金属微生物腐蚀的电化学机理

金属微生物腐蚀的电化学机理
金属微生物腐蚀的电化学机理

原电池原理金属的电化学腐蚀

原电池原理金属的电化学腐蚀 一、实验目的 1、理解原电池原理。 2、认识金属的电化学腐蚀的原因。 二、实验说明 (一)、原电池原理 1.实验要求所用电极表面积要大,并且要清洁。如果锌片或铜片上有杂质,会形成许许多多的微电池,现象就会不明显。所用的铜片如果有明显的氧化层或已经锈蚀,要用酸洗,以除去氧化物和绿锈,然后用去污粉擦净,再用水冲洗干净。即使铜片表面看上去是光洁的,也要用去污粉把它擦到发亮,以除去表面的氧化物和油脂等污垢。锌片使用前最好也用酸洗,然后再用水冲洗干净。 2.实验不难成功,但注意不要引导学生观察锌片在形成原电池前后气泡量的变化。由于锌片含有杂质和铜极上发生电极极化,一般很难观察到锌片在形成原电池前后气泡量的差别。 观察电流表指针偏转时,应引导学生注意指针偏转的方向,并根据指针偏转的方向来判别电流的方向。 (二)、金属的电化学腐蚀 1.实验要用较长的时间,应提示学生在等候观察现象时,先进行下面的实验。铁氰化钾溶液遇到Fe2+时会产生蓝色沉淀,因此可用于检验Fe2+的存在。学生知道这一现象即可,不要求写反应的化学方程式。 2.这三个小实验实际上都运用了原电池反应,应引导学生结合实验,思考实验后的“问题和讨论”。 三、问题和讨论提示: 1.装配原电池时应具备以下条件:必须有两种活动性不同的金属,而且要平行地浸在电解质溶液里,两个电极要用导线连接。 如果用铁片代替锌片做原电池原理实验,铜片的表面几乎没有气泡逸出,说明铁铜原电池中的电流可能较弱,在铜丝的表面观察不到气泡的产生。如果用导线连接一个电流计,可以观察到电流表的指针发生偏转,表明铁铜原电池中有电流产生。 2.实验结果表明,镀锡铁比镀锌铁容易被腐蚀。

微生物电活性及其腐蚀影响机理研究

微生物电活性及其腐蚀影响机理研究 微生物与金属间的氧化还原反应其本质上是由微生物代谢活动引起的金属与微生物间的电子传递。微生物具有电活性与否将对腐蚀过程产生重大的影响。 因此研究微生物电活性及其对腐蚀的影响,对深入认识金属的微生物腐蚀,探索防腐蚀策略具有重要意义。本文在研究大肠埃希氏菌和荧光假单胞菌电活性的基础上,利用电化学方法、表面分析技术和微生物学方法,对再生水中微生物电活性对碳钢腐蚀影响机理进行了研究。 主要得出如下结论:(1)采用循环伏安法研究了大肠埃希氏菌和荧光假单胞菌的微生物电活性,结果表明,大肠埃希氏菌在培养基和PBS缓冲液中未表现出电活性,荧光假单胞菌出现还原峰,可能是由于其分泌的黄色色素引起的。大肠埃希氏菌和荧光假单胞菌在厌氧状态下电活性无明显变化。 大肠埃希氏菌和荧光假单胞菌都可以利用AQS作为电子穿梭体进行胞外电子传递,10ppm浓度下可逆性较好。同浓度AQS下,微生物浓度越大,电位越正,电子转移速率越快。 (2)以AQS为电子穿梭体,研究了大肠埃希氏菌电活性对碳钢的腐蚀影响机理。结果表明,AQS进一步抑制了大肠埃希氏菌对碳钢的腐蚀,平均腐蚀速率降低了17.24%。 大肠埃希氏菌代谢产生的电子在AQS作用下促进了Fe OOH向Fe3O4转化,加速腐蚀层分层,由Fe3O4和菌体组成致密的腐蚀内层阻隔了DO扩 散,Fe2+在腐蚀内层附近起到了替代阳极的作用。(3)以AQS为电子穿梭体,研究了荧光假单胞菌电活性对碳钢的腐蚀影响机理。 结果表明,AQS进一步促进了荧光假单胞菌对碳钢的腐蚀,平均腐蚀速率升

高了23%。AQS对荧光假单胞菌有较强的生物毒性,同时,荧光假单胞菌自身分泌的铁载体可与铁离子螯合,减少了Fe2+数量,降低了Fe3O4的含量,使由Fe3O4和菌体组成的腐蚀内层不够致密,并减弱了Fe2+的阳极替代作用。

土壤中的微生物腐蚀与防护

微生物腐蚀与防护 摘要:本文概括介绍了微生物腐蚀的常见菌种,如硫酸盐还原菌、铁细菌等,其中主要介绍了硫酸盐还原菌的腐蚀机理。针对微生物腐蚀,目前国内外的防腐技术分为物理方法、化学方法和生物方法,文章对主要的防腐技术进行了介绍。 关键词:微生物腐蚀硫酸盐还原菌防腐技术 Abstract: This paper presents the bacteria species involved in micro-biologically influenced corrosion, such assulfate-reducingbacteria and iron bacteria.The corrosion mechanisms by sulfate-reducing bacteria (SRB) was mainlyreviewed.Anti-corrosion techniques,including physical method,chemical method and biological method, were also introduced in thispaper. Keywords: Micro-biologically influenced corrosion; sulfate-reducing bacteria; anti-corrosion technique 1.前言 微生物腐蚀(Micro-biologically Influenced Corrosion,简称MIC)是指微生物引起的腐蚀或受微生物影响的腐蚀。其本质是微生物新陈代谢的产物通过影响腐蚀反应的阴极过程或阳极过程,从而影响腐蚀速率和类型。为了找到针对 MIC 的既环保又有效的防腐措施,必须首先了解腐蚀微生物的种类及作用机理,了解当今国内外防腐技术的研究现状。

电化学腐蚀力学

电化学腐蚀动力学 20世纪40年代末50年代初发展起来的电化学动力学是研究非平衡体系的电化学行为及动力学过程的一门科学,它的应用很广,涉及能量转换(从化学能、光能转化为电能)、金属的腐蚀与防护、电解以及电镀等领域,特别在探索具有特殊性能的新能源和新材料时更突出地显示出它的重要性,其理论研究对腐蚀电化学的发展也起着重要作用。 电化学动力学中的一些理论在金属腐蚀与防护领域中的应用就构成了电化学腐蚀动力学的研究内容,主要研究范围包括金属电化学腐蚀的电极行为与机理、金属电化学腐蚀速度及其影响因素等。例如,就化学性质而论,铝是一种非常活泼的金属,它的标准电极电位为-1.662V。从热力学上分析,铝和铝合金在潮湿的空气和许多电解质溶液中,本应迅速发生腐蚀,但在实际服役环境中铝合金变得相当的稳定。这不是热力学原理在金属腐蚀与防护领域的局限,而是腐蚀过程中反应的阻力显著增大,使得腐蚀速度大幅度下降所致,这些都是腐蚀动力学因素在起作用。除此之外,氢去极化腐蚀、氧去极化腐蚀、金属的钝化及电化学保护等有关内容也都是以电化学腐蚀动力学的理论为基础的。电化学腐蚀动力学在金属腐蚀与防护的研究中具有重要的意义。 第一节腐蚀速度与极化作用 电化学腐蚀通常是按原电池作用的历程进行的,腐蚀着的金属作为电池的阳极发生氧化(溶解)反应,因此电化学腐蚀速度可以用阳极电流密度表示。 例如,将面积各为10m2的一块铜片和一块锌片分别浸在盛有3%的氯化钠溶液的同一容器中,外电路用导线连接上电流表和电键,这样就构成一个腐蚀电池,如2-1。 图2-1 腐蚀电池及其电流变化示意图

查表得知铜和锌在该溶液中的开路电位分别为+0.05伏和-0.83伏,并测得外 电路电阻R 外=110欧姆,内电路电阻R 内=90欧姆。 让我们观察一下该腐蚀电池接通后其放电流随时间变化的情况。 外电路接通前,外电阻相当于无穷大,电流为零。 在外电路接通的瞬间,观察到一个很大的起始电流,根据欧姆定律其数值为 o o 3k a -0.05(0.83)= 4.41011090 I R ??---==?+始安培 式中o k ?-——阴极(铜)的开路电位,伏; o a ?——阳极(锌)的开路电位,伏; R ——电池系统的总电阻,欧姆 在达到最大值I 始 后,电流又很快减小,经过数分钟后减小到一个稳定的电 流值I 稳=1.5×10-4 安培,比I 始 小约30倍 。 为什么腐蚀电池开始作用后,其电流会减少呢?根据欧姆定律可知,影响电 流强度的因素是电池两极间的电位差和电池内外电路的总电阻。因为电池接通后 其内外电路的电阻不会随时间而发生显著变化,所以电流强度的减少只能是由于 电池两极间的电位差发生变化的结果。实验测量证明确实如此。 图2-2表示电池电路接通后,两极电位变化的情况。从图上可以看出,当电 路接通后,阴极(铜)的电位变得越来越小。最后,当电流减小到稳定值I 稳时两 极间的电位差减小到(k ?-a ?),而k ?和a ? 分别是对应于稳定电流时阴极和阳极 的有效电位。由于k a -??()比(o o k a -??)小很多,所以,在R 不变的情况下, I 稳 = k a -R ?? 必然要比I 始小很多。

金属的电化学腐蚀与防护习题

金属的电化学腐蚀与防 护习题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

训练5 金属的电化学腐蚀与防护 一、金属的腐蚀 1.关于金属腐蚀的叙述中,正确的是 ( ) A .金属被腐蚀的本质是M +n H 2O===M(OH)n +n 2 H 2↑ B .马口铁(镀锡铁)镀层破损后被腐蚀时,首先是镀层被氧化 C .金属在一般情况下发生的电化学腐蚀主要是吸氧腐蚀 D .常温下,置于空气中的金属主要发生化学腐蚀 2.下列事实与电化学腐蚀无关的是 ( ) A .光亮的自行车钢圈不易生锈 B .黄铜(Cu 、Zn 合金)制的铜锣不易生锈 C .铜、铝电线一般不连接起来作导线 D .生铁比熟铁(几乎是纯铁)容易生锈 3.出土的锡青铜(铜锡合金)文物常有Cu 2(OH)3Cl 覆盖在其表面。下列说 法不正确的是( ) A .锡青铜的熔点比纯铜低 B .在自然环境中,锡青铜中的锡可对铜起保护作用 C .锡青铜文物在潮湿环境中的腐蚀比干燥环境中快 D .生成Cu 2(OH)3Cl 覆盖物是电化学腐蚀过程,但不是化学反应过程 二、铁的析氢腐蚀和吸氧腐蚀 4.下列关于钢铁的析氢腐蚀的说法中正确的是 ( ) A .铁为正极 B .碳为正极 C .溶液中氢离子浓度不变 D .析氢腐蚀在任何溶液中都会发生 5.在铁的吸氧腐蚀过程中,下列5种变化可能发生的是 ( ) ①Fe 由+2价转化成+3价 ②O 2被还原 ③产生H 2 ④Fe(OH)3失水 形成Fe 2O 3·x H 2O ⑤杂质C 被氧化除去 A .①②④ B .③④ C .①②③④ D .①②③④⑤ 6.钢铁在潮湿的空气中会被腐蚀,发生的原电池反应为2Fe +2H 2O + O 2===2Fe(OH)2。以下说法正确的是 ( ) A .负极发生的反应为Fe -2e -===Fe 2+

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

腐蚀电化学试卷

腐蚀电化学试卷 一、填空题20’ 1.电极系统由电子导体相和离子导体相组成。 2.在电极系统中伴随着两个非同类导体之间的电荷转移而在两相界面上发生的化学反应,称为电极反应。 3.化学亲和势A反应一个体系进行化学反应的能力和方向,当A > 0时,反应将向顺向进行,当A < 0时,反应将向逆向进行,当A=0时,反应达到平衡。 4.腐蚀电池中相应的电极反应都是最大程度的不可逆过程的方式进行的。5.在表述相界面区中的电位分布情况时做了两点简单化的假设: 1.假设相界区中的电场是均匀电场。 2.假设溶液相中不存在空间电荷层。 6.右图为电极系统相界区的等效电路图 讨论R F→∞时,电极系统为完全极化电极 R F为有限值时,电极系统为不完全极化电极 R F≈0时,电极系统为不极化电极 7.费克第一定律表达式: 8.当金属处于零电荷电位时,金属的表面既不带有过剩的正电荷,也不带有过剩的负电荷。 9.稳态极化测量按其控制方式,分为恒电位法和恒电流法两大类10.Barnartt三点法的要点是测定极化曲线弱极化区上ΔE、2ΔE和-2ΔE三点 以及对应的极化电流I ΔE 、I2 ΔE 和I-2ΔE,通过数学变换,可同时计算出i corr、b a 和b c的数值 二、判断题10’ 1.阳极反应进行的方向是从还原体的体系向氧化体的体系转化。(√) 2.由E-Ee=Φ-Φe可得Ee=Φe。(×) 3.一个相的内电位Φ的数值无法测得,两个相的内电位之差Φ的绝对值是可以测出的。(×) 4.电极反应的过电位与电极反应的电流密度之间的关系为ηI≥0。(√)5.凡是平衡电位比混合电位高的电极反应,按阴极反应的方向进行;反之,则按阳极反应的方向进行。(√) 6.干电池属于腐蚀电池。(×) 7.腐蚀电位越高,腐蚀速度越快(×) 8.Fe在水中的反应Fe+H2O→Fe(OH)2+2H++2e只受溶液的PH值影响(×)9.增加金属中析氢过电势小的阴极性杂志会减小析氢腐蚀。(×) 10.在敞开系统中铁在水中的腐蚀速度随温度升高而增大。(×) 三、选择题30’ 1.一块表面上覆盖有AgCl膜层的银片浸在NaCl的水溶液中,则有(B)A.Ag是离子导体相B.Ag是第二类电极 C.Ag表面发生还原反应D.Ag表面不会发生电极反应 2.在下列电极中选出与其他三个不同种类的电极(D) A.氢电极B.卤素电极C.氧电极D.甘汞电极 3.使一个单位正电荷穿过相P的表面层而需要做的电功称为P的(C)

知识讲解_金属的电化学腐蚀与防护(基础)

高考总复习金属的电化学腐蚀与防护 编稿:房鑫审稿:曹玉婷 【考纲要求】 1.金属腐蚀的种类,探究金属发生电化学腐蚀的原因。 2.了解金属腐蚀的危害,防止金属腐蚀的措施。 【考点梳理】 考点一:金属腐蚀 1.定义:金属腐蚀是指金属或合金与周围接触到的气体或液体进行化学反应而腐蚀损耗的过程。 2.本质:金属腐蚀的实质都是金属原子失去电子被氧化生成金属阳离子的过程。 M-ne-==M n+(M代表金属元素)。 3.类型:(1)化学腐蚀:金属或合金直接与具有腐蚀性的化学物质接触发生氧化还原反应而消耗的过程。 (2)电化学腐蚀:不纯金属或合金与电解质溶液接触发生原电池反应而消耗的过程。 考点二:金属的电化学腐蚀 1 2.电化学腐蚀的种类: (1)种类:吸氧腐蚀与析氢腐蚀 (2)吸氧腐蚀与析氢腐蚀的比较(以钢铁为例) 3.金属腐蚀的快慢一般规律 (1) 在同一电解质溶液中,电解原理引起的腐蚀>原电池原理引起的腐蚀>化学腐蚀>有防腐措施的腐蚀。 (2) 在不同溶液中,金属在电解质溶液中的腐蚀>金属在非电解质溶液中的腐蚀;金属在强电解质溶液中的腐蚀>金属在弱电解质溶液中的腐蚀。 (3) 有保护措施的条件下,无防护条件的腐蚀>有一般防护条件下的腐蚀>牺牲阳极的阴极保护法条件下的腐蚀>外接电源(负极)的阴极保护法条件下的腐蚀。 (4) 对同一种电解质溶液来说,电解质溶液浓度越大,腐蚀越快。 (5) 由于金属表面一般不会遇到酸性较强的溶液,故吸氧腐蚀是金属腐蚀的主要形式,只有在金属活动性顺序表中排在氢以前的金属才可能发生析氢腐蚀,而位于氢之后的金属腐蚀时只能是吸氧腐蚀。 考点三:金属的电化学防护 1.在金属表面覆盖保护层。 ①在钢铁表面涂矿物性油脂、油漆或覆盖搪瓷、塑料等物质;

微生物腐蚀机理及对埋地管道腐蚀防护的影响_夏双辉

全面腐蚀控制2005年第19卷第3期1 引言 微生物腐蚀(MIC)是由细菌和真菌的存在及其活动所引起的腐蚀。据相关调查研究表明,管道外部的腐蚀沉积有27%与MIC有关。下面是有关微生物的一般描述: (1 ) 个体微生物很小(从0.2微米长到几百微米,宽2~3微米),该特性使它们很容易进入缝隙及其它地方。细菌和真菌可以生长成为宏观规模。 (2 ) 菌是可移动的,他可以移居到适合其生存的环境或者离开不利于其生存的环境,也就是说移向食物表面而离开有毒的材料。 (3 ) 菌具有对某种化学物质特定的接收功能,该功能使他们能够找到大量的食物源。 营养物质、尤其是有机营养物通常在大多数水环境中很短缺,但是表面包括金属,吸收这些物质后,会使这些营养物相对增加。 (4 ) 微生物能够承受较大范围的温度变化(至少-10~99℃)、pH值变化(0~10.5)及氧浓度的变化(0~100%标准大气压)。 (5 ) 它们以群体方式生长,这有助于个体间食物交叉供给,并使它们更可能在不利的环境中生存。 (6 ) 它们繁殖得很快(据报告繁殖期约18分钟)。 (7 ) 个体细胞能够由水、风、动物、飞行物或其他手段广泛而迅速地扩散,因而在该群体中的某些细胞到达有利于其生存环境的可能性很大。 (8 ) 许多微生物能够很快适应大量的不同营养源。例如:荧光假单胞菌能够利用100多种不同的化合物作为单一的碳源和能量,这些化合物包括糖脂类、乙醇、甲醇、有机酸及其它化合物。 (9 ) 许多微生物形成胞外多糖物质(胶囊或黏物质层)。产生的黏泥具有黏性,能捕捉有机物及垃圾(食物),阻止某些有毒物质(如:杀菌剂)或其他物质(缓蚀剂)的渗透,以及把细胞保持在营养液(大量流体)和这些物质扩散的界面之间。 (10 ) 许多细菌和真菌产生孢子,这些孢子对温度(有些甚至可以在沸点温度生存一小时以上)、酸、乙醇、杀虫剂、干燥、冷冻及许多其他不利的因素具有很强的抵抗能力。这些孢子可以存活上百年并在遇到合适环境时迅速成长。在自然环境中,存活与生长之间存在着不同。微生物能够抵抗长期的饥饿和干燥,如果环境在潮湿与干燥之间交替变化,微生物可以在干旱期存活,在潮湿期生长。 (11 ) 微生物依靠对化学物质的降解能力或通过利用黏泥、细胞壁和细胞膜的防渗透能力的特性而具 微生物腐蚀机理及对埋地管道腐蚀防护的影响 夏双辉1 戚明友1 李建秀2 (1、 合肥钢铁公司动力厂,合肥230011; 2、西施兰联合企业有限公司,河南南阳473100) 摘 要:本文简要叙述了产生微生物腐蚀的几类菌落及相应腐蚀的机理,并叙述了微生物腐蚀与埋地管道所处的环境、表面涂层及辅加的阴极保护的相互影响关系,这对于从事埋地管道的防腐蚀研究和实施保护有一定的参考作用。 关键词:微生物腐蚀 埋地管道 沉积 阴极保护 C o r r o s i o n M e c h a n i s m o f M I C a n d I n f l u e n c e s o n C o r r o s i o n a n d P r o t e c t i o n o f U n d e r g r o u n d P i p e l i n e Xia Shuanghui1 Qi Mingyou1 Li Jianxiu2 (1. Power Plant of Hefei Steel and Iron Corporation, Hefei 230011;2. Sislan Complex Enterprises Co., Ltd, Nanyang473100,Henan ) Abstract: This paper described the microorganisms and their corrosion mechanism, then described the environment, coatingsand cathodic protection of pipeline and MIC. The influences to each other were also introduced. Keywords: MIC; underground pipeline; deposits; cathodic protection 全 面 腐 蚀 控 制 T O T A L C O R R O S I O N C O N T R O L 第19卷第3期2005年6月 Vol.19 No.3 June. 2005

极化曲线在电化学腐蚀中的应用

极化曲线在电化学腐蚀中的应用 娄浩 (班级:材料化学13-1 学号:120133202059) 关键词:电化学腐蚀;极化;极化曲线;极化腐蚀图 据工业发达国家统计,每年由于腐蚀造成的损失约占国民生产总值的l~4%,世界钢铁年产量约有十分之一因腐蚀而报废,因此研究金属腐蚀对于国民经济发展和能源的合理利用具有重大意义。其中电化学腐蚀是金属腐蚀的一种最普遍的形式。论文分析了电化学腐蚀的机理以及极化曲线的理论基础。利用测量极化曲线的方法,研究金属腐蚀过程,已经得到广泛的应用。 1.金属腐蚀的电化学原理 金属腐蚀学是研究金属材料在其周围环境作用下发生破坏以及如何减缓或防止这种破坏的一门科学[1]。通常把金属腐蚀定义为:金属与周围环境(介质)之间发生化学或电化学而引起的破坏或变质。所以,可将腐蚀分为化学腐蚀和电化学腐蚀[2]。 化学腐蚀是指金属表面与非电解质直接发生纯化学作用而引起的破坏。其反应的特点是金属表面的原子与非电解质中的氧化剂直接发生氧化还原反应,形成腐蚀产物[3]。腐蚀过程中电子的传递是在金属与氧化剂之间直接进行的,因而没有电流产生。 电化学腐蚀是指金属表面与电子导电的介质(电解质)发生电化学反应而引起的破坏。任何以电化学机理进行的腐蚀反应至少包含有一个阳极反应和一个阴极反应,并以流过金属内部的电子流和介质中的离子流形成回路[4]。阳极反应是氧化过程,即金属离子从金属转移到介质中并放出电子;阴极反应为还原过程,即介质中的氧化剂组分吸收来自阳极的电子的过程。例如,碳钢[5]在酸中腐蚀,在阳极区Fe被氧化成Fe2+所放出的电子自阳极Fe流至钢表面的阴极区(如Fe3C)上,与H+作用而还原成氢气,即 阳极反应:Fe-2e→Fe2+ 阴极反应:2H+ + 2e→H2 总反应:Fe + 2H+→Fe2+ + H2 与化学腐蚀不同,电化学腐蚀的特点在于,它的腐蚀历程可分为两个相对独立并可

微生物腐蚀的防护

微生物腐蚀的防护 由于微生物的多样性和复杂性,很难完全消除微生物腐蚀。目前在微生物腐蚀的控制方面还没有一种尽善尽美的方法,通常采用杀菌,抑菌,覆盖层,电化学保护和生物控制等的联用措施。 ①杀菌或抑菌利用抑制剂使微生物不活动或活性降低,如加入量约2×106 的铬酸盐能有效抑制硫酸盐还原菌生长,硫酸铜等铜盐能抑制藻类生长,采用紫外线,超声波和辐射等物理手段来杀死腐蚀微生物。利用杀菌剂消灭腐蚀微生物,根据微生物的种类,特点和生存环境选择针对性的杀菌剂,要求杀菌剂有高效,低毒,稳定,自身无腐蚀性。杀菌后易处理和价廉等特点,这种方法现在应用较多,如通氯或电解海水产生氯能杀死铁细菌等细菌,季胺盐杀硫酸盐还原菌,剥离黏泥,有机锡化合物杀藻类,毒菌和侵蚀木材的微生物。有机硫化合物能有效杀死真菌,黏泥形成菌,硫酸盐还原菌等。在密闭或半密闭的系统,涂料或保护层中,通常将杀菌剂,缓蚀剂,剥蚀剂,防腐剂或去垢剂等组合起来使用,提高防蚀效果。不同杀菌剂之间也会产生协同效应,这些在冷却水或循环水系统应用较广,有些杀菌剂在杀菌的同时也会带来其他副作用,如尽管氯是广泛应用的一种强氧化性杀菌剂,但是氯也会带来腐蚀和不同程度地破坏冷却水中的某些有机阻垢剂或缓蚀剂。 ②抑制微生物生长环境微生物生长繁殖都需要一个适宜的环境条件,所以通过减少微生物营养源或破坏微生物的生存,新陈代谢过程及其产物等改善环境条件的措施可以有效的减少微生物腐蚀的危害,限制金属构件周围的微生物生长的营养物可以抑制微生物的生长。如尽量控制环境中的有机物(碳水化合物、烃类、腐蚀质、藻类)、铵盐、磷、铁、亚铁、硫及硫酸盐等可极大的降低微生物增长,改变微生物生存环境的温度、湿度、PH值、含盐量、含氧量等可以降低微生物的危害,例如控制PH值在5.5~9范围以外温度50℃以上能强烈抑制菌类生长,切断硫源能阻止硫杆菌的破坏。湿润粘土地带加强排水或回填砂砾于埋管线周围有利于改善空气条件,可减少硫酸还原菌产生的厌氧腐蚀。 ③覆盖层保护采用镀层或涂层等覆盖层将金属与腐蚀环境隔开,而且,覆盖层使金属表面光滑以减少微生物附着,覆盖层中还可能含有某些杀菌的物质,如金属表面电镀铬、镀锌、衬水泥、涂环氧树脂、沥青、聚乙烯等防腐措施。 ④电化学保护将电位控制在使阴极表面附近呈碱性环境就可以有效抑制微生物的活动,如采用-0.95V(相当于Cu/CuSO4参比电极)以下的电位对钢铁构件进行保护。该方法与覆盖层方法联合使用效果更好。 ⑤生物控制微生物不全是有害的,现在也有利用微生物及技术进行防腐的研究,生物控制主要使采用生物防治、遗传工程和基因工程等方法改变危害菌的附着力,生存环境或新陈代谢过程及产物来达到防护的目的。譬如,日本研制开发的利用能吞食海水中腐蚀微生物的噬菌体清除金属管件表面的有害微生物来防止微生物腐蚀的效果就很好,而且这些细菌能选择性的杀死附着的有害微生物,而不会像其他方法那样影响其他生物。

混凝土微生物腐蚀的作用机制和研究方法

混凝土微生物腐蚀的作用机制和研究方法 简要叙述了污水组成及其微生物代谢产物,介绍了商品混凝土微生物腐蚀的作用机制及其研究现状,并论述了当前关于商品混凝土微生物腐蚀研究的主要内容、采取的腐蚀实验方案和相关的微生物学方法,最后强调了国内开展商品混凝土微生物腐蚀研究的紧迫性。 1商品混凝土的微生物腐蚀与危害 工业和城市污水中常含有大量不同种类的微生物,由于微生物代谢造成商品混凝土的腐蚀称为商品混凝土的微生物腐蚀。微生物腐蚀可导致污水处理设施中商品混凝土结构表面砂浆脱落,骨料外露,严重时可产生开裂和钢筋锈蚀,从而使其服役寿命大大缩短。这不仅直接影响了城市的整体功能,而且重建或维修还将导致可观的经济损失。据统计,德国建筑材料的破坏中微生物腐蚀所占份额约为10 %~20 %。 20世纪70 年代,仅德国汉堡市污水管道系统因微生物腐蚀造成的维修费用就高达5 000 万马克;美国洛杉矶市1 条总长1 900 km 的商品混凝土污水管道,其中208 km 已遭到微生物腐蚀破坏,其修复更换费用高达4 亿美元,而整个美国现已有80 万km 的污水管道因商品混凝土遭受微生物腐蚀而需要修复或完全更换;其他如日本、德国、澳大利亚等国都面临着类似问题。国内近期进行的污水处理工程现场调查也表明:由于商品混凝土遭受微生物腐蚀,20 世纪80 年代中期投入运行的污水处理厂现已遭到严重的腐蚀破坏,难以达到设计使用年限;20 世纪90 年代后期新投入运行的污水处理设施,局部已可观察到明显的腐蚀现象。鉴于其严重危害性,商品混凝土的微生物腐蚀很早就引起西方国家的重视,至今一直在对其作用机理和控制措施进行广泛研究,

电化学腐蚀与防护

电化学腐蚀与防护 姓名:吴三(09化学) 学号:0909401069金属腐蚀现象在日常生活中是司空见惯的,在腐蚀时,在金属的界面上发生了化学或电化学多相反应,使金属转入氧化(离子)状态.这会显著降低金属材料的强度、塑性、韧性等力学性能,破坏金属构件的几何形状,增加零件间的磨损,恶化电学和光学等物理性能,缩短设备的使用寿命,甚至造成火灾、爆炸等灾难性事故.美国1975年因金属腐蚀造成的经济损失为700亿美元,占当年国民经济生产总值的 4.2%.据统计,每年由于金属腐蚀造成的钢铁损失约占当年钢产量的10~20%.金属腐蚀事故引起的停产、停电等间接损失就更无法计算.所以金属的防腐蚀意义重大。 1.金属腐蚀的分类 金属表面由于外界介质的化学或电化学作用而造成的变质及损坏的现象或过程称为腐蚀。介质中被还原物质的粒子在与金属表面碰撞时取得金属原子的价电子而被还原,与失去价电子的被氧化的金属“就地”形成腐蚀产物覆盖在金属表面上,这样一种腐蚀过程称为化学腐蚀;不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子。在金属腐蚀中最为严重的就是电化学腐蚀。 金属电化学腐蚀一般分为两种:(1)析氢腐蚀;(2)吸氧腐蚀。 (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 负极(Fe):Fe-2eˉ=Fe2+ Fe2++2H2O= Fe(OH)2+2H+ 正极(杂质):2H++2eˉ=H2 电池反应:Fe+2H2O=Fe(OH)2+H2↑ 由于有氢气放出,所以称之为析氢腐蚀。

(2)吸氧腐蚀(钢铁表面吸附水膜酸性较弱时) 负极(Fe):Fe-2eˉ=Fe2+ 正极:O2+2H2O+4eˉ=4OHˉ 总反应:2Fe+O2+2H2O=2Fe(OH)2 由于吸收氧气,所以也叫吸氧腐蚀。 析氢腐蚀与吸氧腐蚀生成的Fe(OH)2被氧所氧化,生成的4Fe(OH)3脱水生成Fe2O3铁锈。 反应式:4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3 钢铁制品在大气中的腐蚀主要是吸氧腐蚀。 Fe+2H2O=Fe(OH)2+H2↑ O2+2H2O+4eˉ→4OHˉ 2Fe+O2+2H2O=2Fe(OH)2 2H++2eˉ→H2 析氢腐蚀主要发生在强酸性环境中,而吸氧腐蚀发生在弱酸性或中性环境中。 2.金属腐蚀的防护 从腐蚀角度保护金属材料最简单易行的方法是将材料与腐蚀环境隔离。 例如有机涂料、无机物的搪瓷等涂覆金属表面以使材料与环境隔绝。当这些保护层完整时是能起到保护作用的。这里主要介绍已经广为人们采用的电化学防腐蚀的方法。 (1).金属镀层 在钢铁底层上常用电镀一薄层更耐腐蚀的金属(如Cr、Ni、Pb等)的方法来保护钢铁制品。如果用金属Zn、Cd等作镀层,构成腐蚀电池的极性则与上述相反,镀层微孔内裸露的钢为阴极,Zn或Cd的镀层为阳极,通过牺牲阳极,使钢得到阴极保护。镀Sn的Fe(马口铁)广泛用于食品罐头,虽然Sn的标准电极电位高于Fe,但在食品有机酸中却低于Fe,也可起牺牲阳极的作用。镀层如为贵金属(Au、Ag等)、易钝化金属(Cr、Ti)

一电化学腐蚀原理

一电化学腐蚀原理 1.腐蚀电池(原电池或微电池) 金属的电化学腐蚀是金属与介质接触时发生的自溶解过程。在这个过程中金属被氧化,所释放的电子完全为氧化剂消耗,构成一个自发的短路电池,这类电池被称之为腐蚀电池。腐蚀电池分为三(或二)类: 微电池示意图 (1)不同金属与同一种电解质溶液接触就会形成腐蚀电池。 例如:在铜板上有一铁铆钉,其形成的腐蚀电池如图10—7所示。 铁作阳极(负极)发生金属的氧化反应: Fe → Fe2+ + 2e-;(Fe → Fe2+ + 2e)=-0.447V. 阴极(正极)铜上可能有如下两种还原反应: (a)(a)在空气中氧分压=21 kPa 时:O2+4H++4e- →2H2O; ( O2+4H++4e- →2H2O )=1.229 V , (b) 没有氧气时,发生2H+ + 2e-→ H2;(2H+ + 2e-→ H2)=0V, 有氧气存在的电池电动势E1=1.229-(-0.447)=1.676V; 没有氧气存在时,电池的电动势E2=0-(-0.447)=0.447V。可见吸氧腐蚀更容易发生,当有氧气存在时铁的锈蚀特别严重。铜板与铁钉两种金属(电极)连结一起,相当于电池的外电路短接,于是两极上不断发生上述氧化—还原反应。 Fe氧化成Fe2+进入溶液,多余的电子转向铜极上,在铜极上O2与H+发生还原反应,消耗电子,并且消耗了H+,使溶液的pH值增大。 在水膜中生成的Fe2+离子与其中的OH—离子作用生成Fe(OH)2,接着又被空气中氧继续氧化,即: Fe2+ + 2OH-→ Fe(OH)24Fe(OH)2 + 2H2O + O2→ 4Fe(OH)3

金属的腐蚀及其原理

金属的腐蚀及其原理 【引入】大家如果细心的话就可以发现生活中的金属器皿,使用久了后,就会生锈。例如,或防盗网、风扇的护栏,或者铜器会出现铜绿(Cu2(OH)2CO3)。大家翻倒课本的 23页,看看图1—26,可以先想象一下,这辆车刚买时是白白亮亮的,风光无限,现在呢,还风不风光?已经是锈迹斑斑,风光不在了。无论是防盗网的生锈还是汽 车的生锈都是由于金属的腐蚀引起的,那大家知道金属为什么会发生腐蚀吗?它的 原理是什么呢? 【讲述】带着这两个问题我们今天就来学习这方面的内容。 【板书】金属的腐蚀及其原理 【讲述】大家看到课本的23页的第三段,一起说一下金属腐蚀的概念是什么? 【板书】一、金属的腐蚀 1、定义:金属或合金与其他物质发生化学反应而被腐蚀的现象。 【讲述】现在举个例子来理解这个概念。在制取H2时,往Zn片中滴加稀盐酸,如果稀盐酸量足够的话,可以看到锌片逐渐的消失了。 【提问】为什么锌片会消失呢? 【讲述】是由于Z n—2e- =Z n2+,锌离子进入到溶液中了。 【提问】大家思考一下,金属腐蚀的本质是什么? 【引导】金属腐蚀是指金属或合金与其他物质发生化学反应,金属在化学反应中是得点子还是失去电子? 【讲述】是失电子的。所以金属腐蚀的本质就是金属原子失去电子而被氧化的过程,用式子表示为M—ne- =M n+,例如:Z n—2e- =Z n2+ 【过渡】金属腐蚀是不是都是一样的呢,不一样的话,可分为哪两种腐蚀? 【讲述】化学腐蚀与电化学腐蚀 【板书】金属腐蚀 电化学腐蚀 【提问】大家一起说一下化学腐蚀的概念? 【讲述】化学腐蚀是金属与其他物质直接接触发生氧化还原反应,举几个例子: 这些都是化学腐蚀。【提问】大家一起说一下电化学腐蚀的概念? 【讲述】不纯的合金或金属发生原电池反应,使较活泼金属被腐蚀。比如:防盗网的生锈、自行车轮子、链条的生锈都是电化学腐蚀。 【提问】现在我们学习化学腐蚀与电化学腐蚀,那它们之间有什么共同点或不同点? 【讲述】首先我们来看电化学腐蚀。它形成了原电池,有微弱的电流产生,而化学腐蚀是直接发生氧化还原反应,所以无电流产生。 【讲述】化学腐蚀与电化学腐蚀都是金属失去电子变为离子,所以它们的共同点就是金属腐蚀的本质:M—ne- =M n+ 【讲述】现在跟大家分享一组数据,我国每年钢铁的腐蚀量占全年钢铁产量的1/10,占国民生生产总值的页也就是GDP的4%,4%是什么概念呢?我国每年的教育经费都不 足4%的。这说明每年钢铁的腐蚀都会造成巨大的经济损失。 【过渡】那钢铁的腐蚀属于化学腐蚀还是电化学腐蚀?

知识讲解_金属的电化学腐蚀与防护(基础)

高考总复习金属的电化学腐蚀与防护 【考纲要求】 1.金属腐蚀的种类,探究金属发生电化学腐蚀的原因。 2.了解金属腐蚀的危害,防止金属腐蚀的措施。 【考点梳理】 考点一:金属腐蚀 1.定义:金属腐蚀是指金属或合金与周围接触到的气体或液体进行化学反应而腐蚀损耗的过程。 2.本质:金属腐蚀的实质都是金属原子失去电子被氧化生成金属阳离子的过程。 M-ne-==M n+(M代表金属元素)。 3.类型:(1)化学腐蚀:金属或合金直接与具有腐蚀性的化学物质接触发生氧化还原反应而消耗的过程。 (2)电化学腐蚀:不纯金属或合金与电解质溶液接触发生原电池反应而消耗的过程。 考点二:金属的电化学腐蚀 1 2.电化学腐蚀的种类: (1)种类:吸氧腐蚀与析氢腐蚀 (2)吸氧腐蚀与析氢腐蚀的比较(以钢铁为例) 【高清课堂:399291金属腐蚀的一般规律】 3.金属腐蚀的快慢一般规律 (1) 在同一电解质溶液中,电解原理引起的腐蚀>原电池原理引起的腐蚀>化学腐蚀>有防腐措施的腐蚀。 (2) 在不同溶液中,金属在电解质溶液中的腐蚀>金属在非电解质溶液中的腐蚀;金属在强电解质溶液中的腐蚀>金属在弱电解质溶液中的腐蚀。 (3) 有保护措施的条件下,无防护条件的腐蚀>有一般防护条件下的腐蚀>牺牲阳极的阴极保护法条件下的腐蚀>外接电源(负极)的阴极保护法条件下的腐蚀。 (4) 对同一种电解质溶液来说,电解质溶液浓度越大,腐蚀越快。 (5) 由于金属表面一般不会遇到酸性较强的溶液,故吸氧腐蚀是金属腐蚀的主要形式,只有在金属活动性顺序表中排在氢以前的金属才可能发生析氢腐蚀,而位于氢之后的金属腐蚀时只能是吸氧腐蚀。 考点三:金属的电化学防护 1.在金属表面覆盖保护层。 ①在钢铁表面涂矿物性油脂、油漆或覆盖搪瓷、塑料等物质;

海洋微生物腐蚀研究进展

*国家自然科学基金(50242008) 作者简介:杜建波(1981-),男,山东临沂人,中国海洋大学硕士研究生,主要从事海洋微生物腐蚀研究。 ?专论与综述? 海洋微生物腐蚀研究进展* 杜建波,尹衍升,滕少磊,常雪婷,程 莎 (中国海洋大学材料科学与工程研究院,山东青岛266003) 摘 要:近年来,微生物腐蚀已经引起了广大研究者的关注,来自不同研究领域的研究者对其腐蚀机理和控制方法都作了 大量的研究;综述了微生物腐蚀的机理和研究方法,并介绍了微生物膜的形成及影响因素。关键词:微生物腐蚀机理;电化学方法;表面分析方法;生物膜中图分类号:TG172 文献标识码:A 第29卷增刊 2007年3月 山东冶金 ShandongMetallurgy Vol.29,SupplementMarch2007 1引言 海洋中存在着种类繁多的微生物,它们附着于工程材料表面,形成生物膜(Biofilm),在生物膜内部,pH值、溶解氧、有机物和无机物种类等因素都与海洋本体环境完全不同,生物膜内微生物的活性控制着电化学反应的速率和类型,这种受微生物影响的金属和合金的腐蚀称为微生物腐蚀 [1,2] (Microbio- logicallyInfluencedCorrosion,简称MIC)。 21世纪是海洋的世界,人类已经进入海洋开发 的新时代。然而用于的海洋的各种金属材料都会受到不同程度的侵蚀破坏,给人类造成了巨大的损失,金属材料在海水环境中的腐蚀是一个涉及物理、化学、生物、气象等因素的复杂电化学过程。其中,生物腐蚀造成的损失占总体腐蚀损失的20%左右,因此,必须对生物腐蚀予以足够的重视。 2微生物腐蚀 2.1 微生物腐蚀的发展 最早指出微生物参与金属腐蚀的是Gaines(1910),他从地下埋设的钢管腐蚀产物中分离出了铁嘉氏杆菌(GallionellaFerraginea),并发现有大量的硫,这表明有硫酸盐还原菌的存在;荷兰学者Von. WolzogenKuhr自1922年以来做了大量的工作,指 出了硫酸盐还原菌在金属腐蚀中起到非常重要的作用。在1949年,Butlin和Vernon[3]给出了这个领域的一些经典的基本概念。剑桥的Postgate[4]系统地研究了硫酸盐还原菌的生理、生态和生化特征及营养需求,为微生物腐蚀的研究奠定了基础。20世纪60年 代以来,许多学者如BoothIverson、 Horvath等人对微生物的腐蚀机理进行了大量的研究,欧洲各国及美国进行了一系列研究。但最初人们对微生物腐蚀的认识仅限于个别的微生物腐蚀失效事故的描述。到 80年代中期,随着表面分析技术(如环境扫描电镜、 原子力和激光共焦显微镜)的发展,人们可以测量生物膜的厚度和组成,使得精确确定微生物和腐蚀之间的空间关系成为可能,微生物腐蚀的研究也从失效事故的表面现象变为日益成熟的交叉学科。 2.2生物膜的形成及影响因素 研究表明,微生物是极易附着在材料表面上的, 一般放入海水几个小时后就会形成一层薄薄的膜。当一个物体浸没海水中后,首先是有机碎片粘附在表面上,形成一层薄膜,这层膜改变了物体表面的性质,尤其是静电荷和润湿度,它是生物膜进一步发展的基础,然后细菌在表面上附着,并开始生长繁殖,数小时后便可形成菌落,然后硅藻、真菌、原生动物、微型藻类和其他微型生物在表面上附着,形成一层黏膜,称为微生物膜(Biofilms)[5]。微生物膜的成分 70%~95%是水,它的基本性质仍是电化学的。生物 膜由细胞生物量和胞外聚合物(EPS)组成,主要成分是蛋白质。从所有生物膜的胞外聚合物组分中可以提取出腐殖酸、多糖、糖醛酸和DNA等[6~8]。 微生物在材料表面的附着经历了一系列过程:(1)材料表面上会在几秒钟形成一层有机物膜,其厚度仅为5~10nm,这些有机物包括水溶性物、微生物分泌的体外多聚物和有机残体降解的中间产物;(2)部分微生物会有选择的运动并附着在材料的特定部位;(3)微生物的附着也可能是趋向性的或是随机运动造成的;(4)部分吸附着的微生物还会有于自身的运动或水体的动力学方面的因素而脱离附着点;(5)附着紧密的微生物则进行繁殖,合成多聚物,形成微生物膜及其结构。 微生物膜的形成是一个高度自发的动态过程,海洋细菌首先附着在物体表面上,很多因素都会影响细菌在表面的附着,BrendaJLittle和PatriciaWag- ner[9]报道了影响微生物表面附着的两种因素,即细 菌细胞的特性(如受营养条件、生长类型与碳源影响的细菌细胞的表面疏水性)和基底金属的性质(包括材料成分、表面膜的存在、组成与化学性质以及极化 1

第三章 金属电化学腐蚀的热力学原理

第三章金属电化学腐蚀的热力学原理 §3-1 腐蚀原电池 1.腐蚀原电池是指导致金属材料的破坏而不能对外做有用功的短路原电池。 电极反应方程式阳极:Fe →Fe2+ +2e 阴极:2H+ +2e →H2 (图3-1) 电极反应方程式阳极:Fe →Fe2+ +2e 阴极:2H+ +2e →H2 O2 + 4H+ +4e →2H2O

(图3-2) 电化学腐蚀发生的根本原因是由于介质中存在着平衡电极电位高于金属的平衡电极电位的氧化性物质。 2.腐蚀原电池的组成及工作过程 1)组成:阳极、阴极、电解质溶液、外电路。 2)工作过程:①金属阳极溶解过程如Fe →Fe2+ +2e ②溶液中氧化性物质的阴极还原过程如

2H+ +2e →H2 ③电子和离子的定向流动过程 以上三个过程是彼此独立进行的,但又是串联在一起的,因而只要其中的某个过程的进行受到阻滞,则金属的腐蚀速度就会减缓。3.电化学腐蚀的次生过程 腐蚀电池工作过程中,阳极附近金属离子(如Fe2+)浓度增大,阴极附近的pH升高,则随着离子的迁移发生如下反应: Fe2+ + 2OH- →Fe(OH)2 ↓ 或者进一步被氧化为:4Fe(OH)2+ O2 +2H2O →Fe(OH)3↓ 即铁在含氧水溶液中腐蚀的次生过程。 如图所示是铁在含氧水溶液中的腐蚀及其次生过程。

(图3-3 P22) 4.腐蚀原电池的分类 按照电极的大小,被破坏金属的表观形态,腐蚀电池可分为三类: 1)超微电池腐蚀:金属表面上存在的超微 观的(原子大小的)电化学不均一性引起,可以认为阴阳极是等电位,导致金属材料 的均匀腐蚀。 2)微电池腐蚀:金属表面存在许多微小的

相关文档
最新文档