积分中值定理(开区间)证明的几种方法

积分中值定理(开区间)证明的几种方法
积分中值定理(开区间)证明的几种方法

积分中值定理(开区间)的几种证明方法

定理:设f 在[,]a b 上连续,则(,)a b ξ?∈,使得

()()()b

a f x dx f

b a ξ=-?。

[证一]:由积分第一中值定理(P217),

[,]a b ξ?∈, 使得

()()()b a f x dx f b a ξ=-?。 于是

[()()]0.b a

f x f dx ξ-=? 由于函数()()()F x f x f ξ=-在[,]a b 上连续,易证(可反证):

(这还是书上例2的结论)

(,)a b η?∈,使得()()()0F f f ηηξ=-=,即()()f f ηξ=。

[证二]:令()()x

a F x f t dt =?,则()F x 在[,]a

b 上满足拉格朗日中值定理的条件,故

(,)a b ξ?∈,使得()()()()F b F a F b a ξ'-=-,即结论成立。

(注:书上在后面讲的微积分基本定理)

[证三]:反证:假设不(,)a b ξ?∈,使得 ()()()b

a f x dx f

b a ξ=-?,由积分第一中值定理,

知ξ只能为a 或b ,不妨设为b ,即

1(,),()()()b a x a b f x f b f x dx b a

?∈≠=-?。 由于f 连续,故(,),x a b ?∈ ()()f x f b >(或()()f x f b <),

(这一点是不是用介值定理来说明)

这样

(上限x 改为b )()()()().x

b

a a f x dx f

b dx f b b a >=-?? (这个严格不等号不太显然要用书上例2结论来说明)

矛盾。

[证四]:设f 在[,]a b 上的最大值为M ,最小值为m 。若m M =,则f c ≡,ξ可任取。

若m M <,则1[,]x a b ?∈,有1()0M f x ->,故

[()]0b a M f x dx ->?,即 ()().b

a f x d x M

b a

<-?

同理有

()().b

a m

b a f x dx -

ξ=-?。

注:以上方法有的能推广到定理9.8的证明,有的不能,再思考吧!

例 1 用单调有界定理证明区间套定理.

例 1 用单调有界定理证明区间套定理.即已知: 1 )单调有界定理成立; 2 )设为一区间套. 欲证:且惟一. [ 证] 证明思想:构造一个单调有界数列,使其极限即为所求的. 为此,可就近取数列(或).由于 因此为递增数列,且有上界(例如).由单调有界定理,存在,且 . 又因,而,故 ; 且因递减,必使.这就证得. 最后,用反证法证明如此的惟一.事实上,倘若另有一个,则由 , 导致与相矛盾.[ 证毕] 例 2 用区间套定理证明单调有界定理.即已知: 1 )区间套定理成立. 2 )设为一递增且有上界M的数列. 欲证:存在极限. [ 证]证明思想:设法构造一个区间套,使其公共点即为的极限. 为此令。记,并取 再记, 同理取 如此无限进行下去,得一区间套. 根据区间套定理,.下面用数列 极限定义证明: ,一方面,由于恒为的上界,因此

; 另一方面,由 ; 而由区间套的构造,任何不是的上界,故;再由为递增数列, 当时,必有.这样,当时,就有 , 即.[ 证毕] 例3 用确界定理证明区间套定理.即已知: 1 )确界定理成立(非空有上界的数集必有上确界); 2 )设为一区间套. 欲证:存在惟一的点. [ 证] 证明思想:给出某一数集,有上界,使得的上确界即为所求的. 为此,取,其上界存在(例如).由确界定理,存在. 首先,由为的一个上界,故.再由是的最小上 界,倘有某个,则不会是的上界,即,这与为区 间套相矛盾()。所以任何.这就证得 . 关于的惟一性,与例1中的证明相同.[ 证毕] 注本例在这里所作的证明比习题解答中的证明更加清楚. 例4 证明连续函数的局部有界性——若处连续,则和 ,使得. [ 证]据在连续的定义,满足 . 现取,相应存在,就有 .[ 证毕] 注类似可证连续函数的其余局部性质,例如四则连续性质、局部保号性质等等.例5 证明上一致连续的充要条件是:上连续,且 存在. [ 证] 先证充分性:令

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

积分第二中值定理证明

这个定理的推导比较复杂,牵扯到积分上限函数:Φ(x) = ∫f(t)dt(上限为自变量x,下限为常数a)。以下用∫f(x)dx表示从a到b的定积分。 首先需要证明,若函数f(x)在[a,b]内可积分,则Φ(x)在此区间内为一连续函数。 证明:给x一任意增量Δx,当x+Δx在区间[a,b]内时,可以得到 Φ(x+Δx) = ∫f(t)dt = ∫f(t)dt + ∫f(t)dt = Φ(x) + ∫f(t)dt 即 Φ(x+Δx) - Φ(x) = ∫f(t)dt 应用积分中值定理,可以得到 Φ(x+Δx) - Φ(x) = μΔx 其中m<=μ<=M,m、M分别为f(x)在[x,x+Δx]上的最小值和最大值,则当Δx->0 时,Φ(x+Δx) - Φ(x)->0,即 lim Φ(x+Δx) - Φ(x) = 0(当Δx->0) 因此Φ(x)为连续函数 其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为 Φ'(x) = f(x) 证明:由以上结论可以得到,对于任意的ε>0,总存在一个δ>0,使|Δx|<δ时,对于一切的t属于[x,x+Δx],|f(t)-f(x)|<ε恒成立(根据函数连续的ε-δ定义得到),得f(x)-ε0时, Φ'(x) = lim [Φ(x+Δx) - Φ(x)]/Δx = lim μ = f(x) 命题得证。 由以上可得,Φ(x)就是f(x)的一个原函数。设F(x)为f(x)的任意一个原函数,得到 Φ(x)=F(x)+C 当x=a时,Φ(a)=0(由定义可以得到),此时 Φ(a)=0=F(a)+C 即C=-F(a) 得到 Φ(x)=F(x)-F(a) 则当x=b时,Φ(b)=∫f(x)dx,得到 Φ(b)=∫f(x)dx = F(b)-F(a)

第二积分中值定理

第二积分中值定理 若函数()f x 在区间[,]a b 上连续,而()p x 是区间[,]a b 上的单调有界函数,则有点()c a c b ≤≤,使 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? 其中()lim ()x a p a p x + +→=【右极限】,()lim ()x b p b p x --→=【左极限】。特别,若()0p a +=,则 ()()d () ()d b b a c p x f x x p b f x x - =? ? ()a c b ≤≤ 证明前的说明:()p x 是单调有界函数,所以它是可积的,而()()p x f x 作为可积函数的乘积也是可积的。其次,在下面的证明中, ①不妨认为()0p a +=,否则,令()()()q x p x p a +=-,则()0q a +=,于是由 ()()d () ()d b b a c q x f x x q b f x x - =? ? 即 [()()]()d [()()]()d b b a c p x p a f x x p b p a f x x + - + -=-?? ,可得一般情形 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? ②不妨认为()p x 是单调增加函数,因为若()p x 是单调减小函数,就用[()]p x -替换()p x 。 证 首先划分区间[,]a b ,即 01211i i n n a x x x x x x x b --=<<< <<<<<= 而在每一个小区间1[,]i i x x -上,都存在点1(,)i i i x x ξ-∈,使 1 1()d ()()i i x i i i x f x x f x x ξ--=-? 【第一积分中值定理】 于是,1 1() ()d ()()()i i x i i i i i x p f x x p f x x ξξξ--=-? ,求和得 1 11 1 ()()d ()()()i i n n x i i i i i x i i p f x x p f x x ξξξ--=== -∑∑? (※) 现在,将左端做变换,即 1 11 1 ()()d ()()d ()d i i i i n n x b b i i x x x i i p f x x p f x x f x x --==?? =-??????∑∑ ? ?? ξξ 1 11 2 () ()d ()()()d i n b b i i a x i p f x x p p f x x ξξξ--=??=+ -??∑? ? 因为()p x 是单调增加函数且()()0p x p a +≥=,所以11()0,()()0i i p p p ξξξ-≥-≥;再用m 和

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

(新)积分第一中值定理及其推广证明

2.1积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 ()()()(),()b b a a f x g x dx f g x dx a b ξξ=≤≤? ? 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 ()()()()mg x f x g x Mg x ≤≤ 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 ()()()b b a a f x g x dx g x dx μ=? ? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 2.2积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数, ()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 ()()()(),(,)b b a a f x g x dx f g x dx a b ξξ=∈? ?

闭区间套定理的证明、推广及应用

重庆三峡学院数学分析课程论文 闭区间套定理的证明、推广及应用 院系数学与统计学院 专业数学与应用数学(师范) 姓名姜清亭 年级 2009级 学号 200906034129 指导教师刘学飞 2011年5月

闭区间套定理的证明、推广及应用 姜清亭 (重庆三峡学院 数学与统计学院 09级数本(1)班) 摘 要 闭区间套定理是数学分析中一个重要定理,可以应用到数学教学、科学研究及日常生活中。同时得到与之相应的若干定理,并使闭区间套定理得到推广。其中在数学教学中的应用最突出的地方是证明某些数学定理,如零点定理。 关键词 开区间套定理 闭区闭套定理 聚点定理证明 有界性定理证明 1 空间上的区间套定理 定理1 (闭区间套定理) 设有闭区间列{[],n n a b }若 1 [][][]1122,,....,....n n a b a b a b ??? 2 lim()0 n n n b a →∞ -= 则存在唯一数属于l 。。所有的闭区间(即 []1 ,n n n a b l ∞ == ) ,且lim lim n n n n a b l →∞ →∞ == 证明:由条件1可知,数列增加有上界1b ,数列{n b }单调减少有下界1a , 1221.........n n a a a b b b ≤≤≤≤≤≤根据公理,数列{n a }收敛,设lim n n a →∞ =l .由条件2 有 ()lim lim ()lim lim 0n n n n n n n n nx n n b b a a b a a l l →∞ →∞ →∞ →∞ =-+=-+=+=于是,lim lim n n n n a b l →∞ →∞ ==, 对任意取定的,n k N k +∈? ,有k n n k a a b b ≤≤ ,从而,lim lim k n n k n n a a l b b →∞ →∞ ≤==≤, 或k k a l b ≤≤,即l 属于所有的闭区间. 证明l 唯一性.假设还有一个' l 也属于所有的闭区间,从而 '',,,,n n n n n N l l a b l l b a +???∈∈-≤-?? 有有有条件2),有'l l =即l 是唯一的. 2 闭区间套定理的推广 定理2 (开区间套定理)若开区间列{() ,n n a b },若 1 [][][]1122,,....,....n n a b a b a b ??? 2 )(lim n n n a b -∞ →= n n a b 2lim -∞→=0 对每个闭区间[n n b a ,],有)()(n n b f a f <0,根据闭区间套定理知,存在唯一数l 属于所有

浅析定理闭区间套的推广及简单应用

本科毕业论文 (设计) 如果写作的是论文就删设计,如果写作的是设计就删论文 题目数学课堂教学 系别数学系 专业数学与应用数学 指导教师(姓名居中) 评阅教师(姓名居中) 班级2003级1班 姓名(姓名居中) 学号(学号居中) 年月日

目录 摘要(四号黑体不加粗) (Ⅰ) Abstract(四号Times New Roman体加粗) (Ⅰ) 1引言(四号黑体不加粗) (1) 1.1(小四号黑体不加粗) (1) 1.1.1(小四号仿宋体加粗) (1) 2闭区间套定理在1R的推广 (2) 3闭区间套定理在一般度量空间上的推广 (4) 4闭区间套定理在n R上的推广 (5) 5闭区间套定理的应用举例 (6) 结束语 (8) 参考文献 (8) 致谢 (9) (注:①目录不加页码; ②中、英文摘要加页码,用罗马数字:Ⅰ,Ⅱ…; ③正文另行加页码,用阿拉伯数字:1,2,3,….)

摘要(四号黑体不加粗):在介绍了闭区间套定理的基础上,通过综合应用类比法、分析法、演绎推理法将闭区间套定理进行了推广,得到了严格开区间套定理和严格半开半闭区间套定理以及一般完备度量空间上的闭集套定理和常用完备度量空间上的闭集套定理,并给出了这些定理的证明.结合典型例题,分析、讨论了闭区间套定理及推广后的闭集套定理的实际应用,说明了闭区间套定理不仅具有重要的理论意义,而且还有很好的应用价值.(小四号仿宋体不加粗,“摘要”字数须300字以上)关键词(四号黑体不加粗):闭区间套定理;严格开区间套定理;推广;应用(小四号仿宋体不加粗,关键词的个数:3—5个) Abstract(四号Times New Roman体加粗):The theorem of nested closed interval was extended on the basis of its definition with synthetic application of analogy analysis and deductive reasoning, and got a series of theorems such as the theorem of strict open nested interval, the theorem of strict open and closed nested interval and the theorem of closed nested set on ordinary and popular metric space, which were also testified. The real application of the theorem of nested closed interval and the theorem of closed nested set after extension was discussed by analysis of some typical examples so as to demonstrate its important theoretical meaning and useful application.(小四号Times New Roman体不加粗) Key words(四号Times New Roman体加粗): theorem of nested closed interval; theorem of strict open nested interval; extension; application(小四号Times New Roman体不加粗,每个关键词开头字母均不大写,结尾处无标点符号)

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

积分第一中值定理及其推广证明备课讲稿

2.1积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 ()()()(),()b b a a f x g x dx f g x dx a b ξξ=≤≤? ? 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 ()()()()mg x f x g x Mg x ≤≤ 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 ()()()b b a a f x g x dx g x dx μ=? ? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 2.2积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数,()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 ()()()(),(,)b b a a f x g x dx f g x dx a b ξξ=∈? ?

区间套定理在数学教学中的应用及意义

区间套定理在数学教学中的应用及意义 一、问题的由来 数学思想方法是数学知识的本质,它为分析、处理和解决数学问题提供了指导方针和解题策略。然而,笔者在调研中发现无论是在教还是在学的活动中,教师和学生自觉运用数学的思想与方法去教学或解决数学问题的意识和能力都相当薄弱。这正如涂荣豹教授指出的:“在数学教学中注重知识的传授、记忆和模仿,忽视数学思想方法的渗透和教学的问题仍然比较普遍。”以至于在遇到一些重点教学内容和复杂的数学问题时往往缺少科学有效的解决办法,更难形成一类数学问题解决的思想方法。 案例1梯形中位线的性质定理是集位置关系和数量关系于一身的重要定理。然而在引导学生猜想梯形中位线性质的问题上,虽然在教学实践和相关文献中有许多方法,但绝大多数教师都因缺少恰当的数学思想方法的指导而没有较为明确的思维方向。许多教师不得不靠创设有较明显暗示的情境来引导学生思考,或者靠降低学生的思维层次让他们通过盲目地多次试验来找到解决问题的方法目。最近在全国性的一个学术活动上,上海某中学教师上的“梯形中位线”观摩课极具代表性。他在引导学生猜想梯形中位线的性质时是这样设计的:教师在黑板上画了8个全等的梯形(意为让学生逐一试验)后提出了供学生探讨的三个问题。问题一:在梯形中画出各边中点连线,并尝试分析画出的线段的情况?问题二:猜想梯形的中位线与梯形的各边有没有特殊的关系?问题三:怎样证明你的猜想?其结果,在降低了部分学生的思维层次和耗费了很多的时间后还有相当数量的学生仍没有发现结论。 案例2笔者曾对50位中学数学教师作了“用尽可能多的方法将一个正方形四等分”的能力测试,“结果能用6种以上(含6种)方法等分的教师仅占28.6%,而且这些方法几乎局限于被等分的部分是全等的图形”,其中仅有3人想出了图1的等分方法。尽管笔者作了“由图2和图3两种四等分方法你能推出第三种四等分方法吗?”的提示,仍有大部分人找不到这种等分方法。 由上述二案例不难看到,缺少数学思想方法指导的数学教学是低效的教学,即使我们通过大量的“试验”和“题海战术”获得的一些解题思路和方法也很难上升到方法论的层面,更难以形成具有宏观指导作用的数学思想。因此,用数学思想方法指导中小学数学教与学已成为提高中小学数学教学质量的一个十分重要而紧迫的课题。 二、区间套定理在中小学数学教学中的应用

积分第二中值定理的证明

上一篇文章讲了积分第一中值定理的证明,并给出了积分第一中值定理更一般的形式,这篇主要讲积分第二中值定理的证明。 积分第二中值定理: ()f x 在区间[,]a b 上可积,()x ?在区间[,]a b 上单调,那么在[,] a b 上存在内点ξ,使得: ()()(0)()(0)()b b a a f x x dx a f x dx b f x dx ξξ ???=++-? ?? 特别的,当()x ?在区间[,]a b 两端连续时,有 ()()()()()()b b a a f x x dx a f x dx b f x dx ξ ξ ???=+? ? ? 积分第二中值定理是一个更为精确的分析工具,在证明这个定理之前,先介绍Abel 引理。 Abel 引理:数列{}n a 和{}n b ,对于任意的2 10 n n >>,有 2 2 22111 1 1111()()n n n n n n n n n n n n n n n n a b b b a a a b a b -++-==-= -+-∑∑ 实际上: 2 1111112221 1111111122222 1111111122111111111211111121()()()...() ()()...()()()...(n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n a b b a b b a b b a b b a b b a a b a a b a a a b a b b a a b a a b a --++-=-++++---++++---=-+-++-=-+-+-++-+=-+-+-++∑222222 2 22111 111111 )()()n n n n n n n n n n n n n n n n a b a a a b b a a a b a b ++++-=-+-+-+-∑ 下面给出Abel 引理的一个理解方式,便于记忆。众所周知,积分与求和,微分与差分有许多相似之处,一个是对连续函数而言,一

微分中值定理的证明题[1](1)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ?∈ (,使()0F ξ'= 即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 证:将上等式变形得:1111 111111 (1)()b a e e e b a b a ξξ-=-- 作辅助函数1 ()x f x xe =,则()f x 在11[,]b a 上连续,在11 (,)b a 内可导, 由拉格朗日定理得: 11()()1()11f f b a f b a ξ-'=- 1ξ11(,)b a ∈ , 即 1111(1)11b a e e b a e b a ξξ-=-- 1ξ11(,)b a ∈ , 即: )()1(b a e be ae a b --=-ξξ (,)a b ξ∈。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ?∈,使得0()0F x '= 又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈?(0,1),即证

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

六大定理互相证明总结

六大定理的相互证明总结 XXX 学号 数学科学学院 数学与应用数学专业 班级 指导老师 XXX 摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明. 关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理 1 确界定理 1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ] n b }适合下面两个条件: (1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b ) n a }所成的数列收敛于零,即()0lim =-∞ →n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞ →n n n a b ∴βα= 即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1] 证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界 {}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y . 由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,

拉格朗日中值定理证明中辅助函数构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

相关文档
最新文档