直流锅炉无炉水循环泵启动控制 温志敏

直流锅炉无炉水循环泵启动控制 温志敏
直流锅炉无炉水循环泵启动控制 温志敏

直流锅炉无炉水循环泵启动控制温志敏

发表时间:2019-10-24T12:01:01.987Z 来源:《电力设备》2019年第12期作者:温志敏

[导读] 摘要:直流锅炉采用炉水循环泵启动,在保证进入水冷壁的质量流量的前提下,由于炉水循环泵的炉水炉内循环,大量减少了热量损失及工质排放,提高了直流锅炉启动的速度,同时也有利于机组启动过程中参数的控制。

(贵溪发电有限责任公司江西贵溪 335400)

摘要:直流锅炉采用炉水循环泵启动,在保证进入水冷壁的质量流量的前提下,由于炉水循环泵的炉水炉内循环,大量减少了热量损失及工质排放,提高了直流锅炉启动的速度,同时也有利于机组启动过程中参数的控制。而由于炉水循环泵故障后给直流炉启动明显带来了不便,本文借鉴贵溪发电有限责任电厂600MW超临界机组无炉水循环泵启动开机经验,提出了直流炉启动的控制要点及注意事项。

关键词:直流炉;炉水循环泵;启动;控制;

1 概述

贵溪电厂三期工程2х600MW机组采用哈尔滨锅炉厂有限责任公司生产的HG-1964/25.4-YM17型超临界锅炉,该锅炉为一次中间再热、超临界压力变压运行带内置式再循环泵启动系统的直流锅炉、单炉膛、平衡通风、固态排渣、全钢架、全悬吊结构、π型露天布置。

锅炉启动系统由炉水循环泵、四个汽水分离器、立式储水箱、疏水扩容器及相关管道组成。汽水分离器布置在锅炉前墙上部,其进口与水冷壁出口集箱引出管相连,出口与储水箱相连。锅炉起压后,通过汽水分离器分离,产出的蒸汽进入顶棚过热器,分离出的水则进入储水箱,经储水箱下部的炉水循环泵输出进入省煤器入口,与给水泵来水一起进入省煤器中参与炉水循环。储水箱设有冲洗水管路及溢流管路进入疏水扩容器,达到排放不合格炉水及控制储水箱水位的目的。

2 问题产生的原因

贵溪电厂#2机在2017年5月因炉水循环泵马达腔室温度超限一直无法投入运行,在随后的多次开机中采用了无炉水循环泵的开机方式,积累了宝贵的运行经验,提出无炉水循环泵的开机方式的控制措施。

3 无炉循泵启动面临的问题

为了保护水冷壁,制造厂家对省煤器入口流量有最低要求,因而设置了省煤器入口流量低MFT保护,我厂设置为省煤器入口流量低于490t/h延时30S动作和省煤器入口流量低于420t/h延时3S动作。锅炉正常启动中一般控制省煤器入口流量在650t/h左右,这部分流量由二部分组成,分别为炉水循环泵出口流量和给水流量,锅炉启动前期省煤器入口流量占主要部分为炉水循环泵出口流量,随着蒸汽量的产生,逐步增加给水流量,减少炉水循环泵出口流量,进入干态后则炉水循环泵进入省煤器的流量到零。当机组启动中炉水循环泵不能运行时,省煤器入口流量将完成由给水流量提供,无法通过炉水循环泵进行炉水循环,因而只能将多余的水通过储水箱管路进行排放,带走了大量的热量,导致省煤器入口给水欠焓较大,水冷壁产汽量不足,汽压上升慢;同时由于热量损失大,必然加大了燃料量,又引起汽温上升过快,最终导致汽温汽压的不匹配,因此无炉循泵开最主要的控制方向是减小溢流量,提高省煤器入口工质温度,控制汽温上升速度,尽量提高汽压。

4 机组启动控制要点及注意事项

4.1采用无炉水泵点火的特殊启动方式需要更长的启动时间(约5-6小时)和足够的除盐水(要求化学备好除盐水约5000吨以上,且保证制水装置满出力运行)。

4.2经制造厂家认可增加无循环泵启动方试锅炉省煤器入口流量低MFT保护定值低一值为420t/h(延时30S),低二值为390t/h(延时3S),要求运行控制省煤器入口流量500-550t/h。机组升温升压过程中严格监视各水冷壁测点温度,通过燃烧调整控制下炉膛出口烟温(烟温探针)不超过538℃,控制螺旋水冷壁壁温不大于435℃,垂直水冷壁壁温不大于455℃,一级过热器壁温不超过535℃,二级过热器壁温不超过586℃,一级再热器壁温不超过560℃,二级再热器壁温不超过650℃;如果过热器、再热器壁温超过允许值无法控制时,应投入下层大油枪,减少燃煤量。

4.3严密监视贮水箱水位在正常范围,当作汽包炉开机监视汽包水位一样,锅炉贮水箱溢流管电动调节阀作为贮水箱水位主要调节手段,正常投自动,水冲洗电动门作为紧急水位调节手段。

4.4由于锅炉贮水箱溢流管最大排放量为630t/h,锅炉冷态清洗给水流量控制在550-600t/h进行冷态冲洗,直至水质合格,满足点火条件,清洗期间严密监视贮水箱水位、注意机组排水槽水位。冷态冲洗合格后及时调整省煤器入口流量,维持在500t/h左右并联系化学投入精处理(前置过滤器和混床),将启动疏水扩容器疏水回收至凝汽器。尽量提高除氧器水温,以便提高给水温度,这样可以提高升压速度,降低汽温上升速度。

4.5由于过热器减温水接至省煤器入口(给水旁路调整门后)与过热蒸汽压力接近,减温效果差,控制主汽温困难,点火前根据空预器电流摆动情况,全开再热烟气挡板,尽量关小过热烟气挡板(10%左右),有利于控制主汽温度。但应在冲转前将再热烟气挡板关至10%,全开过热烟气挡板。控制再热汽温度,尽量少用再热器减温水,防止蒸汽带水。

4.6点火后尽可能维持省煤器入口流量在450-500t/h左右,严格控制贮水箱水位,在水冷壁壁温正常的前提下,尽量减少溢流阀的排放量。

4.7保证锅炉总风量650-700T/H(30%BMCR风量),通过配风尽量降低炉膛火焰中心位置,控制各受热面不超过允许温度,如邻机运行,可将辅汽压力定高些,尽量增大暖风器蒸汽量,提高磨煤机出口风温。

4.8当分离器出口温度达180℃,停止升温升压,维持省煤器入口流量在600t/h左右进行热态清洗。若贮水箱水位上升较多,溢流管调节阀调节困难时,应适当开启就地手动开启水冲洗电动门作为水位调节手段。热态清洗结束后调整省煤器入口流量在500t/h左右,继续升温升压。

4.9当分离器压力至0.2MPA投入高旁,随着压力升高要尽量开大高旁至60%左右,当高旁调整门后压力0.8MPA,温度达200℃左右时投入高旁减温水自动,温度设定230℃;当再热汽压力至0.4MPA左右,投入低旁,低旁减温水投自动,温度设定60℃;当再热汽压力至0.9MPA左右,投入低旁自动控压(压力设定0.9MPA)。尽量开大旁路,增加蒸汽流量,以减小溢流量,并联系化学化验水质,及时回收用水。

4.10主汽温度达330度时就开始动用减温水,再热器减温水也要用(提前强制满足再热器减温水投用的条件)。当主汽温度接近

循环冷却水培训教材

循环xx培训教材 工业生产过程中,往往会产生大量热量,使生产设备或半成品(气体或液体)温度升高,必须及时冷却,以免影响生产的正常运行和产品质量。因水的热容量大,水是吸收和传递热量的良好介质,常用来冷却生产设备和产品。冷却水系统一般可分为直流水系统和循环水系统。 水通过换热器后即排放的称直流系统。若厂区附近水源充足且直接排放而不影响水体时,可采用直流系统。 循环冷却水系统又分为封闭式循环冷却水系统和敞开式循环冷却水系统。 冷却水在完全封闭的、由换热器和管路构成的系统中进行循环时称密闭式循环系统。在密闭式循环系统中,冷却水所吸收的热量一般借空气进行冷却,在水的循环过程中除渗漏外并无其它水量损失,也无排污所引起的环境问题,系统中含盐量及所加药剂几乎保持不变,故水质处理较单纯。但密闭式循环冷却水存在严重的腐蚀剂腐蚀产物问题。密闭式循环系统一般只用于小水量或缺水地区。 冷水流入换热器将热流体冷却,水温升高后,利用其余压流入冷却塔内进行冷却,冷却后的水再用水泵送入换热器循环使用,此系统称为敞开式循环冷却水系统。这种敞开式循环冷却水,由于在循环过程中要蒸发掉一部分水,还要排出一定的浓缩水,故要补充一定的新鲜水(通常称为补水),以维持循环水中的含盐量或某一离子含量在一定值上。 敞开式循环冷却水系统是应用最广泛的系统,也是水质处理技术最复杂的系统。 一水的冷却原理 循环水的冷却是通过水与空气接触,由蒸发散热、接触散热和辐射散热三个过程共同作用的结果。 1蒸发散热水在冷却设备中形成大小水滴或极薄水膜,扩大与其空气的接触面积和俄延长接触时间,使部分水蒸发,水气从水中带走气化所需的热量,从而使水冷却。

炉水循环泵冷却水系统

3、炉水循环泵冷却水系统 为了满足炉水循环泵电机腔口的冷却水温度不超过60℃,就必须有一套可靠的冷却水系统,以消除由于电机在运转时绕组的铜损和铁损发热、转动件的磨擦生热,以及从高温的泵壳侧传来的热量而造成电机温升的不安全影响。 电动机冷却水循环回路是:高压一次冷却水从电机底部进入,经由电机下端的推力盘带动辅助叶轮,以推进循环的流动,冷却水继而流经电机的转子和静子绕组及轴承间隙,从电机上端的出水口流出,温度升高了的高压一次水经外置的高压冷却器的高压侧将热量传给低压侧的低压二次冷却水,然后被冷却后的高压一次水再进入电机,形成高压一次水的闭路循环系统。 炉水循环泵冷却水系统由高压管路及低压管路两部分组成。高压管路与电机相连接,其流通的水按其不同的工作阶段有不同的作用目的,分别称为充水、清洗水和高压冷却水。低压管路中流通的则为低压冷却水。 3.1 充水管路清洗 炉水循环泵电机轴承需冷却水润滑,电机是靠水来冷却,所以在泵投入前必须电机进行充水。水润滑轴承的润滑膜非常薄,容不得任何细小杂质混入,因此在进行电机充水前应进行充水管路的开放冲洗,待冲洗合格后才能与电机接通。充水水源取自凝结水泵出口的低压凝结水,其水质浊度小于20ppm,铁含量<3.00ppb,对电机充水后也需进一步对电机冲洗,并将贮留在电机腔内的空气排净为止。因为电机腔内水中含有空气,轴承与空气接触而得不到水的润滑与冷却,使轴承损坏,所以泵启动前充水排气是非常重要,而且其操作要自下而上缓慢进行,直至把电机内空气排净为止。 对电机的充水和清洗分为两个步骤进行:第一步充水阶段,在锅炉尚未进水前,电机必须首先进行充水,电机充水排气,直至泵体排水门(疏水门)排出不含空气的稳定水流。第二步为清洗阶段,在锅炉上水过程中必须将清洗水连续不断地注入电机,以保证清洗水连续地从电机溢出,而决不能让锅炉的炉水倒灌入电机。以上称为静态清洗,静态清洗合格后再进行动态清洗,首先将炉水循环泵的出口门保持开启,将锅炉进水至正常水位,然后对炉水循环泵先后进行三次点动,第一次点转5s,间隔15min后再点转,其目的是提高清洗效果和进一步驱赶电动机中残留空气。 在锅炉启动阶段,必须连续地投入清洗水,清洗水的投用一直要延续到确保电机冷却水系统不含有污染杂质,直至锅炉的炉水浊度小于10ppm时才可停止电机充水。 3.2 高压冷却水 一次冷却水有分别取自凝泵出口的低压水源和给水母管来的高压水源。低压一次冷却水(凝结水)供管路冲洗、电机充水、清洗以及炉水循环泵电机注水用。炉水泵在正常运行时

炉水循环泵电机冷却水系统优化措施

炉水循环泵电机冷却水系统优化措施 本文主要介绍电厂锅炉炉水循环泵驱动电机冷却水的清洁度对炉水循环泵的危害,并针对炉水循环泵驱动电机冷却水系统清洁度的要求,炉水循环泵各系统安装过程中的控制措施、调试过程中的工艺控制及炉水循环泵增加外置循环滤网的优点等几个方面进行阐述;通过这些措施,达到提高炉水循环泵驱动电机冷却水系統清洁度的目标,极大提高了炉水循环泵的安全运行保障。 标签:炉水循环泵;清洁度;滤网改进措施 1、目的 炉水循环泵可以比作控制循环锅炉的起搏心脏,离开了炉水循环泵锅炉就影响运行。应充分认识该泵的性能和特点,尤其要注意冷却水系统对炉水循环泵安全运行的重要性。为有效控制发电厂锅炉炉水循环泵驱动电机冷却水清洁度的状况,降低炉水循环泵在运行过程发生设备损坏、冷却水管道堵塞、冷却水清洁度差的概率,特在锅炉炉水循环泵驱动电机冷却水系统内部清洁度常规控制、检查措施的基础上,通过现场进行革新增加外置滤网,改良安装过程等方法来提高炉水循环泵驱动电机冷却水内部清洁度目标。 2、影响炉水循环泵驱动电机冷却水清洁度原因分析 造成电厂炉水循环泵驱动电机冷却水清洁度差的过程主要有两个因素,一个因素是材料在生产、存放和运输过程中形成的;一个因素是在管道系统施工过程中形成的;经过对以上两个因素的细化分析,造成循环泵驱动电机冷却水清洁度差的主要原因有一下几点: (1)锅炉启动冲洗运行过程炉水中的杂质; (2)冷却水管道管子内部的杂质等; (3)炉水循环泵运行过程中产生的铁离子等杂质。 3、电机冷却水清洁度差对炉水循环泵造成的危害 炉水循环泵冷却水系统是用来消除由于电机在运行时绕组的发热、转动件的摩擦生热,以及从高温的泵壳侧传过来的热量而造成电机升温的不安全影响。高压冷却水从炉水泵电机的底部进入,经电机下端的推力轴承带动辅助叶轮,以建立循环的流动。温度升高的电机冷却水再经电机热交换器将热量传给低压冷却水,然后,被冷却过的高压冷却水再返回进入电机,形成闭路循环流动。锅炉炉水循环泵在运行过程中,锅炉水中的杂物会随着锅炉循环泵驱动电机冷却循环水的流动进入驱动电机中,加之循环泵本身采用内置于电机内过滤器,过流面积小,极易堵塞循环水路,造成冷却循环水流量减小,另外在这些杂物中含有铁质颗粒,

循环冷却水系统和开式冷却水系统概述

循环冷却水系统和开式冷却水系统概述 第一节概述 机组的循环冷却水来自凝汽器循环水进口管和矿井水升压泵出口管,经旋转滤网过滤后,向机房内布置标高较低的被冷却设备提供冷却水。正常运行中,机组循环冷却水由循环水提供,夏季可由矿井水升压泵提供温度较低的补充水做为冷却水源。循环冷却水系统各用户回水因压力较低,汇集后排至循环水塔池内。 设备规范如下: 第二节系统用户 循环冷却水系统用户有:汽轮机润滑油冷油器,闭式水冷却器,电动给水泵电机空冷器,电动给水泵润滑油冷油器,电动给水泵工作油冷油器,汽泵前置泵机械密封冷却器,汽泵机械密封冷却器,小机润滑油冷油器,凝结水泵电机轴承冷却器,发电机定子冷却水冷却器,真空泵循环液冷却器。 三、系统运行 1、投运 ①选择循环水或矿井水升压泵出水做为水源,开相应来水电动门; ②开旋转滤网进口门,旋转滤网排气门对滤网进行注水; ③空气放净后,开旋转滤网出口门,循环冷却水管道排空气门进行管道排空; ④管道空气排净后,根据需要投入循环冷却水用户。 2、运行维护 正常运行中,旋转滤网在投入运行后,检测前后压差在0.05MPa时开启下部排污电磁阀,并转动上部步进电机使滤网内各滤芯得到反冲清洗。 3、系统停运 当确认系统无用户时,可关闭水源电动门将系统停运。冬季停运后应放尽管道存水进行防冻处理。 开式冷却水系统 第一节概述 机组的开式冷却水来自凝汽器循环水进口管和矿井水升压泵出口管,经旋转滤网过滤后,由两台开

式冷却水泵送至机房内布置较高的被冷却设备和锅炉侧各用户。各用户回水因压力较高,汇集后排至循环水回水管道排至水塔。 第二节系统运行 1、投运(水源选择及排空气、投运时的用户选择) ①选择循环水或矿井水升压泵出水做为水源,开相应来水电动门; ②开旋转滤网进口门,旋转滤网排气门对滤网进行注水; ③空气放净后,打开旋转滤网出口门、开冷泵入口门和出口门、开式冷却 水管道排空气门进行管道排空; ④管道空气排净后,关闭开冷泵出口门,部分投入开式水用户(),启动一 台开冷泵正常后,根据需要投入开式冷却水用户。 2、运行维护(包括滤网排污) 正常运行中,旋转滤网在投入运行后,检测前后压差在0.05MPa时开启下部排污电磁阀,并转动上部步进电机使滤网内各滤芯得到反冲清洗。 开冷泵运行中应注意压力,声音,振动正常,备用泵备用良好,开式冷却水母管压力正常。 3、系统停运 当确认系统无用户时,可停运开式冷却水泵,关闭水源电动门后将系统停运。冬季停运后应放尽管道存水进行防冻处理。 第三节系统运行注意事项 1、切泵注意事项(防逆止门不严引起倒流) 切换开冷泵时,先启动备用泵,检查备用泵运行正常后,停运运行开冷泵。当运行泵出口门关闭后,投入备用,查出口门开启正常,泵出口压力为其入口压力(确认其出口逆止门严密),切换开冷泵完毕。 2、两台泵均故障时的应对措施 两台开冷泵同时故障时,应立即开启两台开冷泵出口门,利用泵入口

炉水循环泵马达腔冷却水温度升高的原因分析及预防措施

第6期锅炉制造 No.62012年11月 BOILER MANUFACTURING Nov.2012 文章编号:CN23-1249(2012)06-0058-03 炉水循环泵马达腔冷却水温度升高的 原因分析及预防措施 赵现华,张国伟 (哈尔滨锅炉厂有限责任公司,黑龙江哈尔滨150046) 摘 要:根据某电厂提出我公司超临界660MW 锅炉的启动循环泵马达腔冷却水温度升高的问题,给出了炉 水循环泵的结构及产生问题的原因分析。关键词:锅炉;循环泵;热屏蔽;马达腔;高压冷却器中图分类号:TK223.7 文献标识码:A Analysis and Ameliorative Methods for High Temperature of Cooling Water in Motor Cavity of Boiler Water Circulating Pump Zhao Xianhua ,Zhang Guowei (Harbin Boiler Co.,Ltd.,Harbin 150046,China ) Abstract :According to the problem of high temperature of cooling water in motor cavity of circulat-ing pump for 660MW supercritical boiler of some power station ,analyze the reasons and bring for-ward the ameliorative methods. Key words :boiler ;circulating pump ;heated shield ;motor cavity ;high pressure cooler 收稿日期:2012-03-15 作者简介:赵现华(1982-),男,工程师,2004年毕业于辽宁工程技术大学热能与动力工程专业,现从事电站锅炉的安装工作。 0引言 某电厂扩建机组2?660MW 锅炉,在运行初期就发现锅炉炉水循环泵马达腔内温度异常,但是在运行时能够保证马达腔内的冷却水温度稳定在40?左右,温差不超过2?,但是在停炉后转湿态的情况下却发现马达腔内的冷却水温度急剧升高,短时间内升到58?,且有上升趋势,因马达腔内的温度正常运行值为40 50?,报警值为60?,到达65?时锅炉将MFT ,因而当温度急剧升高时为锅炉的安全运行留下隐患。 1设备概述 我公司超临界600MW 及以上锅炉都配备一 台炉水循环泵,炉水循环泵是属于离心式单级泵, 马达与泵由一立式主轴连接,所有内件包藏在一只主要由泵壳体,隔热体及马达组成的筒体(泵壳体位于最上部分),马达筒体外面装有高压冷却器,马达组件与泵壳体通过16条主螺栓与主螺母连接。 2 循环泵主要部件及作用 2.1 泵 泵基本上是由壳体及水力组件组成(水力组 件如:叶轮,扩散器等),它是在高温高压下循环炉水用的。在旋转的叶轮中,传送液体的压力和速度能量在增加,一部分速度能在扩散器中转化成静压能,扩散器的用途是将液体导至排出管口。

电厂循环冷却水系统中的问题解决

电厂循环冷却水系统中的问题解决 2011年7月31日FJW提供 1.概述 电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。该系统是利用冷却水进行降温和水质处理。冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。 2.敞开式循环冷却水系统存在的问题 2.1循环冷却水系统中的沉积物 2.2.1沉积物的析出和附着 一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。 在直流冷却水系统中,重碳酸盐的浓度较低。在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应 Ca(HCO3)2=CaCO3+CO0 +H2O 冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应 向右进行 CaCO沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m.K), 而钢材的导热系数为46. 4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。 水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。 2.2设备腐蚀循环冷却水系统中大量的设备是金属制造的换热器。对于碳钢制成的换热器, 长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。 2.2.1冷却水中溶解氧引起的电化学腐蚀敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳极区和阴极区分别会发生下列氧化反应和还原反应。

超临界锅炉无炉水循环泵启动探索

超临界锅炉无炉水循环泵启动探索 湖南益阳发电有限责任公司(413000)刘建国薄立群 [摘要]一台600MW超临界锅炉因炉水循环泵电机故障不能投用又要开炉的情况下,探索无炉水循环泵启动,根据超临界直流锅炉启动特点,咨询原锅炉设备制造厂、电力试研院及同类机组相关情况,进行了可行性研究并成功启动,对启动系统、启动方案、实施情况进行了介绍,分析了无炉水循环泵启动的控制要点及注意事项等,为同行处理类似事件提供了重要借鉴经验。 [关键词]超临界锅炉,无炉水循环泵,启动 1前言 湖南益阳发电有限责任公司#4锅炉系600MW超临界压力、变压运行、对称燃烧直流炉。型号 HG1913/25.4-PM8,最大连续蒸发量1913T/H,额定蒸发量1860T/H,直吹式制粉系统。锅炉启动系统为内置式带再循环泵系统,由于炉水循环泵电机故障已拆除返厂修理需要一年多时间才能到货,根据本单位生产需要,探索采取无炉水循环泵的启动方案,为此多次召开专题会进行研究,在安全第一又力争多发电的尊旨下,分析无炉水泵开炉的可行性、重要性与必要性,在充分论证又慎重措施的前题下,在同行业首次 成功实施了不投炉水循环泵冷态开炉,特此介绍。 2启动系统介绍 如图1所示,锅炉启动系统包括(ABCD)四个启动分离器,一个贮水箱,一台炉水循环泵。 给水经汽机侧回热系统→锅炉侧的给水操作台→省煤器→水冷壁(工质吸收炉辐射热蒸发)→启动汽水分离器。在锅炉负荷小于30%B-MCR直流负荷时,分离器起汽水分离作用,分离出的蒸汽进入过热器系统,水则通过连接管进入贮水箱,装在贮水箱下端的再循环泵将炉水送到省煤器前的给水管道中与给水混合形成水循环,确保启动初期水冷壁安全;当贮水箱中的水位超过规定值,开启贮水箱上部溢流管阀、炉水排到疏水扩容器中。锅炉负荷在30%BMCR以上时,分离器呈干态运行只作为一个蒸汽的流通元件。即当炉水循环泵设备及其系统健全时,上述流程实现正常启动。 当炉水泵(或炉水泵电机)因故障不能投用(拆除)时,上述炉水进入贮水箱后就不能通过炉水泵获得动力形成循环,要保护运行中的水冷壁安全、维持本生流量,就只能采取其它办法强制水循环,即加大给水量,炉经过水冷壁出口集箱后进入分离器,分离的蒸汽进入过热器系统,水则进入贮水箱,开启溢流管阀,炉水排至(与大气相通的)疏水扩容器(疏水箱),形成开式循环。 图1 启动系统示意图 3无炉水循环泵启动的可行性 3.1直流锅炉特点 直流锅炉的主要特点是汽水流程中无汽包,靠给水泵压头建立相应流量的给水进入炉内进行加热蒸发,一次性地通过省煤器、水冷壁、过热器(再送入汽轮机作功),即循环倍率为1。 在直流锅炉中,给水加热成蒸汽一次完成,汽水通道可看作由加热段、蒸发段、过热段三部分组成,炉膛辐射受热面水冷壁管各受热段示意如图2所示。其中蒸发段的汽水混合物被逐渐加热成饱和蒸汽,三段受热面没有固定的分界,随着给水流量、燃烧率的波动而波动,但蒸发段的前移会使过热汽温偏高,蒸发段后移则引起汽温偏低,甚至品质下降,所以要控制蒸发段的位置。一般来说,要控制蒸发段出口的微过热汽温θ1,若θ1偏离规定值,则说明由于燃烧率与给水比例不当致使蒸发段发生移动,应及时调节燃 烧率和给水流量。 工质流向→ 图2 直流锅炉辐射受热面水冷壁管各受热段示意图

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

KSB炉水再循环泵的安装与运行

KSB炉水再循环泵的安装与运行 摘要:介绍了德国KSB炉水再循环泵的结构原理、安装和运行情况,对以后安装调试维护德国KSB炉水泵提供指导意义。 关键词:循环泵电机一次二次冷却水高压冷却器热屏蔽装置 0引言 随着火电大型机组的应用,德国KSB公司生产的再循环泵在电厂中应用越来越多。近年来,我司对德国KSB炉水泵电机进行了比较多的安装。KSB炉水泵电机在安装及运行中曾出现了泄露、电机超温、电流过大一些问题,对此总结了大量经验。 1KSB炉水循环泵的设计原理 KSB无填料循环泵设计用于进行循环炉水。循环泵和驱动电机形成一个封闭偶联装置。装置垂直安装,电机在泵壳的正下方。整套泵装置充注液体,压力与整个系统压力相同。电机部分和泵壳之间通过泵壳紧固螺栓连接。整套泵装置处于密封状态。泵壳和热屏蔽装置之间的热区域的密封通过螺旋缠绕的垫片来实现。泵装置悬挂在管线上,没有支撑架。它在管线系统中不形成一个固定点。 2循环泵基本装配规程 2.1锅炉循环泵安装前的准备工作 确保进出口内部绝对清洁。确保循环泵的周围有足够的空间,以允许装配组件本身和管道能够容纳安装时所产生的热膨胀。循环泵的任何附属设施,即供电线路、电缆等的铺设必须是挠性的并且长度要足够可以允许循环泵装置的热态膨胀。在电机部分的下方应有足够的空间以便拆卸电机装置。安装循环泵需要提升装置。使用的每个提升装置都必须能够单独承载泵装置的全部重量。只有泵壳需要提供保温(热绝缘)。保温界限为泵壳的下边缘。电机和紧固螺栓不要保温,因为这会在温度过分升高时对电机造成损坏。 2.2锅炉循环泵泵壳的安装 使用足够尺寸的提升器具将泵壳放到所需要的垂直安装位置,吸入管口要朝向上方。矫直泵壳。垂直偏离度不应该超过1°。泵壳应先定位点焊在管道上。点焊完后,再检查一下垂直偏离度。如果有必要的话,矫直泵壳。将进口管线和出口管线焊接到泵的管口上,注意不要有应力或应变传递到泵上。在焊接时要确保不要有焊接微粒进入管道开口。 2.3循环泵电机的安装

直流锅炉无炉水循环泵启动控制 温志敏

直流锅炉无炉水循环泵启动控制温志敏 发表时间:2019-10-24T12:01:01.987Z 来源:《电力设备》2019年第12期作者:温志敏 [导读] 摘要:直流锅炉采用炉水循环泵启动,在保证进入水冷壁的质量流量的前提下,由于炉水循环泵的炉水炉内循环,大量减少了热量损失及工质排放,提高了直流锅炉启动的速度,同时也有利于机组启动过程中参数的控制。 (贵溪发电有限责任公司江西贵溪 335400) 摘要:直流锅炉采用炉水循环泵启动,在保证进入水冷壁的质量流量的前提下,由于炉水循环泵的炉水炉内循环,大量减少了热量损失及工质排放,提高了直流锅炉启动的速度,同时也有利于机组启动过程中参数的控制。而由于炉水循环泵故障后给直流炉启动明显带来了不便,本文借鉴贵溪发电有限责任电厂600MW超临界机组无炉水循环泵启动开机经验,提出了直流炉启动的控制要点及注意事项。 关键词:直流炉;炉水循环泵;启动;控制; 1 概述 贵溪电厂三期工程2х600MW机组采用哈尔滨锅炉厂有限责任公司生产的HG-1964/25.4-YM17型超临界锅炉,该锅炉为一次中间再热、超临界压力变压运行带内置式再循环泵启动系统的直流锅炉、单炉膛、平衡通风、固态排渣、全钢架、全悬吊结构、π型露天布置。 锅炉启动系统由炉水循环泵、四个汽水分离器、立式储水箱、疏水扩容器及相关管道组成。汽水分离器布置在锅炉前墙上部,其进口与水冷壁出口集箱引出管相连,出口与储水箱相连。锅炉起压后,通过汽水分离器分离,产出的蒸汽进入顶棚过热器,分离出的水则进入储水箱,经储水箱下部的炉水循环泵输出进入省煤器入口,与给水泵来水一起进入省煤器中参与炉水循环。储水箱设有冲洗水管路及溢流管路进入疏水扩容器,达到排放不合格炉水及控制储水箱水位的目的。 2 问题产生的原因 贵溪电厂#2机在2017年5月因炉水循环泵马达腔室温度超限一直无法投入运行,在随后的多次开机中采用了无炉水循环泵的开机方式,积累了宝贵的运行经验,提出无炉水循环泵的开机方式的控制措施。 3 无炉循泵启动面临的问题 为了保护水冷壁,制造厂家对省煤器入口流量有最低要求,因而设置了省煤器入口流量低MFT保护,我厂设置为省煤器入口流量低于490t/h延时30S动作和省煤器入口流量低于420t/h延时3S动作。锅炉正常启动中一般控制省煤器入口流量在650t/h左右,这部分流量由二部分组成,分别为炉水循环泵出口流量和给水流量,锅炉启动前期省煤器入口流量占主要部分为炉水循环泵出口流量,随着蒸汽量的产生,逐步增加给水流量,减少炉水循环泵出口流量,进入干态后则炉水循环泵进入省煤器的流量到零。当机组启动中炉水循环泵不能运行时,省煤器入口流量将完成由给水流量提供,无法通过炉水循环泵进行炉水循环,因而只能将多余的水通过储水箱管路进行排放,带走了大量的热量,导致省煤器入口给水欠焓较大,水冷壁产汽量不足,汽压上升慢;同时由于热量损失大,必然加大了燃料量,又引起汽温上升过快,最终导致汽温汽压的不匹配,因此无炉循泵开最主要的控制方向是减小溢流量,提高省煤器入口工质温度,控制汽温上升速度,尽量提高汽压。 4 机组启动控制要点及注意事项 4.1采用无炉水泵点火的特殊启动方式需要更长的启动时间(约5-6小时)和足够的除盐水(要求化学备好除盐水约5000吨以上,且保证制水装置满出力运行)。 4.2经制造厂家认可增加无循环泵启动方试锅炉省煤器入口流量低MFT保护定值低一值为420t/h(延时30S),低二值为390t/h(延时3S),要求运行控制省煤器入口流量500-550t/h。机组升温升压过程中严格监视各水冷壁测点温度,通过燃烧调整控制下炉膛出口烟温(烟温探针)不超过538℃,控制螺旋水冷壁壁温不大于435℃,垂直水冷壁壁温不大于455℃,一级过热器壁温不超过535℃,二级过热器壁温不超过586℃,一级再热器壁温不超过560℃,二级再热器壁温不超过650℃;如果过热器、再热器壁温超过允许值无法控制时,应投入下层大油枪,减少燃煤量。 4.3严密监视贮水箱水位在正常范围,当作汽包炉开机监视汽包水位一样,锅炉贮水箱溢流管电动调节阀作为贮水箱水位主要调节手段,正常投自动,水冲洗电动门作为紧急水位调节手段。 4.4由于锅炉贮水箱溢流管最大排放量为630t/h,锅炉冷态清洗给水流量控制在550-600t/h进行冷态冲洗,直至水质合格,满足点火条件,清洗期间严密监视贮水箱水位、注意机组排水槽水位。冷态冲洗合格后及时调整省煤器入口流量,维持在500t/h左右并联系化学投入精处理(前置过滤器和混床),将启动疏水扩容器疏水回收至凝汽器。尽量提高除氧器水温,以便提高给水温度,这样可以提高升压速度,降低汽温上升速度。 4.5由于过热器减温水接至省煤器入口(给水旁路调整门后)与过热蒸汽压力接近,减温效果差,控制主汽温困难,点火前根据空预器电流摆动情况,全开再热烟气挡板,尽量关小过热烟气挡板(10%左右),有利于控制主汽温度。但应在冲转前将再热烟气挡板关至10%,全开过热烟气挡板。控制再热汽温度,尽量少用再热器减温水,防止蒸汽带水。 4.6点火后尽可能维持省煤器入口流量在450-500t/h左右,严格控制贮水箱水位,在水冷壁壁温正常的前提下,尽量减少溢流阀的排放量。 4.7保证锅炉总风量650-700T/H(30%BMCR风量),通过配风尽量降低炉膛火焰中心位置,控制各受热面不超过允许温度,如邻机运行,可将辅汽压力定高些,尽量增大暖风器蒸汽量,提高磨煤机出口风温。 4.8当分离器出口温度达180℃,停止升温升压,维持省煤器入口流量在600t/h左右进行热态清洗。若贮水箱水位上升较多,溢流管调节阀调节困难时,应适当开启就地手动开启水冲洗电动门作为水位调节手段。热态清洗结束后调整省煤器入口流量在500t/h左右,继续升温升压。 4.9当分离器压力至0.2MPA投入高旁,随着压力升高要尽量开大高旁至60%左右,当高旁调整门后压力0.8MPA,温度达200℃左右时投入高旁减温水自动,温度设定230℃;当再热汽压力至0.4MPA左右,投入低旁,低旁减温水投自动,温度设定60℃;当再热汽压力至0.9MPA左右,投入低旁自动控压(压力设定0.9MPA)。尽量开大旁路,增加蒸汽流量,以减小溢流量,并联系化学化验水质,及时回收用水。 4.10主汽温度达330度时就开始动用减温水,再热器减温水也要用(提前强制满足再热器减温水投用的条件)。当主汽温度接近

炉水循环泵电机腔室注水注意事项

炉水循环泵电机腔室注水注意事项 炉水泵注水思路: 用凝结水对炉水泵电机腔室进行注水,先对注水滤网进行冲洗,开启注水滤网放水门,冲洗滤网不小于5分钟,然后对注水管路进行冲洗,冲洗化验水质合格后通过调整阀门开度调整注水,然后对炉水泵电机腔室进行注水,从炉水泵泵体排放管处排空,有连续水流出并且化验水质合格,注水才算合格。 炉水泵电机测绝缘(建议进行三次测绝缘): 1、炉水泵注水前测绝缘记录数据。 2、炉水泵注水结束后测绝缘记录数据。 3、储水箱上水后测绝缘。 注水步骤及注意事项: 1、开始注水前首先确认以下阀门确在关闭状态: 炉水泵电机注水一次手动门(悬空)、炉水泵电机注水二次手动 门(悬空)、给水到炉水泵电机注水手动门。 2、炉水泵注水滤网冲洗: 1)要求凝结水系统运行正常,凝结水水质合格,炉水泵注水滤 网后手动门关闭。 2)开启注水滤网放水一次门、二次门。 3)开启凝结水来注水手动一次门、二次门。 4)对注水滤网进行大流量冲洗不小于5分钟,并目测水流干净。

5)冲洗完毕后关闭注水滤网放水一次门、二次门。 3、炉水泵注水管路进行冲洗 1)冲洗前再次确认炉水泵注水一次手动门(悬空)、炉水泵电机注水二次手动门(悬空)在关闭状态。 2)开启炉水泵注水管道冲洗放水手动门。 3)开启注水冷却器后注水手动门。 4)开启注水冷却器前注水手动门。 5)开始注水管路进行大流量冲洗,目测水质干净后在冲洗10分钟,联系化验对水质取样化验,期间仍然保持冲洗管路大 流量冲洗状态直到水质合格。 6)注水水质要求:导电度不大于0.2us/cm、PH值8~9(以化验专业为准),注水水温(以凝结水温度做参考)大于4℃ 小于54℃。 4、炉水泵电机腔室注水: 1)要求第三步水质化验合格。 2)调整凝结水来注水手动一次门开度,用量桶和秒表测量注水流量大约为2~3L/min,严格控制注水流量不能大于 5L/min。 3)调整好流量后保持凝结水来注水手动一次门开度不变,关闭炉水泵注水管道冲洗放水手动门。 4)开启泵体排空气管手动门。 5)缓慢开启炉水泵注水一次手动门(悬空)、炉水泵电机注水

循环冷却水系统调试方案

印尼南加海螺水泥2×18MW燃煤自备电厂项目#1汽轮机循环水系统调试方案编制: 审核: 批准: 中电 2014年8月18日

目录

1 目的 (4) 2 依据 (4) 3 系统说明及设备规: (4) 4 .循环泵启动前应具备的条件 (5) 5 组织分工 (6) 6 使用仪器设备 (6) 7 .循环水泵启动 (6) 8 联锁保护试验 (7) 9 安全注意事项 (7) 10. 停泵操作 (7) 11. 空冷器、冷油器的冲洗 (8) 12. 冷水塔风机试转: (8)

循环冷却水系统调试方案 1 目的 1.1 检验循环水系统设备运行可靠性,保证系统试运顺利进行; 1.2 为凝汽器和辅机设备正常运行提供符合要求的冷却水。 2 依据 2.1 《火电机组达标投产考核标准》 2.2 《火力发电厂基本建设工程启动及竣工验收规程》 2.3 《火电工程调整试运质量检验及评定标准》 2.4 《电力建设施工及验收技术规》 2.5 《火电工程启动调试工作规定》。 2.6 《电力基本建设工程质量监督规定》。 2.7 《电力建设安全健康与环境管理工作规定》 2.8 《电业建设安全工作规程》(热力机械部分) 2.9 设备厂家、设计单位提供的有关图纸资料。 3 系统说明及设备规: 循环水系统的作用是冷却汽轮机的排汽,维持凝结器的真空,并向闭式循环冷却系统提供水源。 3.1 系统说明 循环水系统基本流程:

3.2 设备规 3.2.1循环水泵 型号:HS600-500-550-A 转速:980r/min 流量:3000m3/h 扬程:23m 3.2.2泵电机 型号:YKK450-6TH 转速:990r/min 功率:250KW 额定电压:10000V 标称电流:19.5A 4 .循环泵启动前应具备的条件 4.1 循环水系统的所有设备均已安装完毕; 4.2 系统的阀门挂牌、标注名称正确,阀门动作灵活、无卡涩、开关指示正确; 4.3 热工仪表安装校验完毕,具备投入条件; 4.4 有关热工、电气回路的调试工作已结束; 4.5 现场已清扫,道路通畅,试运区照明充足,通讯施工完善可靠;

炉水循环泵说明书915-1-8609

说明 对于炉水循环泵(简称炉水泵)应包括两方面的内容,其一是炉水泵设备本身,其二是为炉水泵成套的冷却系统,两者结合一起才构成一个完整体。没有冷却系统,炉水泵无法使用。 关于炉水泵设备本身(包括泵体与电机两部分及其附属的仪表装置等)是由泵的制造厂家完成配套出厂,而冷却系统则由锅炉制造厂承担设计并配套供货。故炉水泵的说明书也由二部分组成,第一部分是有关炉水泵设备本身的(包括技术性能、结构介绍、设备保养、安装、运行、维修等)说明书(中英文版)由泵厂提供,第二部分是关于冷却系统说明书(即本说明书)则由上海锅炉厂有限公司进行编写,主要是结合上海锅炉厂有限公司提供的炉水循环泵冷却系统布置图(501915-E1-08)加以阐明,用户可在此基础上再进一步制订具体的操作规程。 阅读本说明书时,请对照501915-E1-08循环泵冷却系统图。

1.概述 1.1锅炉机组水循环系统是以投运三台循环泵中的二台即能带满负荷进行设计,另一台泵可作为备用。若单台泵运行则锅炉负荷必须减低到BMCR(最大连续出力)的60%,即连续运行负荷在60%BMCR以下,可以单台泵投运,若所有循环泵都停转,则不允许锅炉运行。 三台泵可任意切换,当二台运行时,若任一泵出现故障则通过自控装置能自动切换到另一泵工作,此时如备用泵启动条件不满足,在5秒种内不能启动时,则自动降负荷至60%BMCR,在此期间水循环仍然安全。如无泵运行,则通过与循环泵压差测量仪表连锁的燃料跳闸起保护作用而自动停炉(MFT)。推荐以三泵投运方式为宜,以避免二泵运行时一旦某泵突然故障而备用泵又一时启动不了,会影响到锅炉的负荷,若三泵运行,则即使一台泵故障而停用,对负荷毫无影响,这种运行方式偏于保守,当然三泵运行时对厂用电耗有所增加,但耗电有限,通常可不加计较。 从锅炉水循环角度考虑,不论投运三泵、二泵、一泵,任何运行方式都可保证安全。 1.2炉水泵电机的冷却系统由高压管路和低压管路两部分组成。 高压管路与炉水泵电机腔体相连接,其流通的水按其不同的工作阶段有不同的作用目的,分别称为充水(Filling Water)、清洗水(Purge Water)和高压冷却水(H、P、Cooling Water),而在低压管路中流通的则始终是低压冷却水(L、P、Cooling Water)。 (a)充水和清洗水 水源取自凝水泵出口的低压冷凝水母管。泵电机在安装或检修后,必须先对高压管路进行冲洗,直至管路冲洗干净合格后才能与电机相连。接着对电机充水,并进一步对电机进行冲洗,直到电机冲洗合格。在此期间,电机尚未启动,锅炉尚未升压,故此时的充水和清洗水不需要高压,但进入电机的水有一定要求,故要控制水质。 (b)高压冷却水 冷却水从泵电机的底部进入,经电机下端的推力轴承带动辅助叶轮,以建立循环的流动,继而流过电机的转子和定子绕组及轴承间隙,从电机上端的出水口流出。温度升高了的电机冷却水(亦称高压一次水)再经外置的热交换器高压

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

炉水循环泵及其系统调试方案(内容)

目录 1. 编制依据 (1) 2. 调试目的 (1) 3. 调试对象及范围 (1) 4. 试转应具备条件及系统启动前检查 (2) 5. 调试工作程序 (3) 6. 调试步骤 (3) 7. 组织与分工 (5) 8. 环境、职业健康、安全、风险因素识别和控制措施 (6)

1. 编制依据 1.1 《中国国电集团公司火电厂基本建设工程启动及验收管理办法(2006年版)》1.2 《中国国电集团公司火电工程启动调试工作管理办法(2006年版)》 1.3 《中国国电集团公司火电工程调整试运质量检验及评定标准(2006年版)》1.4 《中国国电集团公司火电机组达标投产考核办法(2006年版)》 1.5 《超临界火电机组水汽质量标准》(DL/T 912-2005) 1.6 《锅炉启动调试导则》DL/T852-2004 1.7 《防止电力生产重大事故的二十五项重点要求》 1.8 国电双鸭山发电有限公司三期工程2×600MW机组有关文件、图纸 1.9 国电双鸭山发电有限公司三期工程2×600MW机组调试大纲 1.10《电力基本建设热力设备化学监督导则》DL/T889-2004 2. 调试目的 为了指导及规范锅炉炉水循环泵及其系统的调试工作,保证系统及设备能够安全正常投入运行,特制定本调试方案。 3. 调试对象及范围 炉水循环泵系统主要包括炉水循环泵、冷却水管道、阀门及热工测点。 炉水循环泵设备规范见表1。

4. 试转应具备条件及系统启动前检查 试运现场照明充足,通讯畅通。试运设备及周围垃圾、杂物等已清理干净,脚手架拆除,地沟盖板完好,附近无易燃易爆品。试运设备及系统的热工保护试验已完成,测量仪表、保护装置正常投入。 4.1 炉水循环泵的安装、保温工作全部结束,经检查验收合格; 4.2 炉水循环泵各低压冷却水系统、高压充水和清洗管道及低压临时充水管道的安装工作结束,经水压试验合格; 4.3 炉水循环泵电机及各有关的测量表记接线完毕,接线正确; 4.4 炉水循环泵的有关安装检查、验收、签证工作结束; 4.5 有关的临时设施拆除; 4.6 设备厂家服务人员到位,现场指导工作。

彻底根治循环冷却水系统四大难题

彻底根治循环冷却水系统四大难题 一、方案特点 在工业冷却循环水方面,均采用水为能量的传递介质,在循环使用时,水质会浓缩、恶化,产生水垢、污垢、腐蚀、菌藻等,严重影响系统的效率,加大能耗,减少设备使用寿命。 以往通用的化学水处理方式不仅每年需要经费,而且会造成大量含有化学药剂的污水,加大 环境污染,同时会腐蚀管道,甚至造成冷却器穿孔报废。例如,一个保有水量100T的冷冻、冷 却、采暖循环水为例,如果采用传统化学处理方法,一年要用化学药剂10吨、每吨药剂会形成500 立方米的污染水。 针对以上问题,罗德斯尔?循环水水质深度净化方案引进国外先进成熟的变频磁场技术,采用“以水治水、物理吸垢”方式,不仅解决了循环水净化、除垢、杀菌、灭藻、去锈等一系列难题,而且每年保养经费很少,不会产生污染,节电节水,是一种环保节能的新型循环水水质深度净化方案。 循环水优化设备图片 二、罗德斯尔?循环水水质深度净化方案的优势 除垢防垢,使热交换表面始终无垢状态,提高热交换效率 除锈防腐,解决水体红锈问题,延长管道和热交换器使用年限 杀菌灭藻,尤其对军团菌的杀灭,提高安全性能,提高冷却效率 无需停机,提高水资源利用效率和生产连续性 保留原管,即无需改变原有循环水管道 节水环保,大幅减少循环水排放,节省用水,没有污染,保养经费很少 三、设备构成和原理 概述 罗德斯尔?循环水系统优化方案体现的是一种综合性、多功能、环保、节水节能的循环水处理理念和技术,具有补水净化、去垢、灭藻、除锈、杀菌、环保、节能、节水等多重功效,本方案的主要设备为LT系列循环水系统优化设备。 LT系列循环水系统优化设备工作原理 LT 系列循环水系统优化设备是罗德斯尔?循环水系统解决方案的核心设备,该装置由高频发

炉水循环泵电机冷却系统设计特点

2011年8月Vol 34No.4 广西电力 GUANGXI ELECTRIC POWER 炉水循环泵电机冷却系统设计特点 Design Features of Motor Cooling System for Boiler Circulation Pump 卓宁 ZHUO Ning (广西电力工业勘察设计研究院,广西南宁530023) 摘要:火力发电厂炉水循环泵运行时,因电机超温导致被迫停泵的事件时有发生。电机超温的原因除了电机本身的设计缺陷外,电机冷却水系统设计不合理是主要原因。通过对炉水循环泵高压冷却水系统和低压冷却水系统的工作原理分析,并结合炉水循环泵冷却系统在电厂中的实际设计,以及炉水循环泵实际运行过程中出现的一些问题,进而采取的一些优化整改措施,解决了因电机超温导致被迫停泵的问题,保证炉水循环泵安全稳定运行。 关键词:炉水循环泵;冷却水系统;应急冷却水泵;屏蔽泵中图分类号:TM 752文献标志码:B 文章编号:1671-8380(2011)04-0036-03 收稿日期:2010-03-22;修回日期:2011-05-26 目前,炉水循环泵技术在大型发电厂已得到广泛应用,发挥了其应有的作用,但也逐渐暴露出一些 问题。其中电机超温导致被迫停泵是主要问题,这个问题的原因除了电机本身的设计缺陷外,电机冷却系统设计完善与否是另一重要因素。 1炉水循环泵设备简介 锅炉炉水循环泵驱动炉水强制循环,可减小水冷壁在锅炉启动时的壁温差,降低由温差引起的热应力,满足机组快速灵活启动,提高锅炉使用寿命。 循环泵垂直安装,电机在泵的正下方。亚临界控制循环炉的炉水循环泵安装在下降管底部。给水经省煤器进入汽包,然后经下降管进入炉水循环泵的吸入联箱,再由炉水循环泵打入前水冷壁下集箱,采用循环泵加快了炉水的循环升温速度,控制汽包上下壁温差的效果优于自然循环炉。超临界直流炉的炉水循环泵安装在贮水箱下方,主要作用是在锅炉点火前进行循环清洗,在启停或低负荷的状态下保证水冷壁最低直流负荷,保护水冷壁的受热面,也称为启动再循环泵。 炉水循环泵是一种屏蔽泵。屏蔽泵的特点是使用了潜水湿式电机。电机和泵通过泵壳紧固螺栓连接,泵与电机形成一个封闭的偶联装置,电机运行时充满液体,导向轴承、推力轴承、电机绕组、隔热屏和 转子等部件浸泡在水中,电机工作时腔室温度不能大于65℃(一般温度达60℃时报警),其产生的热量由高压冷却水吸收带走。泵与电机之间有1个热屏蔽装置,将热的泵体和冷的电机隔开,将二者之间的热传导降低到最小程度,热量通过冷却水流过的 冷却室散发。 电机底部的推力盘上有径向孔,可以起到辅助叶轮的作用,推力盘跟随转子转动,维持高压冷却水在电机和高压冷却器之间的循环。 2电机冷却水系统的设计 炉水循环泵电机冷却水系统由高压冷却水和低 压冷却水组成。高压冷却水系统循环于电机体内,由泵厂设计,低压冷却水系统一般由电厂建设工程的设计单位设计。2.1高压冷却水 炉水循环泵电机腔室高压冷却水水质要求与锅炉给水相同,高压冷却水来自锅炉给水泵高加前的给水,从电机底部注入,由推力盘辅助叶轮提供动力,冷却水在轴承、电机绕组和外部热交换器间建立循环流动,见图1。发生以下3种情况,辅助叶轮随电机停转,此时,高压冷却水主要靠热虹吸效应实现自然循环,带走电机热量。①全厂厂用电失电,电机 失去动力电源; ②1台炉水循环泵作为备用泵,泵的进出口不设关断门,电机不转动,而泵腔内的炉水随 36

相关文档
最新文档