸上,在ε

σ—坐标系下描出实验点,然后拟合成直线,以验证虎克定律;

2.按公式(4) ~(7)计算弹性模量E和泊松比μ。

七、思考题

1.利用本实验装置,采用电测法测弹性模量E,试分析哪些因素会对实验结果

造成影响。试提出最佳组桥方案,并画出桥路图。

2.在绘制ε

σ—图时,如何确定坐标原点?

3.本实验加载方案如果不采用增量法,应如何拟定加载方案?

附:电测法基本原理

电测法基本原理和应变片的粘贴及检验方法

1)电测法基本原理:

电测法是以电阻应变片为传感器,通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。

图一电阻应变片的结构示图

试验时,将应变片粘贴在构件表面需测应变的部位,并使应变片的纵向沿需测应变的方向。当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形,这时,敏感栅的电阻由初始值R变为R+ΔR。在一定范围内,敏感栅的电阻变化率ΔR/R与正应变ε成正比,即:

R

k R ε

?

=(1) 上式中,比例常数k为应变片的灵敏系数。故只要测出敏感栅的电阻变化率,

即可确定相应的应变。

构件的应变值一般都很小,相应的应变片的电阻变化率也很小,需要用专门的仪器进行测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其基本测量

电路为一惠斯通电桥。

图二 电阻应变仪的基本测量电路

电桥B 、D 端的输出电压为:

14231234()()

B D

R R R R U

U

R R R R -?=

++ (2)

当每一电阻分别改变1234,,,R R R R ????时,B 、D 端的输出电压变为:

1144223311223344()()()()()()

R R R R R R R R U U

R R R R R R R R +?+?-+?+??=

+?++?+?++? (3)

略去高阶小量,上式可写为:

312

1

2

42

121

2

3

4

(

)

()

B D R R R

R R R U U

R R R

R

R

R

?????=-

-+

+ (4)

在测试时,一般四个电阻的初始值相等,则上式变为:

312

41

2

3

4

(

)4

B D

R R R R U U

R R

R

R

?????=

-

-

+

(5)

将式(1)代入上式,得到:

1234()4

B D kU U εεεε?=

--+

(6)

如果将应变仪的读数按应变标定,则应变仪的读数为: 12344()B D

U kU

ε

εεεε?==--+

(7)

2)应变片的贴片方法:

在电测应力分析中,应变片的粘贴质量很大程度上决定了测量数据的可靠性。这就要求粘结层薄而均匀,无气泡,充分固化,既不产生蠕滑又不脱胶。应变片的粘贴完全由手工操作,故需要实践经验的积累,才能达到较高的粘贴质量。应变片的粘贴过程如下:

1、应变片的筛选。直观检查应变片的表面质量,看是否有弯折、锈蚀、局

部破损;用万用表测量应变片电阻,看与所给值是否符合。

2、试样表面处理。首先用砂纸将贴片表面区域打磨,打磨方向应与应变片

轴线成45度角,然后用划针划出贴片位置的标志线,并用蘸有丙酮的

药棉清洗打磨位置,直至药棉清洁为止。

3、应变片粘贴。待试件风干后,在贴片表面涂一薄层快干胶,用手指(或

镊子)捏住应变片的引出线,将应变片放在试样上,并使应变片的基准

线与试件上的标志线对齐。然后盖上聚氯乙烯透明薄膜(或玻璃纸),

用拇指按压应变片(一般半分钟即可),挤出气泡和多余胶水,以保证

粘结层薄而均匀,但应避免按压时应变片滑动。经过适宜的干燥时间后,

将透明薄膜揭开,检查应变片的粘贴情况。

4、导线的连接和固定。应变片的引出线和应变仪的接口之间需用导线连

接,导线一般采用铜导线。导线与应变片引出线的连接一般通过接线端

子过渡。接线端子用502胶固定在试件上,导线头和接线端子上预先挂

锡,然后将应变片引出线和导线焊接在端子上。最后将导线固定在试件

上,以免实验过程中拉断导线或应变片引出线接头。

5、检查。首先检查应变片是否有局部隆起或皱折,应变片引出线是否粘在

试件上。然后用万用表检查导线连接后的应变片电阻值。

6、应变片的防潮保护。粘贴好的应变片,如果长期暴露在空气中,会因受

潮而降低粘结质量。对于长期使用的应变片应在应变片表面涂上一层防

潮保护层。一般可用703、704、705胶等

+45o

-45o

实验三 材料切变模量G 的测定

预习要求:

1、 复习电测法;

2、 预习扭角仪和百分表的使用方法。

3、 设计本实验的组桥方案;

4、 拟定本实验的加载方案;(参照实验二)

5、 设计本实验所需数据记录表格。

一. 实验目的

1. 两种方法测定金属材料的切变模量G ; 2. 验证圆轴扭转时的虎克定律。

二. 实验仪器和设备

1. 微机控制电子万能试验机 2. 扭角仪 3. 电阻应变仪 4. 百分表 5. 游标卡尺

三. 试件

中碳钢圆轴试件,名义尺寸d=40mm, 材料屈服极限MPa

s

360=σ。

四. 实验原理和方法

1. 电测法测切变模量G

材料在剪切比例极限内,切应力与切应变成正比,

γ

τ

G = (1)

上式中的G 称为材料的切变模量。

由式(1)可以得到:

γ

τ=G (2)

图一 实验装置图

γ

A

B

C D

H D ’

τ

图二 微体变形示意图

图三 二向应变花示意图

圆轴在剪切比例极限内扭转时,圆轴表面上任意一点处的切应力表达式为:

P

W T =

max

τ

(3)

由式(1)~(3)得到:

γ

?=

P W T G (4)

由于应变片只能直接测出正应变,不能直接测出切应变,故需找出切应变与正应变的关系。圆轴扭转时,圆轴表面上任意一点处于纯剪切受力状态,根据图二所示正方形微体变形的几何关系可知:

45

4522-=-=εεγ (5)

由式(2)~(5)得到:

45

45

22εεp p W T W T G

-

==

- (6)

根据上式,实验时,我们在试件表面沿±45o 方向贴应变片(一般贴二向应变花,如图三所示),即可测出材料的切变模量G 。

本实验采用增量法加载,即逐级加载,分别测量在各相同载荷增量?T 作用

下,产生的应变增量?ε。于是式(6)写为:

45

45

22εε???-

=???=

-p p W T W T G (7)

根据本实验装置,有

a

P T

??=? (8)

a ——力的作用线至圆轴轴线的距离

最后,我们得到:

45

45

22εε????-

=????=

-p p W a P W a P G (9)

2.扭角仪测切变模量G 。

等截面圆轴在剪切比例极限内扭转时,若相距为L 的两横截面之间扭矩为常数,则两横截面间的扭转角为:

p

GI

TL =

? (10)

由上式可得:

p

I TL

G ?=

(11)

本实验采用增量法,测量在各相同载荷增量?T 作用下,产生的转角增量?φ。于是式(11)写为:

p

I L T G ????=

? (12)

根据本实验装置,按图四所示原理,可以得到:

b

δ??=

? (13)

δ——百分表杆移动的距离

b ——百分表杆触点至试件轴线的距离 最后,我们得到:

p

I

b L a P G ??????=

δ (14)

五、实验步骤

1.设计实验所需各类数据表格; 2.测量试件尺寸 3.拟定加载方案;

4.试验机准备、试件安装和仪器调整; 5.测量实验装置的各种所需尺寸; 6.确定组桥方式、接线、设置应变仪参数; 7.安装扭角仪和百分表; 8.检查及试车;

检查以上步骤完成情况,然后预加一定载荷(一般取试验机量程的15%左右),再卸载,以检查试验机、应变仪、扭角仪和百分表是否处于正常状态。 9.进行试验;

加初载荷,记录此时应变仪的读数或将读数清零,并记录百分表的读数。逐级加载,记录每级载荷下相应的应变值和百分表的读数。同时检查应变变化和位移变化是否基本符合线性规律。实验至少重复三到四遍,如果数据稳定,重复性好即可。

10. 数据检查合格后,卸载、关闭电源、拆线、取下百分表并整理所用设备。

六、试验结果处理

δ b

?

图四 实测?的示意图

1. 从几组实验数据中选取线性最好的一组进行处理;在坐标纸上,分别在

)(—00

4545-εεT 坐标系和?—T 坐标系下描出实验点,并拟合成直线,以验证圆

轴扭转时的虎克定律;

2. 用作图法计算两种实验方法所得切变模量G ; 3. 用逐差法计算两种实验方法所得切变模量G ;

七、思考题

1. 电测法测切变模量G ,试提出最佳组桥方案,并画出桥路图。 2. 在安装扭角仪和百分表时,应注意什么问题?

实验四 直梁弯曲实验

预习要求:

1、复习电测法的组桥方法;

2、复习梁的弯曲理论;

3、设计本实验的组桥方案;

4、拟定本实验的加载方案;

5、设计本实验所需数据记录表格。

一、 实验目的:

1. 用电测法测定纯弯(或三点弯)时梁横截面上的正应力分布规律,并与理论计算结果进行比较,以验证梁的弯曲理论。

2. 用电测法测定纯弯(或三点弯)时梁中性层上的切应力大小,与理论计算结果进行比较,并对实验结果进行分析。 3.学习电测法的多点测量。

二、实验设备:

1. 微机控制电子万能试验机;

2. 电阻应变仪;

三、实验试件:

本实验所用试件为中碳钢矩形截面梁,其横截面设计尺寸为h ×b =(50×30)mm 2

,a=90mm (见图一、图二 ), 材料的屈服极限MPa

s 360=σ, 弹性

模量E=210GPa ,泊松比μ=0.28。

a a

2a P

b

h

图一 四点弯曲实验装置简图

图二 三点弯曲实验装置简图

四.实验原理及方法:

1)纯弯曲状态。

处于纯弯曲状态的梁,在比例极限内,根据平面假设和单向受力假设,其横截面上的正应变为线性分布,距中性层为 y 处的纵向正应变和横向正应变为:

()()Z

Z

M y y E I M y y E I εεμ

?=

??'=-? (1)

距中性层为 y 处的纵向正应力为:

()()z

M y y E y I σε?=?=

(2)

本实验采用重复加载法,多次测量在一级载荷增量?M 作用下,产生的应变增量?ε和?ε’。于是式(1)和式(2)分别变为:

()()()Z Z Z

M y y E I M y y E I M y

y I εεμ

σ???=

???'?=-????=

(3)

(4)

在本实验中,

/2

M

P a ?=?? (5)

最后,取多次测量的平均值作为实验结果:

a a

2a

P

b

h

1

1

1

()

()()

()()

()N

n

n N

n

n N

n

n y y N

y y N

y y N

ε

εεεσ

σ===??=

'?'?=

??=

∑∑∑ (6)

在纯弯曲受力状态下,梁中性层处不存在切应力。

本实验采用电测法,在梁纯弯曲段某一横截面的不同高度(梁的顶面、底面、中性层及距中性层±10mm 、±20mm )处粘贴纵向电阻应变片(见图一),并在梁的上下表面处粘贴横向应变片,在梁的中性层处还贴有±450方向的应变片。

2)三点弯状态。

对于三点弯梁,其横截面上的正应变和正应力的理论计算公式同式(1)和(2)。在梁的中性层处,切应力的理论计算公式为:

32S F b h

τ

= (7)

由于在纯剪切应力状态下,有: 0

45

ε

=- (8)

因此在实验时,通过测量中性层处450方向的正应变,即可得到中性层处的切应变,进一步由剪切胡克定律计算中性处的切应力,与理论值进行比较。

实验采用重复加载法,实验结果处理参照式(3)~(6)。

五、实验步骤

1.设计实验所需各类数据表格; 2.拟定加载方案;

3.试验机准备、试件安装和仪器调整; 4.确定组桥方式、接线、设置应变仪参数; 5.检查及试车;

检查以上步骤完成情况,然后预加一定载荷,再卸载,以检查试验机和应 变仪是否处于正常状态。

6.进行试验;

将载荷加至初载荷,记下此时应变仪的读数或将读数清零。逐级加载,每增加一级,记录一次相应的应变值。同时检查应变变化是否符合线性。实验至少重复两次,如果数据稳定,重复性好即可。

7.数据经检验合格后,卸载、关闭电源、拆线并整理所用设备。

六、试验结果处理

1.在坐标纸上,在yσ

?

—坐标系下描出实验点,然后拟合成直线,与理论结果

进行比较,并计算同一y坐标所对应的?ε

实验和?ε

理论

之间的相对误差;

2.计算上下表面的横向应变增量ε'

?与纵向应变增量ε?之比的绝对值;

3.计算梁中性层处的切应力,并对实验结果进行分析。

七.思考题:

1. 设计本实验的夹具应考虑哪些因素?

2.安装试件时应当注意什么问题?

3. 在本次实验中,如何用半桥接线法测最大弯曲正应变?试画出桥路图。

4. 如果在试件截面的上表面和下表面,沿纵线方向分别再贴上两个应变片,如何用全桥接线法测最大弯曲正应变?试画出桥路图。

2020年度北航材料力学试题

2003北京航天大学材料力学试题 【一】、选择题,从所给答案中选择一个正确答案(本题共10分,每小题5分) 1、在下列四种工程材料中,_________不可应用各向同性假设。 A.铸铁;B.玻璃;C.松木;D.铸铜。 2、设图示任意平面图形对该平面内的1Z 、2Z 、3Z 轴的惯性矩分别为1I 、2I 、3I ,对点的极惯性矩为p I ,在列关系式中,_________是正确的。(1Z 轴垂直于3Z 轴) A.2I =1I +3I ; B.p I =1I +2I ; C.p I =1I +3I ; D.p I =2I +3I 。 题一.2图 【二】、填空题(本题共20分,每小题5分) 1、如题二(1)图a 所示圆轴承受扭距T,在沿轴线成45°处贴有电阻应变片1R 和2R 。将1R 和2R 接到题二(1)图b 所示电桥上,电桥中3R 和4R 是阻值相同的固定电阻。设电阻应变仪上的读数应变为ε,则应变片1R 的应变1ε=________。 题一.1图 2、杆1、2和3的横截面积及长度均相等,其材料的应力应变去向如题二(2)图所示。则______强度最高。 ______刚度最高。______塑性最好。

3、已知各向同性线弹性材料常数为E ,泊松比为μ,材料内某点主应变 1σ>2σ>3σ=0。则此点第三主应变3ε(1ε>2ε>3ε)的大小为______,此点最大切应变m ax γ的大小为______。 4、影响构件疲劳的主要因素包括___________________,___________________,和___________________, 【三】、(15分)画出题三所示梁的剪力图和弯矩图。 题三图 【四】、(20分)图示桁架两杆材料相同,拉压许用应力相等,为[]σ。两杆夹角为α,2杆长为l 。节点B 作用向下的载荷F 。不考虑稳定条件。1.设计两杆的横截面积1A 和2A ;2.将1A 、2A 、α作为可设计量,保持结构其余参数不变,求结构重量最轻时的α值。

材料力学实验指导书

材料力学实验指导书 §5 梁弯曲正应力电测实验指导书 1、概述 梁是工程中常用的受弯构件。梁受弯时,产生弯曲变形,在结构设计和强度计算中经常要涉及到梁的弯曲正应力的计算,在工程检验中,也经常通过测量梁的主应力大小来判断构件是否安全,也可采用通过测量梁截面不同高度的应力来寻找梁的中性层。 2、实验目的 1、用应变电测法测定矩形截面简支梁纯弯曲时,横截面上的应力分布规律。 2、验证纯弯梁的弯曲正应力公式。 3、观察纯弯梁在双向交变加载下的应力变化特点。 3、实验原理 梁纯弯曲时,根据平面假设和纵向纤维之间无挤压的假设,得到纯弯曲正应力计算公式为: Z I My =σ 式中:M —弯矩 Z I —横截面对中性层的惯性矩 y —所求应力点的纵坐标(中性轴为坐标零点)。 由上式可知梁在纯弯曲时,沿横截面高度各点处的正应力按线性规律变化,根据纵向纤维之间无挤压的假设,纯弯梁中的单元体处于单纯受拉或受压状态,由单向应力状态的胡克定律E *εσ=可知,只要测得不同梁高处的ε,就可计算出该点的应力σ,然后与相应点的理论值进行比较,以验证弯曲正应力公式。 4、实验方案 4.1实验设备、测量工具及试件: YDD-1型多功能材料力学试验机(图1.8)、150mm 游标卡尺、四点弯曲梁试件(图5.1)。 YDD-1型多功能材料力学试验机由试验机主机部分和数据采集分析两部分组成,主机部分由加载机构及相应的传感器组成,数据采集部分完成数据的采集、分析等。 图5.1实验中用到的纯弯梁,矩形截面,在梁的两端有支撑圆孔,梁的中间段有四个对称半圆形分配梁加载槽,加载测试时,两半圆型槽中间部分为纯弯段,在纯弯段中间不同梁高部位、在离开纯弯段中间一定距离的梁顶及梁底、在加工有长槽孔部位的梁顶及梁底均粘贴电阻应变片。 4.2 装夹、加载方案 安装好的试件如图5.2所示。试验时,四点弯曲梁通过销轴安装在支座的长槽孔内,形成滚动铰支座。梁向下弯曲时,荷载通过分配梁等量地分配到梁上部两半圆形加载槽,梁向上弯曲时,荷载通 过分配梁等量地分配到梁下部两半圆形加载槽,分配梁的两个加载支滚,一个为滚动铰支座,一个为 图5.1 四点弯曲梁试件

北航材料力学试题往年试卷-01-答案

班号 学号 姓名 成绩 《 材 料 力 学 A 》期末试卷 一、选择题 (单选,共12分,每小题3分) 1、下列说法正确的是: D 。 A 、各向同性材料是指材料内部任意位置的力学性能都是相同的; B 、材料的刚度越大越不容易发生屈服变形; C 、塑性材料的强度极限高于脆性材料的强度极限; D 、脆性材料的单向压缩许用应力一般高于单向拉伸许用应力。 2、下列说法正确的是 C 。 A 、薄壁圆管的扭转切应力公式只适用于线弹性、各向同性材料; B 、任意截面形状的闭口薄壁杆横截面上的扭转切应力为常数; C 、开口薄壁杆的抗扭性能很差,对于受扭构件,一般不要采用开口薄壁杆; D 、圆轴扭转的刚度条件是圆轴的抗扭模量不能超过许用值。 3、下图所示两均质矩形截面等厚梁,材料相同、总长度相同、AB 段的长度与横截面形状相同。下面结论中正确的是: B 。 A 、两梁 B 截面的挠度和转角不相同; B 、两梁B 截面的挠度和转角相同; C 、两梁C 截面的挠度和转角相同; D 、图(a )所示梁C 截面挠度和转角均小于图 (b )所示梁C 截面的挠度和转角。 F 图(b )

4、下图所示正方形截面杆件,横截面ABCD 上拉应力最大的点是 B 。 二、填空题(8分,每空1分) 1、由于截面急剧变化引起的应力局部增大现象,称为 应力集中 。 2、 几个载荷同时作用时产生的效果,等于各个载荷单独作用时产生的效果的总和, 这一原理 称为载荷叠加原理。 当构件的受力和变形满足 线弹性(物理线性) 条件与 小变形(几何线性)条件时, 载荷叠加原理方能适用。 3、在进行纯弯梁横截面上正应力分析时,除了运用静力学方程外,还运用了 几何 方程与 物理 方程,并根据梁的变形特点作了 平面 假设与 单向受力 假设。 F

材料力学实验报告册

实验日期_____________教师签字_____________ 同组者_____________审批日期_____________ 实验名称:拉伸和压缩试验 一、试验目的 1.测定低碳钢材料拉伸的屈服极限σs 、抗拉强度σb、断后延伸率δ及断 面收缩率ψ。 2.测定灰铸铁材料的抗拉强度σb、压缩的强度极限σb。 3.观察低碳钢和灰铸铁材料拉伸、压缩试验过程中的变形现象,并分析 比较其破坏断口特征。 二、试验仪器设备 1.微机控制电子万能材料试验机系统 2.微机屏显式液压万能材料试验机 3.游标卡尺 4.做标记用工具 三、试验原理(简述) 1

四、试验原始数据记录 1.拉伸试验 低碳钢材料屈服载荷 最大载荷 灰铸铁材料最大载荷 2.灰铸铁材料压缩试验 直径d0 最大载荷 教师签字:2

五、试验数据处理及结果 1.拉伸试验数据结果 低碳钢材料: 铸铁材料: 2.低碳钢材料的拉伸曲线 3.压缩试验数据结果 铸铁材料: 3

4.灰铸铁材料的拉伸及压缩曲线: 5.低碳钢及灰铸铁材料拉伸时的破坏情况,并分析破坏原因 ①试样的形状(可作图表示)及断口特征 ②分析两种材料的破坏原因 低碳钢材料: 灰铸铁材料: 4

6.灰铸铁压缩时的破坏情况,并分析破坏原因 六、思考讨论题 1.简述低碳钢和灰铸铁两种材料的拉伸力学性能,以及力-变形特性曲线 的特征。 2.试说明冷作硬化工艺的利与弊。 3.某塑性材料,按照国家标准加工成直径相同标距不同的拉伸试样,试 判断用这两种不同试样测得的断后延伸率是否相同,并对结论给予分析。 5

七、小结(结论、心得、建议等)6

材料力学实验讲义

金属材料的拉伸、压缩实验指导书 张雅琴编 北京化工大学

目录实验一金属材料的拉伸实验 实验二金属材料的压缩实验

实验一金属材料的拉伸实验 金属材料的拉伸实验是研究金属材料力学性能的最基本的实验。方法简单,数据可靠,一些工矿企业、研究所一般都用此类方法对金属材料进行出厂检验或进厂复检,用测得的各项指标来评定材质和进行强度、刚度计算。因此,对金属材料进行轴向拉伸实验具有工程实际意义。 不同材料在轴向拉伸过程中会表现出不同的力学性质和现象。低碳钢和铸铁分别是典型的塑性材料和脆性材料。低碳钢材料具有良好的塑性,在拉伸实验中的弹性、屈服、强化和颈缩四个阶段尤为明显和清楚。铸铁材料受拉时处于脆性状态,其破坏是由拉应力拉断。 金属材料拉伸实验是指在室温条件下,将缓慢施加的单向拉伸载荷作用于表面光滑的拉伸试件上,来测定材料力学拉伸性能的方法。最常用拉伸试件的形状和尺寸如图1-1所示。 (a) (b) 图1-1 (a) 圆形试样(b) 矩形试样 若采用光滑圆柱试件,试件的标矩长度L 0比直径d 要大的多;通常L >5d ,以使试件横 截面上的应力均匀地分布,实现轴向均匀加载.试件做成圆柱形是便于测量径向应变,试件的加工也比较简单。当测量板材拉伸性能和带材的拉伸性能时,也可以采用板状试件,如图 1-1(b)所示。但试件的标矩长度L 0应满足下列关系:L =5.65A 或11.3 A ;其中A 为试件 的初始横截面积。 上式中的规定对应于圆柱试件中的L 0=5d ,L =10 d 。拉伸试件的几何形状,尺寸及允 许的加工误差,在国家标准GB228—2002中作了相应的规定。金属材料拉伸实验是材料的力学性能实验中最基本最重要的实验,是工程上广泛使用的测定力学性能的方法之一。

材料力学实验指导书

《材料力学》实验指导书(土木工程) 铜陵学院土木建筑系实验中心 王明芳编 2012-2-22

力学实验规则及要求 一、作好实验前的准备工作 (1)按各次实验的预习要求,认真阅读实验指导复习有关理论知识,明确实验目的,掌握实验原理,了解实验的步骤和方法。 (2)对实验中所使用的仪器、实验装置等应了解其工作原理,以及操作注意事项。 (3)必须清楚地知道本次实验须记录的数据项目及其数据处理的方法。 二、严格遵守实验室的规章制度 (1)课程规定的时间准时进入实验室。保持实验室整洁、安静。 (2)未经许可,不得随意动用实验室内的机器、仪器等一切设备。 (3)作实验时,应严格按操作规程操作机器、仪器,如发生故障,应及时报告,不得擅自处理。 (4)实验结束后,应将所用机器、仪器擦拭干净,并恢复到正常状态。 三、认真做好实验 (1)接受教师对预习情况的抽查、质疑,仔细听教师对实验内容的讲解。 (2)实验时,要严肃认真、相互配合,仔细地按实验步骤、方法逐步进行。 (3)实验过程中,要密切注意观察实验现象,记录好全部所需数据,并交指导老师审阅。 四、实验报告的一般要求 实验报告是对所完成的实验结果整理成书面形式的综合资料。通过实验报告的书写,培养学习者准确有效地用文字来表达实验结果。因此,要求学习者在自己动手完成实验的基础上,用自己的语言扼要地叙述实验目的、原理、步骤和方法,所使用的设备仪器的名称与型号、数据计算、实验结果、问题讨论等内容,独立地写出实验报告,并做到字迹端正、绘图清晰、表格简明。

目录 实验一纯弯曲梁横截面上正应力的分布规律实验 (4) 实验二材料弹性模量E、泊松比μ的测定 (7) 实验三偏心拉伸实验 (12) 实验四等强度梁实验 (16) 实验五悬臂梁实验 (18) 实验六压杆稳定实验 (21) 实验七纯扭转实验 (25) 实验八电阻应变片灵敏系数测定实验实验 (28)

材料力学实验报告-举例

实验一拉伸实验 一、实验目的 1.测定低碳钢(Q235)的屈服点 σ,强度极限bσ,延伸率δ,断面收缩率ψ。 s 2.测定铸铁的强度极限 σ。 b 3.观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。 4.熟悉试验机和其它有关仪器的使用。 二、实验设备 1.液压式万能实验机;2.游标卡尺;3.试样刻线机。 三、万能试验机简介 具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成; 1)加载部分,利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。 2)测控部分,指示试件所受载荷大小及变形情况。 四、试验方法 1.低碳钢拉伸实验 (1)用画线器在低碳钢试件上画标距及10等分刻线,量试件直径,低碳钢试件标距。 (2)调整试验机,使下夹头处于适当的位置,把试件夹好。 (3)运行试验程序,加载,实时显示外力和变形的关系曲线。观察屈服现象。。 (4)打印外力和变形的关系曲线,记录屈服载荷F s=22.5kN,最大载荷F b =35kN。 (5)取下试件,观察试件断口: 凸凹状,即韧性杯状断口。测量拉断后的标距长L1,颈缩处最小直径d1 Array 低碳钢的拉伸图如图所示

2.铸铁的拉伸 其方法步骤完全与低碳钢相同。因为材料是脆性材料,观察不到屈服现象。在很小的变形下试件就突然断裂(图1-5),只需记录下最大载荷F b =10.8kN 即可。 b σ的计算与低碳钢的计算方法相同。 六、试验结果及数据处理 表1-2 试验前试样尺寸 表1-3 试验后试样尺寸和形状 根据试验记录,计算应力值。 低碳钢屈服极限 MPa 48.28654.78105.223 =?== A F s s σ 低碳钢强度极限 MPa 63.44554 .7810353 =?== A F b b σ 低碳钢断面收缩率 %6454 .7827 .2854.78%10001 0=-= ?-= A A A ψ 低碳钢延伸率 %25100 100125%1000 1=-= ?-=L L L δ 铸铁强度极限 MPa 53.13754 .78108.103 =?= = A F b b σ

材料力学实验报告

青岛黄海学院实验指导书 课程名称:材料力学 课程编码: 04115003 主撰人:吕婧 青岛黄海学院

目录 实验一拉、压实验 (1) 实验二扭转实验 (6) 实验三材料弹性模量E和泊松比μ的测定 (8) 实验四纯弯曲梁的正应力实验 (12)

实验一低碳钢拉伸实验 一、实验目的要求: (一)目的 σ、延伸率δ,截面收缩率ψ。 1.测定低碳钢的屈服极限σS,强度极限 b σ,观察上述两种材料的拉伸和破坏现象,绘制拉伸时2.测定铸铁的强度极限 b 的P-l?曲线。 (二)要求 1.复习讲课中有关材料拉伸时力学性能的内容;阅读本次实验内容和实设备中介绍万能试验机的构造原理、操作方法、注意事项,以及有关千分表和卡尺的使用方法。 2.预习时思考下列问题:本次实验的内容和目的是什么?低碳钢在拉伸过程中可分哪几个阶段,各阶段有何特征?试验前、试验中、试验后需要测量和记录哪些数据?使用液压式万能试验机有哪些注意事项? 二、实验设备和工具 1.万能实验 2.千分尺和游标卡尺。 3.低碳钢和铸铁圆形截面试件。 三、实验性质: 验证性实验 四、实验步骤和内容: (一)步骤 1.取表距L =100mm.画线 2.取上,中,下三点,沿垂直方向测量直径.取平均值

3.实验机指针调零. 4.缓慢加载,读出 s P .b P .观察屈服及颈缩现象,观察是否出现滑移线. 5.测量低碳钢断裂后标距长度1l ,颈缩处最小直径1d (二)实验内容: 1.低碳钢试件 (1)试件 (2)计算结果 屈服荷载 s P =22.1KN 极限荷载 b P =33.2KN 屈服极限 s σ=s P /0A =273.8MPa 强度极限 b σ=b P /0A =411.3MPa 延伸率 δ=(1l -0l )/0l *100%=33.24% 截面收缩率ψ=(0A -1A )/0A *100%=68.40% (3)绘制低碳钢P~ l ? 曲线

8学时实验--材料力学8学时实验讲义

材料力学实验讲义

§1-1 金属材料的拉伸实验 一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度R eH,下屈服强度R eL和抗拉强度R m 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度R m。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。 二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。 三、试样 (a) b h l0 l (b) 图1-1 试样 拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均

由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。平行部分中测量伸长用的长度称为标距。受力前的标距称为原始标距,记作l 0,通常在其两端划细线标志。 国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。 四、实验原理 低碳钢(Q235 钢)拉伸实验(图解方法) 将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F-ΔL 曲线),如图(1-2)。观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段(弹性阶段、屈服阶段、强化阶段和局部变形阶段)。 屈服阶段反映在F-ΔL 曲线图上为一水平波动线。上屈服力eH F 是试样发生屈服而载荷首次下降前的最大载荷。下屈服力eL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大力R m 是试样在屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算: 上屈服强度R eH :0 S F R eH eH = (1-1) 下屈服强度R eL :0 S F R eL eL = (1-2 ) 抗拉强度R m : 0 S F R m m = (1-3) 在强化阶段任一时刻卸载、再加载,可以观察加载、御载规律和冷作硬化现象。 在F m 以前,变形是均匀的。从F m 开始,产生局部伸长和颈缩,由于颈缩,使颈缩处截面减小,致使载荷随之下降,最后断裂。断口呈杯锥形。 测量断后的标距部分长度L u 和颈缩处最小直径d u ,按以下两式计算其主要塑性指标:

材料力学实验报告答案

力学实验报告标准答案

目录 一、拉伸实验 (2) 二、压缩实验 (4) 三、拉压弹性模量E测定实验 (6) 四、低碳钢剪切弹性模量G测定实验 (8) 五、扭转破坏实验 (10) 六、纯弯曲梁正应力实验 (12) 七、弯扭组合变形时的主应力测定实验 (15) 八、压杆稳定实验 (18)

一、拉伸实验报告标准答案 实验目的: 见教材。 实验仪器 见教材。 实验结果及数据处理: 例:(一)低碳钢试件 强度指标: P s =__22.1___KN 屈服应力 σs = P s /A __273.8___MP a P b =__33.2___KN 强度极限 σb = P b /A __411.3___MP a 塑性指标: 1L -L 100%L δ=?=伸长率 33.24 % 1 100%A A A ψ-=?=面积收缩率 68.40 % 低碳钢拉伸图:

(二)铸铁试件 强度指标: 最大载荷P b =__14.4___ KN 强度极限σ b = P b / A = _177.7__ M P a 问题讨论: 1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的 试件延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2、分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切

材料力学实验资料——电测法

实验三 扭转实验 一、实验目的 1.测定低碳钢扭转时的强度性能指标:扭转屈服应力s τ和抗扭强度b τ。 2.测定灰铸铁扭转时的强度性能指标:抗扭强度b τ。 3.绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。 二、实验设备和仪器 1.扭转试验机 2.游标卡尺 三、实验试样 按冶金部标准采用圆形截面试件,两端成扁圆形。如图1所示。 图1 扭转试件图 圆形截面试样的直径mm 10=d ,标距d l 5=或d l 10=,平行部分的长度为mm 20+l 。若采用其它直径的试样,其平行部分的长度应为标距加上两倍直径。试样头部的形状和尺寸应适合扭转试验机的夹头夹持。 由于扭转试验时,试样表面的切应力最大,试样表面的缺陷将敏感地影响试验结果,所以,对扭转试样的表面粗糙度的要求要比拉伸试样的高。对扭转试样的加工技术要求参见国家标准GB10128—88。 四、实验原理与方法 1.测定低碳钢扭转时的强度性能指标 试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。随着外力偶矩的增加,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩es M ,低碳钢的扭转屈服应力为

p es s 43W M = τ (1) 式中:16/3p d W π=为试样在标距内的抗扭截面系数。 在测出屈服扭矩s T 后,改用电动加载,直到试样被扭断为止。测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩eb M ,低碳钢的抗扭强度为 p eb b 43W M =τ (2) 对上述两公式的来源说明如下: 低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的?-e M 图如图12所示。当达到图中A 点时,e M 与?成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力s τ,如能测得此时相应的外力偶矩ep M ,如图13a 所示,则扭转屈服应力为 p ep s W M = τ (3) 经过A 点后,横截面上出现了一个环状的塑性区,如图2b 所示。若材料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的切应力分布可简化成图2c 所示的情况,对应的扭矩s T 为 图1 低碳钢的扭转图 s s s (a ) (b ) (c ) 图2 低碳钢圆柱形试样扭转时横截面上的切应力分布 (a )p T T =;(b )s p T T T <<;(c )s T T = s p s 3 d/2 2 s d/2 0 s s 3 4 12 d 2d 2ττπρρπτρπρρτW d T == ==? ? 由于es s M T =,因此,由上式可以得到

材料力学试题及答案)汇总

2010—2011材料力学试题及答案A 一、单选题(每小题2分,共10小题,20分) 1、 工程构件要正常安全的工作,必须满足一定的条件。下列除( )项,其他各项是必须满足的条件。 A 、强度条件 B 、刚度条件 C 、稳定性条件 D 、硬度条件 2、内力和应力的关系是( ) A 、内力大于应力 B 、内力等于应力的代数和 C 、内力是矢量,应力是标量 D 、应力是分布内力的集度 3、根据圆轴扭转时的平面假设,可以认为圆轴扭转时横截面( )。 A 、形状尺寸不变,直径线仍为直线。 B 、形状尺寸改变,直径线仍为直线。 C 、形状尺寸不变,直径线不保持直线。 D 、形状尺寸改变,直径线不保持直线。 4、建立平面弯曲正应力公式z I My =σ,需要考虑的关系有( )。 A 、平衡关系,物理关系,变形几何关系; B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系; D 、平衡关系, 物理关系,静力关系; 5、利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常数。 A 、平衡条件。 B 、边界条件。 C 、连续性条件。 D 、光滑性条件。 6、图示交变应力的循环特征r 、平均应力m σ、应力幅度a σ分别为( )。 A -10、20、10; B 30、10、20; C 31- 、20、10; D 31-、10、20 。

7、一点的应力状态如下图所示,则其主应力1σ、2σ、3σ分别为()。 A 30MPa、100 MPa、50 MPa B 50 MPa、30MPa、-50MPa C 50 MPa、0、-50Mpa、 D -50 MPa、30MPa、50MPa 8、对于突加载的情形,系统的动荷系数为()。 A、2 B、3 C、4 D、5 9、压杆临界力的大小,()。 A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关; C 与压杆材料无关; D 与压杆的柔度大小无关。 10、利用图乘法计算弹性梁或者刚架的位移,要求结构满足三个条件。以下那个条件不是必须的() A、EI为常量 B、结构轴线必须为直线。 C、M图必须是直线。 D、M和M至少有一个是直线。 二、按要求作图(共12分) 1、做梁的剪力、弯矩图(10分)

材 料 力 学 实 验 报 告

材料力学实验报告 专业: 班级: 姓名: 济南大学土建学院力学实验室

2008年1月 试验报告须知 一、实验报告是实验者最后交出的成果,是实验资料的分析总结,应严肃认真地完成实验报告、认真填好实验目的、试验用材料、实验用器具,等内容。 二、要认真如实地填写试验数据,填写后的试验数据须经教师认可。 三、要严格按照实验步骤进行试验。试验报告应当数据完整,图表清晰整洁、字体清楚、美观。 四、报告中“思考习题”项空白不够用时,可自己用白纸书写贴入该栏。

目录 试验一拉伸试验 (4) 试验二压缩试验 (7) 试验三弹性模量E试验 (9) 试验四扭转试验 (12) 试验五纯弯曲梁正应力试验 (14) 试验六弯扭组合主应力试验 (17)

试验一常温下静载金属拉伸性能试验报告日期年月日姓名:同组人实验室温度℃教师签字成绩 一、实验目的 二、实验仪器设备 试验机名称型号 低碳钢选用量程 kN读数精度 kN 铸铁选用量程kN读数精度kN 量具名称读数精度 mm 三、原始数据记录

低 碳 钢 材 料 数 据 记 录 铸 铁 试 样 原 始 数 据 四、数据处理(计算结果保留到整数位) 1) 低碳钢拉伸 ( 1MPa=1 2 mm N ) 屈服极限 0A P S S = σ= 强度极限 0 A P b b = σ= 延伸率 () %1000 01?-= L L L δ=

截面收缩率 () () %100%1002 2 120 01?-= ?-=d d d A A A ψ= 2) 铸铁拉伸 强度极限 0 A P b b = σ= 低 碳 钢 材 料 计 算 结 果 五、简答下列问题 1、画出两种材料拉伸曲线图(P-△L ) 2、试比较低碳钢和铸铁拉伸时的力学性质。

北航材料力学在线作业三 附答案

北航《材料力学》在线作业三 一、单选题(共 20 道试题,共 80 分。) 1. 对于不同柔度的塑性材料压杆,其最大临界应力将不超过材料的() A. 比列极限 B. 弹性极限 C. 屈服极限 D. 强度极限 满分:4 分 2. 在平面图形的几何性质中,()的值可正、可负、也可为零。 A. 静矩和惯性矩 B. 极惯性矩和惯性矩 C. 惯性矩和惯性积 D. 静矩和惯性积 满分:4 分 3. 图示简支梁,截面C的挠度与()成反比例关系。 A. 跨度L B. 荷载集度q C. q的作用区域a D. 材料的弹性模量E 满分:4 分 4. 某机器的圆轴用45号钢制成,在使用中发现弯曲刚度不够,改善抗弯刚度的有效措施是() A. 对轴进行调质热处理 B. 改用优质合金钢

C. 加粗轴径 D. 增加表面光洁度 满分:4 分 5. 如图所示,在平板和受啦螺栓之间垫上一个垫圈,可以提高()强度。 A. 螺栓的拉伸 B. 螺栓的剪切 C. 螺栓的挤压 D. 平板的挤压 满分:4 分 6. 表示扭转变形程度的量()。 A. 是扭转角,不是单位扭转角 B. 是单位扭转角,不是扭转角 C. 是扭转角和单位扭转角 D. 不是扭转,也不是单位扭转角 满分:4 分 7. 挠曲线近似微分方程不能用于计算()的位移。 A. 变截面直梁 B. 等截面曲梁 C. 静不定直梁 D. 薄壁截面等直梁 满分:4 分

8. 在水平压缩冲击问题中,曾得到这样一个结论,杆件体积越大,相应的冲击应力越小,该结 论() A. 只适用于等截面直杆,不适用于变截面直杆 B. 只适用于变截面直杆,不适用于等截面直杆 C. 既适用于等直杆,也适用于变截面直杆 D. 既不适用于等直杆,也不适用于变截面直杆 满分:4 分 9. 图示刚性槽内嵌入一个铝质立方块,设铝块与钢槽间既无间隙,也无摩擦,则在均布压力p 作用下铝块处于() A. 单向应力状态,单向应变状态 B. 平面应力状态,平面应变状态 C. 单向应力状态,平面应变状态 D. 平面应力状态,单向应变状态 满分:4 分 10. 非对称薄壁截面梁只发生平面弯曲、不发生扭转的横向力作用条件是()。 A. 作用面平行于形心主惯性平面 B. 作用面重合于形心主惯性平面 C. 作用面过弯曲中心 D. 作用面过弯曲中心且平行于形心主惯性平面 满分:4 分 11. 在下列关于轴向拉压杆轴力的说法中,()是错误的。 A. 拉压杆的内力只有轴力

材料力学实验报告实验报告

材料力学实验报告_实验报告_ 材料力学实验报告 材料力学实验报告不会写的话,下面请看给大家整理收集的材料力学实验报告相关内容,供大家阅读参考。材料力学实验报告格式 一、实验目的: 二、实验设备和仪器: 三、实验记录和处理结果: 四、实验原理和方法: 五、实验步骤及实验结果处理: 六、讨论:材料力学实验报告 一、用途 该实验台配上引伸仪,作为材料力学实验教学中测定材料弹性模量E实验用。 二、主要技术指标 1. 试样:Q235钢,直径d =10mm,标距l=100mm。 2. 载荷增量△F=1000N ①砝码四级加载,每个砝码重25N; ②初载砝码一个,重16N; ③采用1:40杠杆比放大。 3. 精度:一般误差小于5%。 三、操作步骤及注意事项 1. 调节吊杆螺母,使杠杆尾端上翘一些,使之与满载时关于水平位置大致对称。 注意:调节前,必须使两垫刀刃对正V型槽沟底,否则垫刀将由于受力不均而被压裂。 2. 把引伸仪装夹到试样上,必须使引伸仪不打滑。

①对于容易打滑的引伸仪,要在试样被夹处用粗纱布沿圆周方向打磨一下。②引伸仪为精密仪器,装夹时要特别小心,以免使其受损。③采用球铰式引伸仪时,引伸仪的架体平面与实验台的架体平面需成45o左右的角度。 3. 挂上砝码托。 4. 加上初载砝码,记下引伸仪的读数。 5. 分四次加等重砝码,每加一次记一次引伸仪的读数。 注意:加砝码时要缓慢放手,以使之为静载,并注意防止失落而砸伤人、物。 6. 实验完毕,先卸下砝码,再卸下引伸仪。 7. 加载过程中,要注意检查传力机构的零件是否受到干扰,若受干扰,需卸载调整。 四、计算试样横截面积A 应力增量 d24 F A 引伸仪放大倍数K=20xx 引伸仪读数 Ni(i0,1,2,3,4) 引伸仪读数差 NjNiNi1(j1,2,3,4) 引伸仪读数差的平均值 N平均14Nj 4j1 N平均 K试样在标距l段各级变形增量的平均值 l 应变增量 l l 材料的弹性模量 E

组 合 变 形 实 验材料力学实验报告

组合变形实验 一.实验目的: 1.学习组合变形情况下的应力测定方法。 2.熟悉应变仪全桥测量原理及接桥方法 3.对在弯扭组合受力状态下的薄壁圆管,分别测定其弯曲正应力和扭转剪应力,并与理论值比较。 二.实验设备: 多功能实验台、程控静态电阻应变仪、数字测力仪。 三.试验原理: 1)参阅材料力学、工程力学课程的教材及其他相关材料。 2)组合变形实验装置如图: 测试的试样为薄壁圆管,其长度为,一端固定在铸铁框架上,另一端通过扇形加力臂上的钢丝绳对薄壁圆管试样施加载荷。在钢丝绳与加载手柄之间连接一个力传感器,通过数字测力计把传感器的信号显示出来。在试样的上下边缘对称位置,粘贴互相垂直的鱼尾应变花2片,如图所示。当试样受到F 力作用时,薄壁圆管试样上的应变片均受到弯曲与扭转应变,即 。在比例极限内,应力与应变之间存在着正比关系,即σ=E ·ε通过测得 的应变值便可计算出该点的应力数值。 在理论课中已经学习了强度理论,也了解受弯扭组合变形的应力状态,因此也就可以分析出各应变片感受的应变关系,我们利用电桥输出特性,通过巧妙的全桥接桥方式,就可以只测出由扭矩产生的应变或由弯矩产生的应变,即ε 读 =4ε 弯 或ε 读 =4ε 扭 , 在测量由弯矩产生的应变时,根据应力状态理论可知 ,所以对于由弯 矩产生的0o 方向的应变即为 ,由虎克定律得到弯曲正应力 。 在测量由扭矩产生的应变时,取薄壁圆管试样上测点处单元体,如下图所示的应力状态 l W N εε±±04521εμ ε?-= o 45012 εμε-= o 0εσ?=E

其中有: ,在比例极限内,近似地 同时 , 所以 故,由于,所以。 在弯扭组合变形实验中,使用的是互相垂直的鱼尾应变花,其贴片方向且与轴线成±450, 故α=45o ,则 , 即γR =2ε 45 o 。 由剪切虎克定律得到扭转剪应力 。 四.实验步骤 1.量取试样相关尺寸,加载力臂, 2.根据电测原理、电桥输出特性,通过讨论分析弯曲正应变和扭转剪应变的全桥接桥方式。 3.按照第二步分析的结果,将应变片接入应变仪。 4.打开电源开关,当程序结束后,用通道切换键,找到你所接入的通道,按下“自动平衡”键使应变仪通道清零。 5. 打开测力计电源开关,确定档位(SCLY-2数字测力计选20KN 档,XL2116A 测力仪选N 档)。在确认没有给薄壁圆管试样梁加力的情况下,按下“清零”键。 6.逐级加载,每增加0.1KN 记录一次应变仪的读数,载荷加至0.4KN 后,卸载。 7.在完成弯曲应变测量后,从第三步重复,测量扭转应变。 五.实验记录 1.试样及装置的相关数据: 内径d= 外径D= 弯矩力臂R W = 扭矩力臂R N = 弹性模量E= 泊松比μ= 2.实验记录: R dy tg dx γ?= dx dy R ?= γαcos dx dl = αsin dy dl ?=?α αααα2sin 21cos sin cos sin dx dy dx dy dx dy dl dl ?=?=?=?αγ2sin 21R dl dl =?dl dl ?=αεαγεα2sin 21?=R R o γε2 1 45=R G γτ?=

材力实验讲义B_---少学时和工程力学,2014-3-7

实验一材料在轴向拉伸、压缩和扭转时的 力学性能 预习要求: 1、预习教材中有关材料在拉伸、压缩、扭转时力学性能的内容; 2、预习本实验内容及微控电子万能试验机的原理和使用方法; 一、实验目的 σ,强1、观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限 s σ,延伸率δ和断面收缩率ψ; 度极限 b 2、观察铸铁在轴向拉伸时的各种现象; 3、观察低碳钢和铸铁在轴向压缩过程中的各种现象; 4、观察低碳钢和铸铁在扭转时的各种现象; 5、掌握微控电子万能试验机的操作方法。 二、实验设备与仪器 1、微控电子万能试验机; 2、扭转试验机; 3、50T微控电液伺服万能试验机; 4、游标卡尺。 三、试件 试验表明,试件的尺寸和形状对试验结果有影响。为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。根据国家标准(GB6397—86),将金属拉伸比例试件的尺寸列表如下: d0=10mm,标距l0=100mm.。 本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件h/d0=2,

d 0=15mm, h =30mm (图二)。 本实验的扭转试件按国家标准(GB6397-86)制做。 四、实验原理和方法 (一)低碳钢的拉伸试验 实验时,首先将试件安装在试验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量试验段的变形。然后开动试验机,缓慢加载,同时,与试验机相联的微机会自动绘制出载荷—变形曲线(F —?l 曲线,见图三)或应力—应变曲线(σ—ε曲线,见图四)。随着载荷的逐渐增大,材料呈现出不同的力学性能: 1、线性阶段 在拉伸的初始阶段,σ—ε 曲线为一直线,说明应力σ与应变ε成正比,即满足胡克定律。线性段的最高点称为材料的比例极限(σp ),线性段的直线斜率即为材料的弹性模量E 。 若在此阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe )。一般对于钢等许多材料,其弹性极限与比例极限非常接近。 2、屈服阶段 超过比例极限之后,应力与应变不再成正比,当载荷增加到一定值时,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象称为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs )。 图二 图一 ?l F 图三 σ σσσ图四

材料力学实验指导书

工程力学实验指导书 主讲:林植慧 机械与汽车工程学院 SCHOOL OF MECHANICAL AND AUTOMOTIVE ENGINEERING

实验一, 二 低碳钢(Q235钢)、铸铁的轴向拉伸试验 一、实验目的与要求 1.观察低碳钢(Q235钢)和铸铁在拉伸试验中的各种现象。 2.测绘低碳钢和铸铁试件的载荷―变形曲线(F ―Δl 曲线)及应力―应变曲线(σ―ε曲线)。 3.测定低碳钢拉伸时的比例极限P σ,屈服极限s σ、强度极限b σ、伸长率δ、断面收缩率ψ和铸铁拉伸时的强度极限b σ。 4.测定低碳钢的弹性模量E 。 5.观察低碳钢在拉伸强化阶段的卸载规律及冷作硬化现象。 6.比较低碳钢(塑性材料)和铸铁(脆性材料)的拉伸力学性能。 二、实验设备、仪器和试件 1.微机控制电子万能试验机。 2.电子式引伸计。 3.游标卡尺。 4.低碳钢、铸铁拉伸试件。 三、实验原理与方法 材料的力学性能主要是指材料在外力作用下,在强度和变形方面表现出来的性质,它是通过实验进行研究的。低碳钢和铸铁是工程中广泛使用的两种材料,而且它们的力学性质也较典型。 试验采用的圆截面短比例试样按国家标准(GB/T 228-2002《金属材料 室温拉伸试验方法》) 制成,标距0l 与直径0d 之比为5100 0或=d l ,如图1-1所示。这样可以避免因试样尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。图中:0d 为试样直径,0l 为试样的标距。国家标准中还规定了其他形状截面的试样。 图 1-1 金属拉伸试验在微机控制电子万能试验机上进行,在实验过程中,与电子万能试验机联机的计算机显示屏上实时绘出试样的拉伸曲线(也称为F ―l ?曲线),如图1-2所示。低碳钢试样的拉伸曲线(图1-2a)分为弹性阶段,屈服阶段,强化阶段及局部变形阶段。如果在强化阶段

北京航空航天大学2015春《材料力学》在线作业一满分答案

北京航空航天大学2015春《材料力学》在线作业一满分答案

15春北航《材料力学》在线作业一满分答案 一、单选题(共20道试题,共80分。) 1. 图示平面刚架AB段的内力分量()为零 M 和Q A. B. M 和N c.N和Q d.N 正确答案:A 2.在轴向拉压杆和受扭圆轴的横截面上分别产生()。 A.线位移、线位移 B.角位移、角位移

C.线位移、角位移

D.角位移、线位移 正确答案:C 3.梁的挠度是()。 A.横截面上任一点沿梁轴垂直方向的线位移 B.横截面形心沿梁轴垂直方向的线位移 C.横截面形心沿梁轴方向的线位移 D.横截面形心的位移 正确答案:B 4.中性轴是梁的()的交线。 A.纵向对称面与横截面 B.纵向对称面与中性层 C.横截面与中性层 D.横截面与顶面或底面 正确答案:C 5. 图示单元体()无线应变。 A.仅沿X方向

仅沿y方向 B. c.沿x,y两个方向 d.沿任意方向 正确答案:C 5.在横截面面积相等的条件下,()截面杆的抗扭强度最高。 A.正方形 B.矩形 C.实心圆形 D.空心圆形 正确答案:D 6.在冲击应力和变形实用计算的能量法中,因 为不计被冲击物的质量,所以计算结果与实 际情况相比,() A.冲击应力偏大,冲击变形偏小 B.冲击应力偏小,冲击变形偏大 C.冲击应力和变形均偏大 D.冲击应力和变形均偏小

正确答案:C 7.长度和受载形式均相同的两根悬臂梁,若其抗弯截面刚度EI相同,而截面形状不同, 则两梁的() A.最大正应力相等,最大挠度不等 B.最大正应力不等,最大挠度相等 C.最大正应力和最大挠度都不等 D.最大正应力和最大挠度都相等 正确答案:B 8.在三向压应力接近相等的情况下,脆性材料和塑性材料的破坏方式()。 A.分别为脆性断裂、塑性流动 B.分别为塑性流动、脆性断裂 C.都为脆性断裂 D.都为塑性流动 正确答案:D 10. 下列四根圆轴,横截面面积相同,单位长度扭转角

材料力学实验指导书 (1)..

材料力学实验指导书 河北科技大学建筑工程学院 2005年2月

目录 实验一拉伸实验 (2) 实验二压缩实验 (7) 实验三纯弯曲梁的正应力实验 (10) 实验四材料弹性模量E和泊松比μ的测定 (14) 附录1 微控万能材料实验机 (19) 附录2 组合式材料力学多功能实验台 (20) 附录3 电测法的基本原理 (22)

实验一 拉伸试验 一、实验目的和实验要求 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的应力应变图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 5.学习和掌握材料的力学性能测试的基本实验方法。 二、实验原理 1.为了检验低碳钢拉伸时的机械性质,应使试样轴向受拉直到断裂,在拉伸过程中以及试样断裂后,测读出必要的特征数据(如;P S 、P b 、l 1、d l )经过计算,便可得到表示材料力学性能的四大指标:σs 、σb 、δ、ψ。 2.铸铁属脆性材料,轴向拉伸时,在变形很小的情况下就断裂,故一般测定其抗拉强度极限 σb 。 三、实验方法 按照国家标准《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。 1.测定低碳钢拉伸时的强度和塑性性能指标 实验开始后,观察实验软件绘出的拉伸过程中的σ-ε曲线,直至试件拉断,以测出低碳钢在拉伸时的力学性质。

相关文档
最新文档