浅析定理闭区间套的推广及简单应用

浅析定理闭区间套的推广及简单应用
浅析定理闭区间套的推广及简单应用

本科毕业论文 (设计) 如果写作的是论文就删设计,如果写作的是设计就删论文

题目数学课堂教学

系别数学系

专业数学与应用数学

指导教师(姓名居中)

评阅教师(姓名居中)

班级2003级1班

姓名(姓名居中)

学号(学号居中)

年月日

目录

摘要(四号黑体不加粗) (Ⅰ)

Abstract(四号Times New Roman体加粗) (Ⅰ)

1引言(四号黑体不加粗) (1)

1.1(小四号黑体不加粗) (1)

1.1.1(小四号仿宋体加粗) (1)

2闭区间套定理在1R的推广 (2)

3闭区间套定理在一般度量空间上的推广 (4)

4闭区间套定理在n R上的推广 (5)

5闭区间套定理的应用举例 (6)

结束语 (8)

参考文献 (8)

致谢 (9)

(注:①目录不加页码;

②中、英文摘要加页码,用罗马数字:Ⅰ,Ⅱ…;

③正文另行加页码,用阿拉伯数字:1,2,3,….)

摘要(四号黑体不加粗):在介绍了闭区间套定理的基础上,通过综合应用类比法、分析法、演绎推理法将闭区间套定理进行了推广,得到了严格开区间套定理和严格半开半闭区间套定理以及一般完备度量空间上的闭集套定理和常用完备度量空间上的闭集套定理,并给出了这些定理的证明.结合典型例题,分析、讨论了闭区间套定理及推广后的闭集套定理的实际应用,说明了闭区间套定理不仅具有重要的理论意义,而且还有很好的应用价值.(小四号仿宋体不加粗,“摘要”字数须300字以上)关键词(四号黑体不加粗):闭区间套定理;严格开区间套定理;推广;应用(小四号仿宋体不加粗,关键词的个数:3—5个)

Abstract(四号Times New Roman体加粗):The theorem of nested closed interval was extended on the basis of its definition with synthetic application of analogy analysis and deductive reasoning, and got a series of theorems such as the theorem of strict open nested interval, the theorem of strict open and closed nested interval and the theorem of closed nested set on ordinary and popular metric space, which were also testified. The real application of the theorem of nested closed interval and the theorem of closed nested set after extension was discussed by analysis of some typical examples so as to demonstrate its important theoretical meaning and useful application.(小四号Times New Roman体不加粗) Key words(四号Times New Roman体加粗): theorem of nested closed interval; theorem of strict open nested interval; extension; application(小四号Times New Roman体不加粗,每个关键词开头字母均不大写,结尾处无标点符号)

1引言

(一级标题四号黑体不加粗,段前断后空0.5行.)

1.1 小四号黑体不加粗

(二级标题小四号黑体不加粗,段前断后不空行.)

1.1.1 小四号仿宋体加粗

(三级标题小四号仿宋体加粗,段前断后不空行.)

说明:(1)全文要求:行距:最小值22磅;页边距:上2.2cm、左2.5cm、右2.3cm、下1.8cm、页眉1.2cm、页脚1.5cm;页眉中,若是论文就删去“设计”二字,若是设计就删去“论文”二字.

(2)各级标题一律顶格,标题末尾不加标点符号.

(3)正文中所引用的文献应加尾注,以文献在文中出现的先后顺序依次编号为:[1],[2],…,某种文献中的内容被多次引用时以第一次出现时的序号为准,即一种文献只有一个序号,可以重复出现.添加尾注的格式如下:

爱因斯坦说:提出一个问题往往比解决一个问题更重要[1].

爱因斯坦说:“提出一个问题往往比解决一个问题更重要”[1].

爱因斯坦说:“提出一个问题往往比解决一个问题更重要.”[1]

(4)正文中出现的图象与表格以编号(依出现的先后顺序编号)的方式分别加以命名.

图象:图1,图2,…

表格:表一,表二,…

(5)行文要符合文法格式,每段开头应空两个汉字的位置.若一行中只有符号表达式,则可以居中或居中偏左.

(6)正文中所有的标点符号,一律用全角;句号用“.”

闭区间套定理是实分析中的一个重要定理,它同聚点定、有限覆盖定理、确界原理、数列的单调有界定理和Cauchy收敛准则一样都反映了实数的完备性,也是学习实变函数、复变函数、点集拓扑学等课程的基础.由于它具有较好的构造性,因此闭区间套定理在证明与实数相关的命题中有广泛的应用,如证明闭区间上的连续函数必有最大

等.故闭区间套定理不仅有重要的理论价值,而且具有很好的应用价值.为了增大闭区间套定理的应用范围,从闭区间套定理的概念出发,综合运用类比分析法、演绎推理法推广该定理.

首先,将闭区间套定理在一维空间加以推广,形成严格开区间套定理和严格半开半闭区间套定理,增大了区间套定理的应用范围.紧接着结合一般完备度量空间的特性,即正定性、对称性、三角不等式性和完备性,把闭区间套定理在一般完备度量空间上推广,形成一般完备度量空间上的闭集套定理,从而把一维空间上的情景推广到了更一般化的完备度量空间,使得区间套定理的应用范围更为广泛,并且给出了常用度量空间n R 上的闭集套定理.最后结合一些实例分析说明闭区间套定理的应用,比如证明闭区间上的连续函数必有界、单调有界定理等,通过构造满足题意的闭区间列,再应用闭区间套定理证明存在满足题意的点.从实际例题中还可以看出闭区间套定理反映了实数的稠密性,所以闭区间套定理连同其在一般完备度量空间上推广后的闭集套定理在证明与实数理论相关命题时发挥着重要的作用.

2 闭区间套定理在1R 的推广

康托给分析建立了严格的集合论基础.而在对实数连续性的描述中,闭区间套定理是一个基本的定理.因此,在对该定理推广前有必要先回顾一下闭区间套定理的内容.

定义2.1 设[]{},n n a b (1,2,3,n =)是R 中的闭区间列,如果满足: (1) [][]11,,n n n n a b a b ++?,1,2,3,n =;

(2) lim()0n n n b a →∞

-=;

则称[]{},n n a b 为R 中的一个闭区间套,或简称区间套.

定理 2.1[2](闭区间套定理) 若[]{},n n a b 是一个闭区间套,则存在惟一一点ξ,使

[],n n a b ξ∈(1,2,3,

n =),

lim lim n n n n a b ξ→∞

→∞

==.

推论2.1[3] 若[],n n a b ξ∈(1,2,3,n =)是区间套[]{},n n a b 确定的点,则对任意正

[](),,n n a b U ξε?.

定义2.2 设(){},n n a b (1,2,3,n =)是R 中的开区间列,如果满足:

(1) 1211n n n a a a b b b -<<

<<<<<

<,1,2,3,

n =;

(2) lim()0n n n b a →∞

-=;

则称(){},n n a b 为R 中的一个严格开区间套.

定理2.2 (严格开区间套定理) 若(){},n n a b 是R 中的一个严格开区间套,则存在惟一一点ξ,使得

(),n n a b ξ∈,1,2,3,

n =,

lim lim n n n n a b ξ→∞

→∞

==.

证明 由定义2.2条件(1),{}n a 是一个严格递增且有上界的数列.由单调有界定理,{}n a 有极限,不妨设

lim n n a ξ→∞

=,

n a ξ<,1,2,3,

n =.

同理严格递减有下界的数列{}n b 也有极限.由定义2.2条件(2)应有

lim lim n n n n b a ξ→∞

→∞

==,

n b ξ>,1,2,3,

n =.

从而存在(),n n a b ξ∈(1,2,3,

n =).

最后证明唯一性.假如另有ζ,使得(),n n a b ζ∈,1,2,3,

n =,那么有

n n b a ζξ-<-,1,2,3,

n =.在上述不等式两边取极限,有

ζξ-≤()lim 0n n n b a →∞

-=.

故原命题成立.

定义2.3[4][5] 设[){},n n a b (1,2,3,n =)是R 中的半闭半开区间列,如果满足:

(1) 1a ≤2a ≤

≤n a ≤11n n b b b -<<<

<,1,2,3,

n =;

(2) lim()0n n n b a →∞

-=;

则称[){},n n a b 为R 中的一个严格半闭半开区间套.

注:类似可以定义严格半开半闭区间套(]{},n n a b .

定理2.3 (严格半开半闭区间套定理) 如果(]{},n n a b 是R 中的一个严格半开半闭区间套,则存在惟一一点ξ,使得

(],n n a b ξ∈,1,2,3,

n =,

lim lim n n n n a b ξ→∞

→∞

==.

仿定理2.2的证明即可.

2 闭区间套定理在一般度量空间上的推广

完备度量空间具有正定性、对称性、三角不等式性和完备性.具体到序列,指的是该序列除了满足一般度量空间的要求,还应在该空间上收敛.这样闭区间套定理就可以在一般度量空间上进行推广.

定义3.1 设H 是一个非空集合,在H 上定义一个双变量的实值函数(),x y ρ,对任意的,,x y z H ∈,有:

(1)(正定性)(),x y ρ≥0,并且(),0x y ρ=当且仅当x y =成立; (2)(对称性)()(),,x y y x ρρ=;

(3)(三角不等式)(),x y ρ≤()(),,x z z y ρρ+; 则称H 为一个度量空间.

定义3.2 设F 是度量空间H 中的一个子集,对于F 中的任意点列{}n x ,若当

()0x x ρ-→()n →∞,

有0x F ∈,则称F 为闭集.

定义 3.3[6] 设(),X ρ是一度量空间.X 中的一个序列{}i i z x +

∈,若对任意的实数

0ε>,存在整数0N >,使得当,i j N >时,有(,)i j x x ρε<,则称{}i i z x +

∈为一个Cauchy

序列.

定义 3.4[7] 如果对度量空间(),X ρ中X 的每一个Cauchy 序列都收敛,则称

(),X ρ是一个完备度量空间.

定理3.1[7] 设{}n F 是完备度量空间H 上的闭集列,如果满足: (1) 1n n F F +?(1,2,3,

n =);

(2) lim ()0n n d F →∞

=,(()sup (,))n

n F d F ξζρξζ∈=;

则在H 中存在唯一一点ξ,使得

n F ξ∈,1,2,3,

n =.

证明 任意取n F 中的点列{}n x ,当m n >时,有m n F F ?,所以

,n m n x x F ∈,(),n m x x ρ≤()0(n d F n →→∞).

即对于任意给定的实数0ε>,存在整数0N >,使得当,i j N >时,有(,)i j x x ρε<,所以{}n x 是Cauchy 序列.又因为n F 是闭集列,故{}n x 收敛于一点ξ,且有

n F ξ∈,1,2,3,

n =.

现证唯一性.如果另有一点ζ,使得n F ζ∈,1,2,3n =.则由定义3.1条件(3),

(,)ρξζ≤(),(,)n n x x ρξρζ+≤2()0()n d F n →→∞,

从而ξζ=.

故在H 中存在唯一一点ξ,使得n F ξ∈,1,2,3,

n =.

3 闭区间套定理在n R 上的推广

进一步还可以将闭区间套定理在常用度量空间─实数空间n R 上推广.为此,先给出一个有用的概念.

定义4.1 对于任意的()12n x x x x =,,,,()12,,

,n n y y y y R =∈,令

()

,x y ρ=

则称ρ为n R 空间上的距离.

下面验证对于如上定义的ρ,n R 做成完备的度量空间. 证明 对于任意的()12n x x x x =,,,,()12,,,n y y y y =,()12,,,n n z z z z R =∈.

0≥,并且(),x y ρ=0当且仅当i

i

x y =(1,2,

i =),即x y =.

(2)

()

,(,)x y y x ρρ=

=

=.

(3)令i i i u y x =-和i i i v z y =-由Schwarz 不等式可以得到

()2

1

n

i

i i u

v =+≤

∑21

n

i

i u

=

∑+

21

n

i i v =∑.

所以ρ满足度量的定义,又n R 是完备的[6],故n R 是一个完备的度量空间.

于是根据前面的论述,可以得到实数空间n R 的闭集套定理: 定理4.1 设{}n F 是n R 上的闭集列,如果:

(1) 1n n F F +?,1,2,3

n =;

则在n R 中存在唯一一点ξ,使得n F ξ∈,1,2,3,

n =.

4 闭区间套定理的应用举例

闭区间套定理证明命题的基本思路是分划区间构成闭区间套,从而找到属于每一个区间的公共点.下面就举几个例子说明这一思路.

例1 证明:闭区间上连续函数必有界.

分析 这个命题如果从正面入手利用闭区间套定理证明比较困难,但是如果从反面着手,即假设()f x 在[],a b 上无界,即对任意M ≥0,存在[]0,x a b ∈,有0()f x M >.则等分区间后至少有一个子区间上()f x 无界,记为性质P .继续等分那个无界的区间,可得到如上的性质P .无限次重复上述步骤可构造一个满足题意的闭区间套,由闭区间套定理可以推出()f x ≤M ,这与假设矛盾,从而证明原命题成立.

证明 我们用反证法.设函数()f x 在[],a b 上连续,假设()f x 在闭区间[],a b 上无界.将区间二等分,即取[],a b 的中点

2a b +,则,2a b a +??????和,2a b b +??

????

中至少有一个区间使得()f x 在其上无界.(若两个都使()f x 无界,则任取其中一个),记为11[,]a b ,且

111

()2

b a b a -=-.

再将11[,]a b 等分为两个区间,同样其中至少有一个子区间上()f x 无界,记为

22[,]a b ,且

2211[,][,]a b a b ?,2211211

()()22

b a b a b a -=-=-.

无限次重复上述步骤,便得到一个闭区间列{}[,]n n a b ,其中每一个区间[,]n n a b 有如

下特性:

1111[,][,][,][,]n n n n a b a b a b a b ++?????

,且1

()0()2

n n n b a b a n -=

-→→∞及()f x 在[,]n n a b 上无界.

由区间套定理,存在一点(),n n a b ξ∈(1,2,3,

n =),且

lim lim n n n n a b ξ→∞

→∞

==.

又()f x 在ξ连续,则对任意的0ε>,存在0δ>,当(,)x ξδξδ∈-+时,有

()()f x f ξε-<,

()()()f f x f ξεξε-<<+.

令{}max (),()M f f ξεξε=-+,则

()f x ≤M .

由推论1,取n 充分大可使[](),,n n a b ξδξδ?-+,上述不等式与()f x 在闭区间

[,]n n a b 上无界矛盾.故()f x 在闭区间[],a b 上有界.

以下内容省略……

结束语

通过对闭区间套定理的简单分析探究,掌握了该定理的结构形式,学习了运用类比的思维方法推广该定理的过程,分析讨论了闭区间套定理的实际应用.

首先将闭区间套定理在R 推广,即在一维空间上将条件[][]11,,n n n n a b a b ++?减弱为

()()11,,n n n n a b a b ++?,得到严格开区间套定理.紧接着,联想到一般完备度量空间的特

性和闭区间套定理良好的构造性,从而推广得到闭集套定理.最后,应用闭区间套定理和推广后的闭集套定理证明了证明连续函数必有界、数列的单调有界定理、一个不动点问题以及n R 上的开区域套定理.

至于能否将闭区间套定理推广到空间以及能否在一般度量空间推广聚点定理、有限覆盖定理,并且运用推广得到的闭集套定理证明它们两个问题未做讨论.

参考文献

[1] 李宗铎,陈娓.再谈闭区间套定理的推广及其应用[J].长沙大学学报,2000,14(4):4-5. [2] 华东师范大学数学系编.数学分析[M].北京:高等教育出版社,1991,第2版. [3] 陈传璋.数学分析[M].北京:高等教育出版社,1983,第2版. [4] 毛一波.闭区间套定理的推广[J].渝西学院学报,2005,14(2):26~27. [5] 朱俊恭.关于闭区间套定理[J].遵义师范学院学报.2002,4(1):72-73. [6] 熊金城.点集拓扑讲义[M].北京:高等教育出版社,2003,第3版.

[7] 常进荣,王林.闭区间套定理的推广及应用[J].石家庄职业技术学院学报,2003,15(6):16-17.

(注:参考文献各条目用五号宋体字,各条目的序号应正文中尾注的序号相一致)

致谢

(注:①“致谢”内容单独用一个版面;

②在“致谢”中主要叙述自己写作本文的经历、感受、收获等,表达对指导老师或帮助者的感谢之意.)

注:本模版中红色字体是说明部分,在具体操作时应将其删除.

未尽事宜按《内江师范学院毕业论文(设计)指导手册》实施.

例 1 用单调有界定理证明区间套定理.

例 1 用单调有界定理证明区间套定理.即已知: 1 )单调有界定理成立; 2 )设为一区间套. 欲证:且惟一. [ 证] 证明思想:构造一个单调有界数列,使其极限即为所求的. 为此,可就近取数列(或).由于 因此为递增数列,且有上界(例如).由单调有界定理,存在,且 . 又因,而,故 ; 且因递减,必使.这就证得. 最后,用反证法证明如此的惟一.事实上,倘若另有一个,则由 , 导致与相矛盾.[ 证毕] 例 2 用区间套定理证明单调有界定理.即已知: 1 )区间套定理成立. 2 )设为一递增且有上界M的数列. 欲证:存在极限. [ 证]证明思想:设法构造一个区间套,使其公共点即为的极限. 为此令。记,并取 再记, 同理取 如此无限进行下去,得一区间套. 根据区间套定理,.下面用数列 极限定义证明: ,一方面,由于恒为的上界,因此

; 另一方面,由 ; 而由区间套的构造,任何不是的上界,故;再由为递增数列, 当时,必有.这样,当时,就有 , 即.[ 证毕] 例3 用确界定理证明区间套定理.即已知: 1 )确界定理成立(非空有上界的数集必有上确界); 2 )设为一区间套. 欲证:存在惟一的点. [ 证] 证明思想:给出某一数集,有上界,使得的上确界即为所求的. 为此,取,其上界存在(例如).由确界定理,存在. 首先,由为的一个上界,故.再由是的最小上 界,倘有某个,则不会是的上界,即,这与为区 间套相矛盾()。所以任何.这就证得 . 关于的惟一性,与例1中的证明相同.[ 证毕] 注本例在这里所作的证明比习题解答中的证明更加清楚. 例4 证明连续函数的局部有界性——若处连续,则和 ,使得. [ 证]据在连续的定义,满足 . 现取,相应存在,就有 .[ 证毕] 注类似可证连续函数的其余局部性质,例如四则连续性质、局部保号性质等等.例5 证明上一致连续的充要条件是:上连续,且 存在. [ 证] 先证充分性:令

闭区间上连续函数的有界性定理证明的新方法-模板

闭区间上连续函数的有界性定理证明的新方法 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在20XX年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基

闭区间套定理的证明、推广及应用

重庆三峡学院数学分析课程论文 闭区间套定理的证明、推广及应用 院系数学与统计学院 专业数学与应用数学(师范) 姓名姜清亭 年级 2009级 学号 200906034129 指导教师刘学飞 2011年5月

闭区间套定理的证明、推广及应用 姜清亭 (重庆三峡学院 数学与统计学院 09级数本(1)班) 摘 要 闭区间套定理是数学分析中一个重要定理,可以应用到数学教学、科学研究及日常生活中。同时得到与之相应的若干定理,并使闭区间套定理得到推广。其中在数学教学中的应用最突出的地方是证明某些数学定理,如零点定理。 关键词 开区间套定理 闭区闭套定理 聚点定理证明 有界性定理证明 1 空间上的区间套定理 定理1 (闭区间套定理) 设有闭区间列{[],n n a b }若 1 [][][]1122,,....,....n n a b a b a b ??? 2 lim()0 n n n b a →∞ -= 则存在唯一数属于l 。。所有的闭区间(即 []1 ,n n n a b l ∞ == ) ,且lim lim n n n n a b l →∞ →∞ == 证明:由条件1可知,数列增加有上界1b ,数列{n b }单调减少有下界1a , 1221.........n n a a a b b b ≤≤≤≤≤≤根据公理,数列{n a }收敛,设lim n n a →∞ =l .由条件2 有 ()lim lim ()lim lim 0n n n n n n n n nx n n b b a a b a a l l →∞ →∞ →∞ →∞ =-+=-+=+=于是,lim lim n n n n a b l →∞ →∞ ==, 对任意取定的,n k N k +∈? ,有k n n k a a b b ≤≤ ,从而,lim lim k n n k n n a a l b b →∞ →∞ ≤==≤, 或k k a l b ≤≤,即l 属于所有的闭区间. 证明l 唯一性.假设还有一个' l 也属于所有的闭区间,从而 '',,,,n n n n n N l l a b l l b a +???∈∈-≤-?? 有有有条件2),有'l l =即l 是唯一的. 2 闭区间套定理的推广 定理2 (开区间套定理)若开区间列{() ,n n a b },若 1 [][][]1122,,....,....n n a b a b a b ??? 2 )(lim n n n a b -∞ →= n n a b 2lim -∞→=0 对每个闭区间[n n b a ,],有)()(n n b f a f <0,根据闭区间套定理知,存在唯一数l 属于所有

浅析定理闭区间套的推广及简单应用

本科毕业论文 (设计) 如果写作的是论文就删设计,如果写作的是设计就删论文 题目数学课堂教学 系别数学系 专业数学与应用数学 指导教师(姓名居中) 评阅教师(姓名居中) 班级2003级1班 姓名(姓名居中) 学号(学号居中) 年月日

目录 摘要(四号黑体不加粗) (Ⅰ) Abstract(四号Times New Roman体加粗) (Ⅰ) 1引言(四号黑体不加粗) (1) 1.1(小四号黑体不加粗) (1) 1.1.1(小四号仿宋体加粗) (1) 2闭区间套定理在1R的推广 (2) 3闭区间套定理在一般度量空间上的推广 (4) 4闭区间套定理在n R上的推广 (5) 5闭区间套定理的应用举例 (6) 结束语 (8) 参考文献 (8) 致谢 (9) (注:①目录不加页码; ②中、英文摘要加页码,用罗马数字:Ⅰ,Ⅱ…; ③正文另行加页码,用阿拉伯数字:1,2,3,….)

摘要(四号黑体不加粗):在介绍了闭区间套定理的基础上,通过综合应用类比法、分析法、演绎推理法将闭区间套定理进行了推广,得到了严格开区间套定理和严格半开半闭区间套定理以及一般完备度量空间上的闭集套定理和常用完备度量空间上的闭集套定理,并给出了这些定理的证明.结合典型例题,分析、讨论了闭区间套定理及推广后的闭集套定理的实际应用,说明了闭区间套定理不仅具有重要的理论意义,而且还有很好的应用价值.(小四号仿宋体不加粗,“摘要”字数须300字以上)关键词(四号黑体不加粗):闭区间套定理;严格开区间套定理;推广;应用(小四号仿宋体不加粗,关键词的个数:3—5个) Abstract(四号Times New Roman体加粗):The theorem of nested closed interval was extended on the basis of its definition with synthetic application of analogy analysis and deductive reasoning, and got a series of theorems such as the theorem of strict open nested interval, the theorem of strict open and closed nested interval and the theorem of closed nested set on ordinary and popular metric space, which were also testified. The real application of the theorem of nested closed interval and the theorem of closed nested set after extension was discussed by analysis of some typical examples so as to demonstrate its important theoretical meaning and useful application.(小四号Times New Roman体不加粗) Key words(四号Times New Roman体加粗): theorem of nested closed interval; theorem of strict open nested interval; extension; application(小四号Times New Roman体不加粗,每个关键词开头字母均不大写,结尾处无标点符号)

区间套定理在数学教学中的应用及意义

区间套定理在数学教学中的应用及意义 一、问题的由来 数学思想方法是数学知识的本质,它为分析、处理和解决数学问题提供了指导方针和解题策略。然而,笔者在调研中发现无论是在教还是在学的活动中,教师和学生自觉运用数学的思想与方法去教学或解决数学问题的意识和能力都相当薄弱。这正如涂荣豹教授指出的:“在数学教学中注重知识的传授、记忆和模仿,忽视数学思想方法的渗透和教学的问题仍然比较普遍。”以至于在遇到一些重点教学内容和复杂的数学问题时往往缺少科学有效的解决办法,更难形成一类数学问题解决的思想方法。 案例1梯形中位线的性质定理是集位置关系和数量关系于一身的重要定理。然而在引导学生猜想梯形中位线性质的问题上,虽然在教学实践和相关文献中有许多方法,但绝大多数教师都因缺少恰当的数学思想方法的指导而没有较为明确的思维方向。许多教师不得不靠创设有较明显暗示的情境来引导学生思考,或者靠降低学生的思维层次让他们通过盲目地多次试验来找到解决问题的方法目。最近在全国性的一个学术活动上,上海某中学教师上的“梯形中位线”观摩课极具代表性。他在引导学生猜想梯形中位线的性质时是这样设计的:教师在黑板上画了8个全等的梯形(意为让学生逐一试验)后提出了供学生探讨的三个问题。问题一:在梯形中画出各边中点连线,并尝试分析画出的线段的情况?问题二:猜想梯形的中位线与梯形的各边有没有特殊的关系?问题三:怎样证明你的猜想?其结果,在降低了部分学生的思维层次和耗费了很多的时间后还有相当数量的学生仍没有发现结论。 案例2笔者曾对50位中学数学教师作了“用尽可能多的方法将一个正方形四等分”的能力测试,“结果能用6种以上(含6种)方法等分的教师仅占28.6%,而且这些方法几乎局限于被等分的部分是全等的图形”,其中仅有3人想出了图1的等分方法。尽管笔者作了“由图2和图3两种四等分方法你能推出第三种四等分方法吗?”的提示,仍有大部分人找不到这种等分方法。 由上述二案例不难看到,缺少数学思想方法指导的数学教学是低效的教学,即使我们通过大量的“试验”和“题海战术”获得的一些解题思路和方法也很难上升到方法论的层面,更难以形成具有宏观指导作用的数学思想。因此,用数学思想方法指导中小学数学教与学已成为提高中小学数学教学质量的一个十分重要而紧迫的课题。 二、区间套定理在中小学数学教学中的应用

闭区间上连续函数的有界性定理证明的新方法_1

闭区间上连续函数的有界性定理证明的新方法连续函数是数学分析中非常重要的一类函数,下面是小编搜集整理的一篇探究闭区间上连续函数的有界性定理证明的论文范文,欢迎阅读参考。 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定联系的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基

本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在2013年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基于投保人、保险公司和政府三方面的利益,按照公平合理的定价原则设计,由保险公司经营的保险产品,三方各承担不同的责任、义务和风险。根据题目中附件所给的P省的具体情况,可以将有界性定理灵活的用在自然灾害保险的风险评估和费率拟定上。假设时间是一个连续状态,则以时间t为自变量,根据题中所给数据,以日最高最低气温为例,很明显它与时间t是呈周期性变化的,以一年为一个周期,故只考虑在某一年内的变化规律,即. 将日最高最低气温拟合成一个关于时间的函数f(t),则由于自变量

缠论本质及其区间套

缠论本质及其区间套操作 缠论之所以伟大,在于发现了股市是一个吻合于自然、社会等复杂系统普适的描述性的几何模型,即通过自同构性结构的自组和级别间的扩展自组递归函数。而缠论的应用,在于对这个天然而严密的数学系统的熟练和把握,也就是用动力和形态相结合的方法,找到这 个递归函数不同级别间的节点。 那么,什么又是递归函数呢? 在数学上,关于递归函数的定义如下:对于某一函数f(x),其定义域是集合A,那么若对于A集合中的某一个值X0,其函数值f(x0)由f(f(x0))决定,那么就称f(x)为递归函数。 在编程语言中,把直接或间接地调用自身的函数称为递归函数。函数的构建通常需要一个函数或者一个过程来完成。 一个含直接或间接调用本函数语句的函数被称之为递归函数,它必须满足以下两个条件:1)在每一次调用自己时,必须是(在某种意义上)更接近于解; 2)必须有一个终止处理或计算的准则。 那么我们再来看缠论中的递归函数的意义。 走势是以中枢为基本单元,通过级别联立构成立体的、层次分明的系统。 相邻级别间,遵循同一个递归的标准,即:本级别中枢为次级别三个走势类型的重叠。 级别的界定:通常我们所使用的1-5-30-60-日-周……级别界定方式,只是为了看盘方便而使用而已,并非是天然生长的级别。 那么,如何去选择初始分析级别(即通常所言的最低级别)?这是个令大多数缠论学习者迷惑的问题。 其实这个问题如果理解了上述的递归函数构建的终止(若递推叫起始)原则,就不存在了。为了直观的、容易的理解一些,还是来具体说说。 初始级别,即递归函数的起始点。 首先初始级别是取出来的。初始中枢,是所选最低级别三个线段重合部分。 线段只跟最低级别有关。如果你在某级别定义线段,那么就认定它是最低级别了,为避免混淆,我们称之为初始级别。线段,被人为认定为初始级别的次级别走势类型。 而分型,笔,都是线段构建的条件,分型只跟笔发生直接关系,笔只跟线段发生直接关系。比如你选择5F为初始级别,那么5F的线段,即认定为次级别走势类型,不管它是否 符合1F的实际走势类型。同理,比如你选择30F为初始级别,那么30F的线段,即认定为次级别走势类型,不管它是否符合5F的实际走势类型,而图上可以看到的1F基本就不用 考察了。即是说,当你选定了某个级别作为分析的初始级别以后,其次级别以下的波 动就可以全部忽略掉了。 而在实际应用中,通常为了兼顾精确与简便,选操作级别为初始级别,用次级别确定精度,高一级别观察中期方向,高二级别观察长期方向。 初始级别的选择,需要综合考虑几个条件:技术熟练度、投机性质、看盘时间、资金量、标的活跃度、方便性等。 精度的选择,除了跟操作级别相关联外,还需要考虑本期计划交易量,标的交易量可承受范围。 区间套是精度逐级确定的方法。区间套操作的终极意义是追踪节点。从高到低一级级背驰下去,一直追踪到某一单成交为止。这个概念就好比在某个区域搜索一个人,先去定哪个区,然后哪栋楼,然后哪间房,然后哪个座位。 方法1:运用了“区间套”逐步逼近的思想方法

六大定理互相证明总结

六大定理的相互证明总结 XXX 学号 数学科学学院 数学与应用数学专业 班级 指导老师 XXX 摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明. 关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理 1 确界定理 1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ] n b }适合下面两个条件: (1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b ) n a }所成的数列收敛于零,即()0lim =-∞ →n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞ →n n n a b ∴βα= 即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1] 证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界 {}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y . 由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,

套定理证明闭区间上连续函数的性质

西安工程学院学报 JOURNAL OF XI’AN ENGINEERING UNIVERSITY 1998年 第20卷 第2期 Vol.20 No.2 用区间套定理证明闭区间上连续函数的性质 周 明 提 要 用数学分析中的区间套定理证明了闭区间上连续函数的四个定理。 关键词 区间序列;连续;一致连续 中图法分类号 O174.1 PROOF TO PROPERTIES OF CONTINUOUS FUNCTION ON A CLOSED INTERVAL WITH AN INTERVAL SEQUENCE THEOREM Zhou Ming (Xi′an Engineering University,Xi′an 710054) Abstract Four theorems about continuous function on an closed interval are proved by a interval sequence theorem in mathematical analysis. Key words interval sequence, continuity, uniform continuity 在高等数学中所遇到的闭区间上连续函数的性质,通常都不加以证明,其实这些性质在数学分析中都给出了证明,可用数学分析中的一些定理来证明。实际上这些性质的证明也可用数学分析中的一个定理即区间套定理证得。下面就用区间套定理来证明这些性质。在证明这些性质之前,先叙述一下区间套定理。 区间套定理:设一无穷闭区间列{〔a n,b n〕}适合下面两个条件: (1)后一区间在前一区间之内,即对任一正整数n,有a n≤a n+1<b n+1≤b n。 (2)当n→∞时,区间列的长度{(b n-a n)}所成的数列收敛于零,即limn→∞(b n-a n) =0。 则区间的端点所成两数列{a n}及{b n}收敛于同一极限ξ,且ξ是所有区间的唯一公共点。 1 有界性定理 若函数f(x)在闭区间〔a,b〕上连续,则它在〔a,b〕上有界。 证明(反证法):设f(x)在〔a,b〕上无界,将〔a,b〕二等分,则f(x)必在其一上无界,记其为〔a1,b1〕,再将〔a1,b1〕二等分,记f(x)在其上无界的区间为〔a2,b2〕,这样继

(整理)闭区间上连续函数的性质

§4.2 闭区间上连续函数的性质 一、 性质的证明 定理1.(有界性)若函数)(x f 在闭区间[a,b]连续,则函数)(x f 在闭区间[a,b]有界,即?M >0,∈?x [a,b],有|)(x f |≤M . 证法:由已知条件得到函数)(x f 在[a,b]的每一点的某个邻域有界.要将函数 )(x f 在每一点的邻域有界扩充到在闭区间[a,b]有界,可应用有限覆盖定理,从 而得到M >0. 证明:已知函数)(x f 在[a,b]连续,根据连续定义, ∈?a [a,b],取0ε=1,0δ?>0,∈?x (00,δδ+-a a )?[a,b],有 |)(x f )(a f -|<1.从而∈?x (00,δδ+-a a )?[a,b]有 |)(x f |≤|)(x f )(a f -|+|)(|a f <|)(|a f +1 即∈?a [a,b],函数)(x f 在开区间(00,δδ+-a a )有界。显然开区间集 { (00,δδ+-a a )|∈a [a,b] }覆盖闭区间[a,b].根据有限覆盖定理(4.1定理3),存在有限个开区间,设有n 个开区间 {(k k a k a k a a δδ+-,)|∈k a [a,b] },k=1,2,3,…,n 也覆盖闭区间[a,b] ,且 ∈?x (k k a k a k a a δδ+-,)|∈k a [a,b],有|)(x f |≤|)(|k a f +1,k=1,2,3,…,n 取M =max{|)(||,......,)(||,)(|21n a f a f a f }+1. 于是∈?x [a,b],∈?i {1,2,…,n},且∈x (i i a i a i a a δδ+-,)?[a,b], 有|)(x f |≤|)(|i a f +1≤M 定理2(最值性):若函数()f x 在闭区间[],a b 连续,则函数()f x 在区间

第三章(2)戴得金定理证明6页word

Ⅰ 戴德金定理; Ⅱ 单调有界数列必收敛定理(一般的,我们取单调递增有上界数列); Ⅲ 确界原理(一般的,我们取非空有上界数集); Ⅳ 闭区间套定理; Ⅴ 致密性定理; Ⅵ 柯西收敛准则; Ⅶ 有限覆盖定理. 在证明它们的等价性时,一般采用循环证法,但在本篇论文中,为了说明这七个命题都可以作为构造实数的公理性命题,我们选择从一个命题出发,来证明其余六个命题.下面给出这42个证明过程. Ⅰ?Ⅱ:(戴德金定理?单调有界数列必收敛定理) 证明:设数列{n x }单调递增且有上界,其上界构成集合B ,令A R B =-,则/A B 构成了实数集R 的一个分划(/A B 满足非空、不漏、有序).由戴德金定理可知,A 中有最大数或B 中有最小数. 若A 中有最大数,不妨设为α,则由/A B 的构造可知α不是{n x }的上界,N N +?∈使N x α>,则 N x B ∈,且为数列{n x }的上界,由数列{n x }单调递增可知,,n N ?>均有n N x x =,从而{n x }极限存在. 若B 中有最小数,不妨设为β,现在证明β即为数列{n x }的极限.事实上,β是数列{n x }的上界, 且对0,εβε?>-不属于B ,从而不是{n x }的上界,即,N N N x βε+ ?∈>-使,又因为{n x }的单调性, 从而: ,.N n n N x x βεβ?>-<≤< 也即,数列{n x }收敛于β. Ⅰ?Ⅲ:(戴德金定理?确界原理) 证明:设数集E 非空且有上界,其上界构成集合B ,令A R B =-,则/A B 构成了实数集R 的一个分划(/A B 满足非空、不漏、有序).由戴德金定理可知,A 中有最大数或B 中有最小数. 若A 中有最大数,不妨设为α,则由/A B 构造可知α不是数集E 的上界,从而存在,E ξ∈ ξα>使.即B ξ∈为E 的上界,因此sup E ξ=,数集E 的上确界存在. 若B 中有最小数,不妨设为β,则对0,A εβε?>-∈不是E 的上界.从而,E ξ?∈ 使: βεξβ-<≤. 也即sup E ξ=,E 的上确界存在.

区间套定理的拓展及其应用

2012届本科毕业论文区间套定理的拓展及应用 姓名:骆盼 系别:数学与信息科学学院 专业:数学与应用数学 学号: 指导教师: 2012年6月20日

区间套定理的拓展及应用 摘要 通过运用类比法、分析法、演绎法将区间套定理进行了拓展,得到若干定理并分别给出了证明,结合典型例题,分析讨论了区间套定理的实际应用. 关键词 区间套;拓展;应用 The expansion and application of the nested interval theorem Abstract s everal theorems which are testified are got after the expanding of the nested interval theorem through the application of analogy,analysis,and deductive and the application of the nested interval theorem was discussed by the analysis of some typical examples. Key words nested interval;expansion;application

0 引言 区间套定理是数学分析中的一个重要的定理,它同聚点定理、有限覆盖定理、确界原理、数列的单调有界定理和柯西收敛准则一样反映了实数的完备性,也是学习实变函数、复变函数、点集拓扑学等课程的基础.由于它具有较好的构造性,因此区间套定理在证明与实数相关的命题中有广泛的应用,如证明闭区间上的连续函数必有最大值和最小值、闭区间上的连续函数必定一致连续、闭区间的连续函数的介值性定理等.故区间套定理不仅有重要的理论价值,而且具有很好的应用价值。为了增大区间套定理的应用范围,本文从区间套定理的概念出发,综合运用类比分析法、演绎推理法推广该定理. 首先,将区间套定理在一维空间加以推广,形成严格开区间套定理和严格半开半闭区间套定理,增大了区间套定理的应用范围.紧接着结合一般完备度量空间的特性,即正定性、对称性、三角不等式和完备性,把区间套定理在一般完备度量空间上推广,形成一般完备度量空间上的闭区间套集定理,从而把一维空间上的情形推广到了更一般化的完备度量空间,使得区间套定理的应用范围更为广泛,而且给出了常用度量空间n R 上的闭集套定理.最后结合一些实例分析说明区间套定理的应用,比如证明闭区间上的连续函数有界、单调有界定理等,通过构造满足题意的闭区间列,在应用区间套定理证明存在满足题意的点.从实际例题中还可以看出区间套定理反映了实数的稠密性,所以区间套定理在证明与实数相关命题时发挥着重要的作用. 1 区间套定理在1R 上的推广 区间套定理是一个基本的定理,在把该定理推广前先回顾一下闭区间套定理的内容. 定义1.1 设[]{}),3,2,1(, =n b a n n 是R 中的闭区间列,如果满足: (1)[][] 3,2,1,,,11=?++n b a b a n n n n ; (2)()0lim =-∞ →n n n a b ; 则称[]{}n n b a ,为R 中的一个闭区间套,或简称区间套. 定理] 1[1.1 (闭区间套定理)若[]{}n n b a ,是一个闭区间套,则存在惟一一点ξ,使得 []),3,2,1(, =∈n b a n n ξ, 且 ξ==∞ →∞ →n n n n b a lim lim . 推论1.1 若[]),3,2,1(, =∈n b a n n ξ是区间套[]{}n n b a ,确定的点,则对任意正数ξ,存在自然数N ,当N n >时,总有 []()εξ,,U b a n n ?. 定义2.1 (严格开区间套定理)设(){}),3,2,1(, =n b a n n 是R 中的开区间列,如果满

第讲区间套定理

第28讲 上(下)确界与区间套定理 讲授内容 一、 有界集.确界原理 定义1 设S 为R 中的一个数集.若存在数M(L),使得对一切S x ∈,都有x ≤M(x ≥L),则称S 为 有上界(下界)的数集,数M(L)称为S 的一个上界(下界). 若数集S 既有上界又有下界,则称S 为有界集.若S 不是有界集,则称S 为无界集. 例1 证明数集n n N |{=+为正整数}有下界而无上界. 定义2 设S 是R 中的一个数集.若数η满足: (i )对一切S x ∈,有η≤x ,即η是S 的上界; (ii )对任何ηα<存在S x o ∈,使得α>o x 即η又是S 的最小上界 则称数η为数集S 的上确界,记作S sup =η 定义3 设S 是R 中的一个数集.若数ξ满足: (i )对一切S x ∈,有ξ≥x ,即ξ是S 的下界 (ii )对任何ξβ>,存在S x o ∈,使得,βo x ;若0>α,则由有理数集在实数集中的稠密

性,在)1,(α中必有有理数o x 即存在S x o ∈,使得α>o x . 类似地可验证0inf =S 注1 由上(下)确界的定义可见,若数集S 存在上(下)确界,则一定是唯一的.又若数集S 存在上、下确界,则有S S sup inf ≤.数集S 的确界可能属于S ,也可能不属于S . 定理1.1(确界原理) 设S 为非空数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界. 证明略 例2 设B A ,为非空数集,满足:对一切A x ∈和B y ∈有y x ≤.证明:数集A 有上确界,数集B 下确界,且B A inf sup ≤. 证:由假设,数集B 中任一数y 都是数集A 的上界,A 中任一数x 都是B 的下界,故由确界原理推知数集A 有上确界,数集B 有下确界. 现证不等式,对任何B y ∈,y 是数集A 的一个上界,而由上确界的定义知,A sup 是数集A 的最小上界,故有y A ≤sup .而此式又表明数A sup 是数集B 的一个下界,故由下确界定义证得B A inf sup ≤. 二、区间套定理与柯西收敛准则 定义1 设闭区间列[]{}n n b a ,具有如下性质: (?) []n n b a ,[]11,++?n n b a , ,2,1=n ; (??) 0)(lim =-∞ →n n n a b , 则称[]{}n n b a ,为闭区间套,或简称区间套。 这里性质(?)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式: .1221b b b a a a n n ≤≤≤≤≤≤≤≤ (1) 定理7.1(区间套定理) 若[]{}n n b a ,是一个区间套, 则在实数系中存在唯一的一点ξ,使得ξ∈[]n n b a ,, ,2,1=n ,即ξ≤n a n b ≤, .,2,1 =n (2) 证:由(1)式,{}n a 为递增有界数列,依单调有界定理,{}n a 有极限ξ,且有 .,2,1, =≤n a n ξ (3) 同理,递减有界数列{}n b 也有极限,并按区间套的条件(??)有 ξ==∞ →∞ →n n n n a b lim lim , (4) 且 .,2,1, =≥n b n ξ (5) 联合(3)、(5)即得(2)式。

7.2闭区间上连续函数性质的证明

§7.2 闭区间上连续函数性质的证明 教学目标:证明闭区间上的连续函数性质. 教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明; 闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明. 基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理 证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理. 较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性. 教学建议: (1) 本节的重点是证明闭区间上的连续函数的性质. (2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题. 教学过程: 在本节中,将利用关于实数完备性的基本定理来证明第四章2中给出的闭区间上连续函数的基本性质. 一、有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界 证法 一 ( 用区间套定理 ). 反证法. 参阅[3]P106—107. 证法 二 ( 用致密性定理). 反证法. 证明 如若不然,)(x f 在],[b a 上无界,∈?n N ,],[b a x n ∈?,使得n x f n >|)(|,对于序列}{n x ,它有上下界b x a n ≤≤,致密性定理告诉我们k n x ?使得],[0b a x x k n ∈→,由)(x f 在0x 连续,及 k n n x f k >|)(|有 +∞ ==∞ →|)(|lim |)(|0k n k x f x f , 矛盾. 证法 三 ( 用有限复盖定理 ). 参阅[1]P168—169 证明 (应用有限覆盖定理) 由连续函数的局部有界性(th4.2)对每一点[]b a x ,' ∈都存 在邻域()x x ' ',δ ?及正数'x M 使 ()()[]b a x x M x f x x ,,'' '??∈≤δ

闭区间套定理的推广及应用

闭区间套定理的推广及应用 摘要:先介绍了闭区间套定理,再把闭区间套定理进行了推广,并得到了 严格开区间套定理和严格半开半闭区间套定理以及一般完备度量空间上的闭集套定理和常用完备度量空间上的闭集套定理,并给出了这些定理的证明.再讨论了闭区间套定理及推广后的闭集套定理的实际应用,说明了闭区间套定理不仅具有重要的理论意义,而且还有很好的应用价值. 关键词:闭区间套定理;严格开区间套定理;推广;应用. 闭区间套定理是实分析中的一个重要定理.由于它具有较好的构造性,因此闭区间套定理在实数相关的命题中有广泛的应用,故闭区间套定理不仅有重要的理论价值,而且具有很好的应用价值.为了增大闭区间套定理的应用范围,从闭区间套定理的概念出发推广该定理. 首先,将闭区间套定理在一维空间加以推广,形成严格开区间套定理和严格半开半闭区间套定理,增大了区间套定理的应用范围.接着结合一般完备度量空间的特性,即正定性、对称性、三角不等式性和完备性,把闭区间套定理在一般完备度量空间上推广,形成一般完备度量空间上的闭集套定理,从而把一维空间上的情景推广到了更一般化的完备度量空间,使得区间套定理的应用范围更为广泛,并且给出了常用度量空间n R 上的闭集套定理.最后结合一些实例分析说明闭区间套定理的应用. 1 . 闭区间套定理在1R 的推广 闭区间套定理是一个基本的定理.所以,在对该定理推广前有必要先回顾一下闭区间套定理的内容. 定义1.1 设[]{},n n a b (1,2,3,n = )是R 中的闭区间列,如果满足: (1) [][]11,,n n n n a b a b ++?,1,2,3,n = ; (2) lim()0n n n b a →∞ -=; 则称[]{},n n a b 为R 中的一个闭区间套,或简称区间套.

《数学分析》实数完备性七大定理证明与七大定理相互证明

实数完备性的证明 第一部分 七个定理的证明 1.单调有界定理→区间套定理 证明:已知n a ≤1+n a (?n ), n a ≤n b ≤1b ,∴由单调有界定理知{n a }存在极限,设∞ →n lim n a = r , 同理可知{n b }存在极限,设∞ →n lim n b =r ' ,由∞ →n lim (n n a b -)=0得r r '-=0 即r r '= Θ?n ,有n a ≤n b ,令∞→n ,有n a ≤r r '=≤n b ,∴?n ,有n a ≤r ≤n b 。 下面证明唯一性。 用反证法。如果不然。则? 21r r ≠,同时对任意 A a ∈,1r a ≤,2r a ≤ 对任意b 有1r b ≥ 2r b ≥,不妨设21r r <, 令 2 2 1'r r r += 显然 2 '1r r r << ? A r ∈', B r ∈', 这与B A |是R 的一个分划矛盾。 唯一性得证。定理证完。 2.区间套定理→确界定理 证明:由数集A 非空,知?A a ∈,不妨设a 不是A 的上界,另外,知 ?b 是A 的上界,记[1a ,1b ]=[a , b ],用1a ,1b 的中点2 1 1b a +二等分[1 a ,1 b ],如果2 11 b a +是A 的上界, 则取[2a ,2 b ]=[1 a ,2 11 b a +];如果2 11 b a +不是A 的上界,则取[2a ,2b ]=[2 1 1b a +,1 b ];用2 a ,2 b 的中点2 22 b a +二等分[2a ,2 b ]……如此继 续下去,便得区间套[n a ,n b ]。其中n a 不是A 的上界,n b 是A 的上界。由区间套定理可得,?唯一的I ∞ =∈1 ],[n n n b a r , 使∞ →n lim n a =∞ →n lim n b = r 。A x ∈?,

用有限覆盖定理证明实数完备性的几个定理

第一章前言 众所周知, 极限的存在性问题是极限理论的首要问题. 一个数列是否存在极限不仅与数列本身的结构有关, 而且与数列所在的数集密切相关. 从运算的角度来说, 实数集关于极限的运算是封闭的, 它反映了实数集的完备性, 这是实数的优点. 因此, 将极限理论建立在实数集之上, 极限理论就有了坚实的基础. 我们常常从实数系的连续性出发证明实数系的完备性, 也可从实数系的完备性出发去证明实数系的连续性, 所以这两个关系是等价的. 因此, 我们也称实数系的连续性为实数系的完备性. 数学分析课程是高等学校数学专业的主要基础课程之一,更是高等师范学校数学教育专业最主要的基础课程. 在数学分析教材中,实数集的确界定理、单调有界定理、闭区间套定理、柯西收敛准则、聚点定理和有限覆盖定理通称为实数的完备性定理, 他们各自从不同的角度反映了实数的完备性或称为实数的连续性, 成为数学理论乃至数学分析坚实的基础. 这六个基本定理是相互等价的, 也就是说可以相互循环论证. 在我们学过的刘玉琏等主编的数学分析讲义中, 实数完备性基本定理是从公理出发, 首先运用公理证明了闭区间套定理, 然后用前一个定理为条件, 证明了后一个定理的结论, 它们依次是: 确界定理、有限覆盖定理、聚点定理、致密性定理、柯西收敛准则的充要性, 最后再运用柯西收敛准则的充要性证明了公理(作为练习题). 而在本文中把有限覆盖定理作为出发点, 利用反证法和有限覆盖的思想来分别证明确界原理、单调有界定理、区间套定理、聚点定理、柯西收敛准则. 下面我们就来阐述有限覆盖的定义和定理的内容, 为后面的证明做铺垫. 定义1.2.1]2[设S为数轴上的点集, H为开区间的集合,(即H的每一个元α的开区间), 若S中任何一点都含在H中至少一个开区间内, 素都是形如) , (β 则称H为S的一个开覆盖, 或称H覆盖S. 若H中开区间的个数是无限(有限)的, 则称H为S的一个无限开覆盖(有限开覆盖). 定理1.2.1]2[(有限覆盖定理)设H为闭区间] [b a的一个(无限)开覆盖, 则 , 从H中可选出有限个开区间来覆盖] a. , [b

相关文档
最新文档