高炉富氧对高炉的影响

高炉富氧对高炉的影响
高炉富氧对高炉的影响

高炉富氧的最大效果是提高产量。富氧鼓风将给炉内带来二个方面的变化,一是风口前理论燃烧温度(Tf)的升高,二是吨铁煤气量的下降。另外,增加富氧率,也有利于改善煤粉的燃烧。

鼓风中氧的浓度增加,燃烧单位碳所需的鼓风量减少;鼓风中氮的浓度降低,也使生成的煤气量减少,煤气中CO浓度因此而增大。这些变化,对冶炼过程产生多方面的影响:

1)、由于煤气体积少,煤气对炉料下降的阻力也减少,为加大鼓风量、提高冶炼强度创造了条件。

2)、随鼓风中含氧量的提高,煤气中CO浓度增加,煤气的还原能力提高,有助于间接还原过程的发展,但因煤气量减少,在某种程度上扩大了低于700℃的区域,又限制了间接还原的发展。所以富氧能否降低燃料消耗,要由实际生产结果来定,不同冶炼条件,结果也不相同。

3)、富氧鼓风改变了冶炼中的热平衡。从分区看,由于富氧提高了理论燃烧温度,下部高温区热交换显著改善,热量集中于炉腹以下。但由于煤气体积减少,会使中温区相对缩短,从而使低温区扩大。从总体看,由于单位生铁的鼓风量减少,热风带入的热量也会减少;但煤气量减少使顶温降低,可减少热支出;同时因富氧1%,可增产4%左右,单位生铁各部热损失也可以减少一些,所以总的热量消耗仍然是降低的。

4)、富氧鼓风对顺行产生影响。因为富氧鼓风使燃烧带的焦点温度提高,炉缸半径方向的温度分布不合理,以及产生SiO气体剧烈挥发,到上部重新凝结、降低料柱透气性,从而破坏炉况顺行。所以在富氧又采用高风温时,用喷吹燃料控制理论燃烧温度是经济合理的。若无喷吹燃料装置,则应采用加湿鼓风。

高炉富氧鼓风的特点和作用[文秘家园-www,https://www.360docs.net/doc/9512953149.html,,找范文请到文秘家园]

高炉冶炼是高温物理化学反应,参与反应的主要元素是Fe-C-O。Fe来源于矿石,包括烧结矿、球团矿、块矿等。碳来源于燃料,包括焦炭及各种喷吹物。O2来源于高炉鼓风和富氧。原先矿石和燃料是由高炉上部装入的,而从高炉下部进入炉内的仅是鼓风,后来发展高炉综合鼓风技术,即从高炉下部进入炉内的不仅有鼓风,还有富氧及各种可燃的碳氢化合物,甚至还有含铁、含CaO的粉状物质。

富氧的目的原先主要为提高风中含氧,强化高炉冶炼,后来由于喷吹燃料技术发展,高炉喷吹的天然气、重油或煤粉量过大时,导致高炉理论燃烧温度过度下降,使高炉过程困难,同时也难于继续提高喷煤量。而高炉富氧之后,可以相应提高理论燃烧温度,提高反映区的氧化气氛,形成富氧喷吹技术,特别是富氧喷煤技术,更适合国内的实际。

现在国内高炉喷煤量已普遍达到100kg/t,而宝山高炉达到200kg/t的国际水平,还有一大批高炉煤比超过了150kg/t,从高炉喷吹煤粉的实践可知道,在无富氧的条件下,煤比一般能达到100kg/t,个别可达到120kg/t,若想达到更高的水平必须配备富氧,否则将导致高炉喷煤置换比降低。目前国内高炉富氧一般在1—3%的水平,个别可能高些。国外有的国家电力充足,富氧可达到10%,甚至更高。敬业高炉这次富氧仍然是用炼钢余氧,但更大的目

的在强化高炉冶炼,多出铁,当然也应相应提高煤比,所以一旦富氧,立即达到较高水平,富氧率达到2-3%,没有多余的实践时间,更要求预先能掌握较多的富氧喷煤知识。

一、氧气的特点和制备方法

氧气是自然界一种普通重要的物质元素,存在于大气中,存在于水中,存在于地壳的各种氧化物中,是人类生存的必备条件,也是自然界变化的必备条件。

氧气和自然界的其他物质一样,有三种存在状态,一般为气态。在温度高于-183℃其为气态,无色透明,比重为1.429g/cm3。温度在-183℃— -219℃之间其为兰色的液体,当温度低于-219℃时,其为淡兰色的固体。就像水蒸气、水和冰一样。

氧元素在元素周期表中处在第二周期,第Ⅵ族。原子序号为8,原子量为16,其原子核有8个质子和8个中子,核外有8个电子绕核旋转,电子层为2层,第一层有2个电子(饱和时为2个)第二层为6个电子(饱和时为8电子)因此极需从别处拉过2个电子,使外层电子饱和、稳定。在一定的条件下,极易和其他物质产生化合反应,生成相应的氧化物,CO、CO2、H2O、……。其中应特别注意的是CO和CO2。任何氧化物或其他化合物的分子,随温度升高,原子间的结合力变弱,即容易将其原子分开。唯CO和CO2完全相反,随温度升高,其原子结合更牢固。因此不论焦炭也好,煤粉也好,虽然其燃烧是放热反应,随环境温度升高,其反应越激烈,这就是在高炉喷吹煤粉和其他碳氢化合物时,要求提高风温的原因。

正常状态下,高炉的燃烧反应是在大气中的氧和燃料中的碳之间发生的,大气中参与反应的O2仅占21%,其余79%是N2和其他少量元素,实际不参与化学反应,只有温度的变化,因此高炉内的实际燃烧反应化学式应为:

2C+O2+79N2/21=2CO+79N2/21+2340千卡/千克碳

如果鼓风中O2由21%升高到25%,其燃烧反应式为:

0 2C+O2+79N2/21=2CO+79N2/21 V物=129.07升

1 2C+O2+78N2/22=2CO+78N2/21 V物=124.22升

2 2C+O2+77N2/23=2CO+77N2/21 V物=119.79升

3 2C+O2+76N2/24=2CO+76N2/21 V物=115.73升

4 2C+O2+75N2/25=2CO+75N2/2

5 V物=112.00升

式中可见,当鼓风中的氧由21%上升到25%时,虽然燃烧同样的碳,产生同样的热量,但燃烧产物的体积下降了13.23%,这样就便于高炉强化。初期用氧就是为高炉强化冶炼的。富氧率提高之后,燃烧产物减少,带到上部去的热量也少了,高炉热量集中在下部区域,产生

下热上凉现象。而高炉喷煤多,理论燃烧温度下降多,高炉产生下凉上热现象,如果两者适当配合,使高炉内的温度分布趋于均匀,有利于整个高炉冶炼过程的进行。

氧气制备在实验室用含氧化合物分解制备。工业上一般采用分馏法制备,由于当初冶金工厂的氧主要为炼钢转炉准备的,转炉要求氧纯度达到99.5%以上,而高炉用氧对纯度要求不严。制备高纯度的氧能耗大,合理的方案应该单为高炉配备制氧机,现在国内已有个别厂用变压吸附的方式为高炉配备了制氧机。天津铁厂用液氧压缩技术,为高炉配备了一台15000m3/h 制氧机,由于其出塔压力即可达到0.6mpa,可直送高炉,不采用加压再减压的流程,氧的成本较低,仅0.32元/m3(正常的0.48元/ m3)已正常使用六年多了,敬业高炉使用的仍然是炼钢余氧,但由于氧气供应能力大,高炉可以使用较多的氧气来提高产量,增加煤比。

二、富氧对高炉冶炼过程影响

高炉鼓风含O2提高之后,能加速高炉风口前的燃烧过程,提高理论燃烧温度,强化高炉冶炼,增加高炉煤比,但其和高炉提高风温不同,它不能带入附加的热量,其影响如下:

1、提高高炉冶炼强度

由于鼓风含O2提高之后,高炉燃烧焦炭和煤粉的能力提高,也就是提高了高炉的冶炼强度,由于鼓风和富氧含纯氧不同,富氧率提高1%,能提高冶炼强度4.76%,也就是说高炉产量按理论计算应提高4.76%。

2、高炉富氧有利于炉况顺行

高炉富氧后,由于燃烧同样的碳,其燃烧产物量下降,在一定的条件下相当于高炉减风,炉内煤气上升阻力减少,有利于高炉顺行,如果保持原有的煤气量,则相当于高炉加风。

对高炉焦比的影响

高炉富氧对高炉综合焦比影响有好有坏,一般变化不大,但由于富氧后,煤比大大提高,可促使焦比降低。

4、高炉富氧之后,能提高高炉煤气的热值

富氧后,由于煤气中N2量减少,有效的CO、H2相对增加,能提高煤气的热值,鞍钢统计富氧1%,高炉煤气的热值提高3.4%,热风炉反应好烧炉。

5、高炉富氧更有利于冶炼能耗高的铁种

对于综合焦比很高铸造铁、硅铁等耗热量大的铁种,不仅能大大降低其燃耗,还能提高其产量。

敬业高炉富氧是在氧气富余的条件下进行,预计8月15日第三台制氧投产,9月1日高炉必须应用富氧来大幅度提高生铁产量,满足炼钢生产。将增煤比放在第二位,适当增煤,使风口理论燃烧温度维持合理水平,保高炉顺行。

三、高炉富氧供氧方法和安全用氧

目前高炉富氧供氧方式分为三种,第一种机前供氧,即将氧气送入鼓风机吸风口和鼓风一起加压,经送风系统进入高炉风口内,国外有使用此种办法的,国内没有,第二种方式,机后供氧,即在鼓风从风机主管出来之后,在放风阀前某处,将氧气加入和冷风混合经加热送入炉内,这是国内大多数厂家使用的办法,第三种实际也是机后供氧,在炉台通过氧煤枪和煤粉混合,直送风口前,目的是提高局部区域氧浓度,使煤粉更完全燃烧,鞍钢作高煤比试验时用过,攀钢用过,包钢试验时也用过。天津铁厂5#高炉有一套比较完整的氧煤枪供氧装置,由于安全原因,未敢使用,在2003年该高炉改造性大修已拆除。现在有的厂家应用的氧煤枪介质实际是压缩空气,因为从理论研究和实验室试验并不能证明这种方法,局部区域含O2升高,只要氧和空气混合,立即能达到均匀混合的程度,而且是在极短的时间内完成。

敬业高炉富氧采用机后供氧的方法。从氧气厂来氧压力为1.6mpa,经两次减压进入冷风管道,高炉工长只要控制氧气压力调节阀即可达到所需的供氧量比较方便。

高炉应用富氧冶炼一定要保证安全生产,国内高炉在应用富氧时造成过燃爆,导致人员伤亡,还有的厂在初次应用富氧时,由于氧气流量表不准,使实际供氧大大增加,而大量的烧坏高炉风口,它不是渣铁烧坏的,而是高温的气体将其熔蚀、烧坏的。

应用氧气发生安全事故的原因,一者氧气本身就是强氧化剂,易燃易爆。二者使用不当,特别是送氧初期开启最后一道阀门,瞬间氧气流速极高,若管道内有残存的尘粒,铁锈片等杂物,也随氧气在管道内高速流动和管壁摩擦,产生火花,使氧气和金属铁迅速反应生成FeO,温度高,其为液体状态在管道内流动,使管壁变薄而爆裂,再引燃其他物质。因此,为防止事故氧气管道阀门必须干净,经过强度和严密性试验,脱脂和严格吹扫,不使管内有残留杂物。再者在开启氧气阀门前在管道内充N2,能减少阀门前后的压差,N2也能熄灭火源,等氧气阀门全开,氧气接通后关闭充N2阀门。

用氧虽然危险,只要按操作规程正确使用,还是可以安全应用富氧和富氧喷吹煤粉技术的。氧量调整一般高炉是逐步提高的,敬业高炉用氧也需遵循此原则,但由于生产任务要求,进行速度应快些,使大高炉供氧量尽快达到2500 m3/h(富氧率2.32%),尽量多增产,满足炼钢要求为企业完成全年生产任务作贡献。

高炉使用氧气安全注意事项

1、首先供氧设备保证合乎要求,系统用四氯化碳清洗并用N2或干燥压缩空气吹扫,经过严密性和强度试验合格。

2、正确使用,即按技术规程用氧,特别是初次送氧有关领导应亲自指挥,开启阀门顺序正确,先通N2隋化。

3、用氧高炉及其周围环境干净,不能有油污及其他易燃品、劳保品、工具亦要无

油污,注意防止静电。

4、快速切断阀能在非常状态下,迅速关闭,切断氧源。在支系统中,10号阀(小高炉为21号阀)在氧气压力<0.5 mpa或>0.9mpa,即自动关闭,也可根据管网实际情况作调整。另外,当高炉冷风压力<0.13mpa(小高炉<0.08mpa)快速切断阀10号(21号)也自动关闭。

在总系统中来氧压力为1.6mpa,当其降低到1.0mpa,说明供氧系统故障,立即关闭5号阀,支系统关闭10号(21号)阀,充N2,隋化、保压,迅速联系,查明原因,决定如何继续处理。

5、高炉确定操作氧气阀门负责人,未经负责人指派,其他人员不可操纵氧气有关阀门,防止发生意外。

高炉富氧炼铁前景

高炉富氧炼铁前景 来源:张化义文章发表时间:2010-12-21 时至今日,通过增加喷煤量和提高生产率以降低铁水生产成本仍然是高炉炼铁生产的焦点。目前,最好的高炉利用系数已超过3t/m3d,典型的低焦比为260 kg/tHM ~270kg/tHM。Corus IJMuiden高炉富氧炼铁已达到35%~40%。实践证明,与传统的Rankine循环相比,利用高炉炉顶煤气进行联合循环发电可提高热效率35%~40%,有利于进一步降低铁水成本。联合循环发电可有效利用低发热值(约4500kJ/Nm3)高炉煤气。通过富氧满足“高炉贫N2操作”,降低焦比,提高生产率和减少CO2排放。 1 前言 在未来许多年里,高炉炼铁仍将继续占据着主导地位,其主要原因是: 1)替代高炉炼铁工艺的研究进展缓慢。考察了冶炼-还原工艺后认为,至今仍然只有Corex、Finex和HIsmelt工艺达到了商业生产水平。因为商业投资风险比BF大,因而替代炼铁工艺的应用可能继续受到限制。 2)因为维修和更新现有高炉需要的投资,比建设一座全新的替代高炉及其附属设备的投资低许多。 3)提高现代高炉炼铁生产率和降低铁水成本方面还存在着很大的潜力。 因此,未来几年将从以下几个方面对高炉炼铁进行深入研究: 1)降低铁水生产成本。如果铁矿石成本一定,铁水成本主要取决于还原剂(焦炭与煤)的消耗量和高炉利用率。因此,研究如何将喷煤量(PC1)和高炉利用率分别提高到230kg/tHM和3t/m3d以上是节约能源、降低铁水成本的关键。 2)减少CO2排放。通过资源的有效利用,也就是减少能源损失,提高能源和再生资源的使用效率以减少CO2排放将是研究工作的重点。为此本文将重点介绍高炉低N2运行前景,即提高热风炉送风含氧量,即超过喷煤需要的最低含量。 2 当前的粉煤喷吹和热风富氧量 表1是利用物质和热量平衡模型计算获得的消耗参数和冶炼1吨铁水的操作消耗

有害元素对高炉冶炼的影响.

有害元素对高炉冶炼的影响 有害元素通常指硫(S)、磷(P)、钾(K)、钠(Na)、铅(Pb)、Zn (锌)、As(砷)、Cu。通常高炉冶炼对铁矿石要求如下: Pb<0.1%、Zn<0.1%、As<0.07%、Cu<0.2%、K2O+Na2O≤0.25%。 硫(S):硫对钢材是最为有害的成份,它使钢材产生“热脆性”。铁矿石中硫含量高,高炉脱硫成本增大,所以入炉铁矿石含硫愈少愈好。λ磷(P):磷对钢材来说也是常见有害元素之一,它使钢材产生“冷脆性”。铁矿石中的磷,在高炉冶炼时100%进入生铁,烧结也不能脱磷,控制生铁含磷量主要是靠控制铁矿石含磷量。脱磷只能通过炼钢来进行,增加了炼钢的脱磷成本。因此,铁矿石含磷越低越好。λ碱金属:碱金属主要有钾和钠。钾、钠对高炉的影响不是正比例性质,高炉本身有一定的排碱能力,碱金属在控制范围内对高炉影响不大。但是入炉铁矿石碱金属含量太多,超过高炉排碱能力,就会形成碱金属富集,导致高炉中上部炉料碱金属含量大大超过入炉料原始水平。铁矿石含有较多的碱金属极易造成软化温度降低,软熔带上移,不利于发展间接还原,造成焦比升高。球团含有碱金属会造成球团异常膨胀引起严重粉化,恶化料柱透气性。碱金属对焦炭性能破坏也很严重。另外,高炉中上部碱金属化合物黏附在炉墙上,促使炉墙结厚、结瘤并破坏砖衬。因此,铁矿石含碱金属越低越好。λ 铅(Pb):铅在高炉中几乎全部被还原,由于密度高达11.34t∕m3,故沉于死铁层之下,易破坏炉底砖缝,有可能会造成炉底烧穿。λ 锌(Zn):锌很容易气化,锌蒸汽容易进入砖缝,氧化成为ZnO后膨胀,破坏炉身上部耐火砖衬。λ

砷(As):砷对钢材来说也是有害元素之一,它使钢材产生冷脆性,使得钢材焊接性能变差。铁矿石中砷基本还原进入生铁,影响生铁质量。此外砷在烧结过程中挥发,对环境影响较大。λ 铜(Cu):铜会使钢材“热脆”,钢材不易轧制和焊接。少量铜能改善钢的耐蚀性。在高炉冶炼中,铜全部还原进入生铁中。λ 钛能改善钢的耐磨性和耐腐蚀性。但在高炉冶炼时,会使炉渣性质变坏,约有90%的钛进入炉渣。钛含量低时对炉渣及冶炼过程影响不大,含量高时,会使炉渣变稠,流动性差,对冶炼过程影响很大,而且易结炉瘤。钛有护炉作用,不少高炉专门买钛矿加入高炉护炉。λ总之,高炉冶炼要求铁矿石有元素越低越好。

高炉强化冶炼详解

高炉强化冶炼技术及其进步 高炉炼铁生产的原则 高炉冶炼生产的目标是在较长的一代炉龄(例如5年或更长)内生产出尽可能多的生铁,而且消耗要低,生铁质量要好,经济效益要高,概括起来就是“优质,低耗,高产,长寿,高效益”。长期以来,我国乃至世界各国的炼铁工作者对如何处理这五者间的关系进行过,而且还在进行着讨论,讨论的焦点是如何提高产量及焦比与产量的关系。 众所周知,表明高炉冶炼产量与消耗的三个重要指标—有效容积利用系数(ηY)、冶炼强度(I)和焦比(K)之间有着如下的关系:ηY=I/K 显然,利用系数的提高,也即高炉产量的增加,存在着四种途径: (1)冶炼强度保持不变,不断地降低焦比; (2)焦比保持不变,冶炼强度逐步提高; (3)随着冶炼强度的逐步提高,焦比有所降低; (4)随着冶炼强度的提高,焦比也有所上升,但焦比上升的幅度不如冶炼强度增长的幅度大。 在高炉炼铁的发展史上,这四种途径都被应用过,应当指出在最后一种情况下,产量增长很少,而且是在牺牲昂贵的焦炭的消耗中取得的,一旦在冶炼强度提高的过程中,焦比升高的速率超过冶炼强度提高的速率,则产量不但得不到增加,反而会降低。因此,

冶炼强度对焦比的影响,成为高炉冶炼增产的关键。 在高炉冶炼的技术发展过程中,人们通过研究总结出冶炼强度与焦比的关系如图1所示。 图1 冶炼强度与产量(I)和焦比(K)的关系 a一美国资料,b一原西德资料,c一前苏联资料

在一定的冶炼条件下,存在着一个与最低焦比相对应的最适宜的冶炼强度I适。当冶炼强度低于或高于I适时,焦比将升高,而产量稍迟后,开始逐渐降低。这种规律反映了高炉内煤气和炉料两流股间的复杂传热、传质现象。在冶炼强度很低时,风量及相应产生的煤气量均小,流速低,动压头很小,造成煤气沿炉子截面分布极不均匀,表现为边缘气流过分发展,煤气与矿石不能很好地接触,结果煤气的热能和化学能不能得到充分利用,炉顶煤气中CO,含量低,温度高,而进入高温区的炉料因还原不充分,直接还原发展,消耗了大量宝贵的高温热量,因此焦比很高。随着冶炼强度的提高,风量、煤气量相应增加,煤气的速度也增大,从而改变了煤气流的流动状态,由层流转为湍流,风口前循环区的出现,大大改善了煤气流分布和煤气与炉料之间的接触,煤气流的热能和化学能利用改善,间接还原的发展减少了下部高温区热量的消耗,从而焦比明显下降,直到与最适宜冶炼强度儿相对应的最低焦比值。之后冶炼强度继续提高,煤气量的增加进一步提高了煤气流速,这将带来叠加性的煤气流分布,导致中心过吹或管道行程,在煤气流速过大时,它的压头损失可变得与炉料的有效质量相等或超过有效质量,炉料就停止下降而出现悬料。所有这些将引起还原过程恶化,炉顶煤气温度升高,炉况恶化,最终表现为焦比升高。 高炉炼铁工作者应该掌握这种客观规律,并应用它来指导生产,即针对具体生产条件,确定与最低焦比相适应的冶炼强度,使高炉顺行,稳定地高产。然而高炉的冶炼条件是可以改变的,随着技术的进步,例如加强原料准备,采取合理的炉料结构,提高炉顶

高炉机前富氧项目基本要求

高炉机前富氧 技 术 方 三、验收标准及技术要求: 1、GB50316-2000《工业金属管道设计规范》 2、TSG D0001-2009《压力管道安全技术监察规程-工业管道》

3、GB16912-2008《深度冷冻法制取氧气及相关气体安全技术规程》 4、GB50235-2010《工业金属管道施工及验收规范》 5、GB50236-2011《现场设备、工业管道焊接工程施工规范》 6、HG20202-2000《脱脂工程施工及验收规范》 7、JB/T5902-2001《空气分离设备用氧气管道技术条件》 8、JB/T6896-2007《空气分离设备表面清洁度》 10、 四、 1 左右。 ,送入高2 1 通过低压管道送至炼铁厂的1#、2#、高炉风机,利用风机自然吸气与空气混合,进鼓风机压缩送高炉富氧。 工艺简图(虚线为改造后):

现在提出的鼓风机前富氧,主要现有设备基础上的改造。因为前面提到当氧气达到一定比例时鼓风机会发生爆炸。那么这年氧气的比例是多少才能引起爆炸呢.。我们对此进行了试验。试验是通过一个小的旧通风机进行逐步加氧模拟而进行的。证明氧气含量在27%以下是安全的。同时由于各种设备状况的不同,为了安全保险,我们建议机前富氧,含氧量不超过25%,是绝对安全的。为了保证含氧量不超 25% (根

设计方案 1#、2#高炉富氧总量为10000Nm3/h,氧气总管流量考虑最大为:12000Nm3/h,进口压力8kPa,主管道采用DN800mm,设计流速v=5.0m/s,当量距离L=1000m,设计理论压损ΔP=585Pa。 3、主要设备及材料的使用规范 选用管材:主管及送气支管采用焊接钢管(YB231-70)。 采用阀芯、 商业机 wincc 1 2 3 4 6 通过对含氧量的检测,系统可以自动判断是否达到预设指令的富氧率,通过PLC 控制器可对氧气调节阀自动调节阀门开关位置,也可用PID自动控制模式自动跟踪控制富氧率。 氧气系统发生故障时,由PLC根据所检测到的参数,自动迅速关断气动快速切断阀并打开保安氮气切断阀。

碱金属对高炉的影响

区分和控制钾、钠对高炉冶炼的不利影响 碱金属对高炉冶炼的危害已久,国内外很多钢铁企业的高炉都遭受碱金属的危害。研究表明高炉内循环富集的碱金属会催化焦炭的气化反应、加剧烧结矿还原粉化、引起球团矿异常膨胀、破坏高炉内衬,最终导致料柱透气渗液性下降,煤气流分布失调,给高炉的长寿高效带来不利的影响。限制入炉碱金属负荷是防治碱金属的重要手段。但是,由于缺乏对碱金属危害程度量化的判断方法,大多钢铁企业只能依据自身的冶炼实践及经验制定碱金属入炉负荷的上限。通过调研可知,国内外不同钢铁企业制定的碱负荷上限值从 2.5kg/t 到12kg/t ,差别较大,这就使得在目前国内原料条件波动、冶炼操作变化的情况下制定具体高炉的碱金属入炉上限难以借鉴。很多钢铁企业虽深知碱金属的危害,但由于难以有效判断高炉的碱金属入炉负荷是否超限,往往无法“防患于未然”,在碱金属的富集严重影响炉况后才被动地做出调整。此为,在制定入炉碱金属上限时,大多未区分钾钠的不同影响,入

炉上限都是以钾钠的总量作为标准。 存在上述问题的主要原因可能是:1.尚未明确高炉内碱金属富集最严重的区域在哪里?2.在碱金属最严重的区域碱金属的危害和破坏对象是什么?3.碱金属危害程度和入炉负荷存在着什么关系?4.钾、钠对高炉冶炼是否存在不同的影响?一、国内外高炉碱金属富集情况国内外对碱金属在高炉内的富集情况进行调研的方法主要有三种,一是对实验高炉内不同区域的碱金属富集量进行分析;二是在实际高炉停炉解剖或大修时不同位置进行取样化验;三是通过对运行中高炉进行风口焦取样分析炉缸内碱金属分布。通过整理分析日本高炉、宝钢、首钢、武钢、包钢等钢铁企业的高炉碱金属富集调研结果,可以发现基本存在着以下规律。 1. 软熔带是碱金属最富集的区域。碱金属自炉身以下 最富集才开始明显增多,软熔带为碱富集最严重区间,软熔带下缘碱富集量达最大。如首钢高炉调研发现,块状带碱金属含量仅为入炉前的2.1 倍、软熔带为8.5 倍、软熔带下缘为13.1 倍、滴落带为

碱金属对高炉生产的危害分析及控制

碱金属对原燃料的影响 1恶化焦炭冶金性能。 碱金属首先吸附在焦炭的气孔,而后逐渐向焦炭内部的基质扩散,随着焦炭在碱蒸汽内暴露时间的延长,碱金属的吸附量逐渐增多。向焦炭基质部分扩散的碱金属会侵蚀到石墨晶体内部,破坏了原有的层状结构,产生层间化合物。当生成层间化合物时,会产生比较大的体积膨胀,导致焦炭强度下降,块度减小,产生较多碎焦和粉末。不同碱量条件下测定的焦炭反应性及反应后强度结果表明,加入钾、钠浓度增加后,焦炭的反应性增加,而且钾、钠浓度越高,反应性越大。这说明钾、钠对焦炭的碳溶反应起正催化作用,而且钾的催化作用高于钠。有关资料测定表明焦炭含K2O量每增加1%,反应性增加8%,焦炭反应后强度降低9.2%。同时,高炉冶炼统计表明,碱负荷每增加1kg/t,焦比平均上升18.75kg/t。 2碱金属对烧结矿的影响 2.1碱金属对还原性的影响 烧结矿的还原度均随烧结矿含碱量(K2O)的增高而提高,但随着含碱量的进一步增加,烧结矿的还原度提高幅度较小。碱金属能促进烧结矿还原的原因:一是碱金属对还原反应的催化作用,二是碱金属能增加烧结矿的气孔率。 .2.2碱金属对还原粉化率的影响 碱金属使烧结矿中温还原粉化率倍增的原因是:一是在还原过程中,碱金属会进入氧化铁的晶格。当还原到FeO时,碱金属大量进入FeO晶格,由于碱金属对还原反应的催化作用,使该区域的金属铁晶体生长较快,在相界面上产生应力,当应力积累到一定程度,便产生大量的裂纹,导致粉化率升高;二是在还原过程中会发生含钾矿物中钾元素的迁出与再集中,迁出的钾(或游离的钾)与硅铝等元素结合,生成钾铝硅酸盐,由于析晶困难,往往形成一些超显微的结晶,晶化愈强,结构也会更加疏松。 2.3碱金属对烧结矿软熔性能的影响 烧结矿少量碱金属可以提高烧结矿的软熔温度,使软熔带下移,但是碱金属含量过多时,会使软熔带温度区间变宽而不利于高炉冶炼。 3碱金属对球团矿的影响 碱金属是球团矿产生异常膨胀的重要原因。试验发现,在球团矿中加入少量碱金属碳酸盐(0.5K2O或Na2O)、硅酸盐(Na2SiO3)后,都会是球团矿产生灾难性的膨胀。原因是碱金属和硅酸盐中的K+、Na+侵入Fe2O3晶格,在还原过程中,晶格变形及产生的内应力使球团矿发生灾难性的膨胀。球团矿还原膨胀率愈高,还原后的强度愈低,还原粉化率也愈高。 预防和减轻高炉碱害的措施 1有效的高炉碱负荷管理工作 碱金属在炉内危害极大,在炉内将引起炉缸堆积、炉料透气性恶化、结瘤及损坏炉墙等,为减少碱金属危害,有计划地做好高炉炉料碱金属状况分析,了解掌握高炉碱金属负荷动态,做好入炉原燃料的稳定工作,配加低碱负荷矿石,稳定或降低入炉碱金属的负荷,减少焦末及矿末的入炉,为高炉操作(排碱)提供有利的条件。 2控制煤气流分布

北台高炉富氧的技术经济分析

北台高炉富氧的技术经济分析 朱翔宇 (本溪北营集团公司炼铁厂10#高炉作业区 117017) 摘要:从理论上分析了高炉富氧技术的优点;结合北钢利用炼钢富余氧气进行高炉富氧喷煤方案,分析了高炉富氧带来的可观效益;提出了高炉富氧技术中有待探讨的几个问题。 关键词:高炉富氧氧气放散效益问题 Summary:The advantage that analyzed a blast furnace rich oxygen technique from the theory;Combine Beitai iron and steel group exploitation to make steel rich remaining oxygen carry on a blast furnace rich the oxygen spray a coal project and analyzed a blast furnace rich the oxygen bring of considerable efficiency;Put forward a blast furnace to enrich a few problems that need to be inquired intos in the oxygen technique. Keyword:The blast furnace enriches oxygen;Oxygen;Put to spread;Efficiency;Problem 1、引言 北钢集团现有13座高炉 (其中1~4#高炉容积为350m3,5~7#高炉容积为420, 8#、9#高炉容积为450m3、10#~13#高炉容积为530m3),年产生铁800万吨。北台钢铁集团高炉富氧喷煤起步于2005年,目前煤比已达到150kg/tFe的水平,创造了可观的经济效益。但随着喷煤量的增加,喷煤所带来的一些不利因素也愈显严重,特别是喷吹量增加,理论燃烧温度降低,从而对高炉顺行产生不利影响。据资料介绍和众多厂家实践,高炉富氧是进行热补偿的最有效措施。制氧厂生产的氧气供给炼钢有富余,特别是转炉生产不均衡使氧气有较大放散,以及制氧厂的潜力。有关部门把放散氧的利用和喷煤量的增加两者综合考虑,提出了高炉富氧的初步方案。笔者对其经济性和相关问题进行了初步探讨。 2高炉富氧的优点 2.1 提高高炉产量 富氧鼓风时,由于在风口前燃烧单位碳量所需的风量和产生的煤气量减少,因而可以提高冶炼强度,在焦比变化不大的情况下,可以提高高炉利用系数。按富氧1%计算,理论上高炉富氧后可提高产量0.01/0.21=4.76%

有害元素对高炉炼铁的影响及控制措施

编号:SM-ZD-70823 有害元素对高炉炼铁的影 响及控制措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

有害元素对高炉炼铁的影响及控制 措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 l 引言 高炉炼铁原料中的有害元素主要有铅、锌、碱金属等。锌在高炉内循环富集已严重影响高炉顺行和热制度稳定,渗入炉衬的zn蒸汽在炉衬内冷凝下来,造成高炉炉缸炉底砖衬上涨,风口大套上翘开裂、中套上翘变形、炉皮开裂、炉缸水温差上升等一系列后果,严重危害一代高炉寿命。通过控制入炉原料有害元素含量,优化高炉操作,减少有害元素在高炉内循环富集,取得一定效果。本文以新钢8#1050m。高炉为例。 2 有害元素的来源 通过对原燃料检测成份分析可以看出,碱金属来源主要来焦炭,其次是烧结矿和球团矿,而zn的来源,主要是山上球团厂球团矿和烧结矿。zn的主要来源是生产烧结矿、球团

高炉锌及碱金属危害的研究

高炉锌及碱金属危害的研究 锌负荷和碱金属负荷偏高会导致煤气管道粘结物增加、调压阀组结垢卡阀等问题,制约高炉正常生产,需要研究分析其危害,并加以控制。 1、锌在高炉中的危害 锌常以铁酸盐、硅酸盐或闪锌矿的形式存在,高炉冶炼时,其硫化物先转化为复杂的氧化物,然后在不小于1000℃的高温区还原为Zn,由于其沸点很低(907℃),还原出来的Zn气化混入煤气,上升过程中有一部分随煤气逸出炉外,但易在管道中凝集;大部分又被氧化成ZnO并被炉料吸收再度下降还原,形成循环。 Zn蒸汽在炉内循环,沉积在高炉炉墙上,可与炉衬和炉料反应,形成低熔点化合物而在炉身下部甚至中上部形成炉瘤。当锌富集严重时,炉料空隙度变小,透气性变坏和炉墙严重结厚,炉内煤气通道变小,炉料下降不畅,高炉难以接受风量,崩、滑料频繁,对高炉顺行和技术指标产生很大影响。有时甚至在上升管中结瘤,阻塞煤气通道,对高炉长寿严重也有严重的影响。 高炉生产中,锌的循环除高炉内部的小循环外,还存在于烧结-高炉生产环节间的大循环中,由含锌泥尘带入烧结矿的锌是造成高炉锌循环富集和产生危害的根源。 2、碱金属在高炉中的危害 碱金属以硅铝酸盐和硅酸盐形式存在,这些碱金属熔点很低,

在800-1000℃之间就都能熔化,进入高温区时,一部分进入炉渣,一部分则被C还原成K、Na元素,由于K、Na元素沸点只有799℃和822℃,因此还原出来后气化混入煤气,大部分被CO2氧化为碳酸盐。在高炉上部的中低温区,K、Na以金属盒碳酸盐形式进行循环和富集,部分以氰化物形式循环和富集。 碱金属在高炉中能降低矿石的软化温度,使矿石尚未充分还原就已经熔化滴落,增加了高炉下部的直接还原热量消耗;能引起球团矿的异常膨胀而严重粉化;能强化焦炭的气化反应能力,使反应后强度急剧降低而粉化,造成料柱透气性严重恶化,危及生产冶炼过程进行;液态或固态碱金属粘附于炉衬上,既能使炉墙严重结瘤,又能直接破坏砖衬,碱金属氧化物与耐火砖衬发生反应,形成低熔点化合物,并与砖中Al2O3形成钾霞石、白榴石体积膨胀,使砖衬剥落,研究表明,炉腹、炉腰和炉身中下部的砖衬破损,碱金属和锌的破坏作用约占40%。 3、降低高炉锌及碱金属负荷的选择 限制高锌的洗气灰、重力灰在烧结工序的使用量,可以有效实现降低高炉锌负荷的目的,另外,转底炉脱锌是一种环保、高效的脱锌工艺。 降低高炉碱金属负荷的直接办法是降低入炉料碱金属质量分数,一方面降低高碱金属质量分数原料的使用量,严格控制碱金属的入炉量,另一方面严密监视高炉的碱金属平衡,高炉在必要时采取排碱措施。(成王)

钢铁的冶炼原理及生产工艺流程

钢铁的冶炼原理及生产工艺流程 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。 1、高炉炼铁的冶炼原理(应用最多的) 一)炼铁的原理(怎样从铁矿石中炼出铁)用还原剂将铁矿石中的铁氧化物还原成金属铁。铁氧化物(Fe2O3、Fe3O4、FeO)+还原剂(C、CO、H2)铁(Fe) 二)炼铁的方法 (1)直接还原法(非高炉炼铁法) (2)高炉炼铁法(主要方法) 三)高炉炼铁的原料及其作用 (1)铁矿石:(烧结矿、球团矿)提供铁元素。 冶炼一吨铁大约需要1.5—2吨矿石。 (2)焦碳: 冶炼一吨铁大约需要500Kg焦炭。 提供热量;提供还原剂;作料柱的骨架。 (3)熔剂:(石灰石、白云石、萤石)

使炉渣熔化为液体;去除有害元素硫(S)。 (4)空气:为焦碳燃烧提供氧。 2、工艺流程 生铁的冶炼虽原理相同,但由于方法不同、冶炼设备不同,所以工艺流程也不同。下面分别简单予以介绍。 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 生铁是高炉产品(指高炉冶炼生铁),而高炉的产品不只是生铁,还有锰铁等,属于铁合金产品。锰铁高炉不参加炼铁高炉各种指标的计算。高炉炼铁过程中还产生副产品水渣、矿渣棉和高炉煤气等。 高炉炼铁的特点:规模大,不论是世界其它国家还是中国,高炉的容积在不断扩大,如我国宝钢高炉是4063立方米,日产生铁超过10000吨,炉渣4000多吨,日耗焦4000多吨。

对高炉富氧鼓风的几点认识

对高炉富氧鼓风的几点认识 (刘卫国) 1、概述 富氧鼓风一种高炉强化冶炼技术。在高炉大气鼓风中加入工业氧,以提高鼓风含氧浓度,强化风口区燃料燃烧,从而提高生铁产量。1913年比利时乌格尔厂第一次进行了高炉富氧鼓风试验,鼓风含氧增加到23%,产量提高12%,焦比降低2.5%~3%。60年代以来,随着高炉喷吹燃料技术的发展,我国鞍山钢铁公司、马鞍山钢铁公司、上海钢铁厂等先后在高炉上采用富氧鼓风。 2、富氧对高炉生产的影响 2.1 对高炉内热平衡的影响 单位碳素燃烧生成的热量升高,高炉内气固相比减少,因此炉缸热状态好转、炉缸和炉腹下部温度升高,煤气量减少,风口前理论燃烧温度上升。但由于煤气体积减少,会使中温区相对缩短,从而使低温区扩大。从总体看,由于单位生铁的鼓风量减少,热风带入的热量也会减少;但煤气量减少使顶温降低,可减少热支出;同时因富氧1%,可增产4%左右,单位生铁各部热损失也可以减少一些,所以总的热量消耗仍然是降低的。炉腹下部、炉缸温度上升,对硅、锰等一些难还原元素十分有利,因此适宜于冶炼锰铁、硅铁等铁种。 2.2 对回旋区的影响 高炉一般通过控制风速和鼓风动能来稳定回旋区的形状,达到稳定煤气流的目的。首先在风量不变时,随鼓风中含氧量增加,炉腹煤气量时逐渐增加的,为保证炉况顺行,应控制好炉腹煤气量和炉腹煤气流速。因

此在大量富氧时,应适当减少入炉风量。其次是富氧使炉缸的煤气量减少,炉缸温度上升。这两方面的原因导致高炉富氧后的回旋区缩短,使煤气流的初始分布趋向于边缘。故富氧后要调整布料制度以维持合理的煤气流分布。 2.3 对料柱透气性的影响 富氧后,炉缸煤气体积少,煤气对炉料下降的阻力也减少,但是富氧鼓风使燃烧带的焦点温度提高,炉缸半径方向的温度分布不合理,以及产生SiO气体剧烈挥发,到上部重新凝结,大大的降低了料柱透气性。 2.4 对燃料比的影响 A、随鼓风中含氧量的提高,煤气中CO浓度增加,煤气的还原能力提高,有助于间接还原过程的发展,有利于降低燃料比。 B、富氧后因煤气量减少,在某种程度上扩大了低于700℃的区域,又限制了间接还原的发展,但可通过喷吹燃料来抵消煤气量减少的因素。 C 、富氧可提高喷吹燃料的燃烧率,有利于提高燃料比 根据冶炼条件的不同,维持适合高炉炉型的富氧率使可以降低燃料比的。 2.5对喷吹燃料的影响 富氧鼓风使风口前理论燃烧温度提高,为了控制正常冶炼时的适宜理论燃烧温度,富氧后可适当增加喷吹燃料数量。为保证喷吹燃料在风口前充分燃烧,需要由一定氧的过剩系数。当喷吹燃料量较少时大气

高炉寿命的影响因素有哪些

高炉寿命的影响因素有哪些? 高炉寿命的影响因素有哪些?主要反应:2Fe2O3 + 3C=高温= 4Fe + 3CO2↑ 还有: CaCO3=高温=CaO+CO2 CaO+SiO2=CaSiO3 C+CO2=2CO 高炉炼铁的操作方针是以精料为基础。精料技术水平对高炉炼铁生产的影响率在70%左右,设备的影响率在10%左右,高炉操作技术的影响率在10%左右,综合管理水平影响率约5%,外界因素影响率约5%。 1 高炉精料技术的内涵 高炉精料技术包括:“高、熟、净、小、均、稳、少、好”八个字。 “高”是入炉矿石含铁品位要高;烧结,球团,焦炭的转鼓强度要高;烧结矿的碱度要高(一般在1.8~2.0)。入炉矿品位要高是精料技术的核心。入炉矿品位每提高1%,高炉燃料比会下降1.5%,高炉产量提高2.5%,吨铁渣量减少30kg,允许高炉增加喷吹煤粉15kg/t。 “熟”是高炉入炉原料中熟料比要高。熟料是指烧结矿、球团矿。随着高炉炼铁生产技术的不断进步,现在已不十分强调熟料比要很高。有些企业已有20%左右的高品位天然块矿入炉。 “净”是指入炉原燃料中<5㎜粒度要低于总量的5%。 “小”是指入炉料的粒度应偏小。高炉炼铁的生产实践表明,最佳强度的粒度是:烧结25~40㎜,焦炭为20~40㎜,易还原的赤铁矿和褐铁矿粒度在8~20㎜。对于中小高炉原燃料的粒度还允许再小一点。 “均”是指高炉入炉料的粒度要均匀。不同粒度的炉料分级入炉,可以减少炉料的填充性和提高炉料的透气性,会有节焦提高产量的效果。 “稳”是指入炉原燃料的化学成分和物理性能要稳定,波动范围要小。目前,我国高炉炼铁入炉原料的性能不稳定是影响高炉正常生产的主要因素。保证原料场的合理储存量(保证配矿比例不大变动)和建立中和混均料场是提高炉料成份稳定的有效手段。 “少”是指铁矿石,焦炭中含有有害杂质要少。特别是对S、P的含量要严格控制,同时还应关注控制好En、Pb、Cu、As、K、Na、F、Ti(TiO2)等元素的含量。 “好”是指铁矿石的冶金性能要好。冶金性能是指铁矿石的还原度应大于60%;铁矿石的还原粉化率应当低;矿石的荷重软化点要高,软熔温度的区间要窄;矿石的滴熔性要温度高,区间窄。 2 要高度重视焦炭质量对高炉炼铁的影响

高炉富氧对高炉的影响

高炉富氧的最大效果是提高产量。富氧鼓风将给炉内带来二个方面的变化,一是风口前理论燃烧温度(Tf)的升高,二是吨铁煤气量的下降。另外,增加富氧率,也有利于改善煤粉的燃烧。 鼓风中氧的浓度增加,燃烧单位碳所需的鼓风量减少;鼓风中氮的浓度降低,也使生成的煤气量减少,煤气中CO浓度因此而增大。这些变化,对冶炼过程产生多方面的影响: 1)、由于煤气体积少,煤气对炉料下降的阻力也减少,为加大鼓风量、提高冶炼强度创造了条件。 2)、随鼓风中含氧量的提高,煤气中CO浓度增加,煤气的还原能力提高,有助于间接还原过程的发展,但因煤气量减少,在某种程度上扩大了低于700℃的区域,又限制了间接还原的发展。所以富氧能否降低燃料消耗,要由实际生产结果来定,不同冶炼条件,结果也不相同。 3)、富氧鼓风改变了冶炼中的热平衡。从分区看,由于富氧提高了理论燃烧温度,下部高温区热交换显著改善,热量集中于炉腹以下。但由于煤气体积减少,会使中温区相对缩短,从而使低温区扩大。从总体看,由于单位生铁的鼓风量减少,热风带入的热量也会减少;但煤气量减少使顶温降低,可减少热支出;同时因富氧1%,可增产4%左右,单位生铁各部热损失也可以减少一些,所以总的热量消耗仍然是降低的。 4)、富氧鼓风对顺行产生影响。因为富氧鼓风使燃烧带的焦点温度提高,炉缸半径方向的温度分布不合理,以及产生SiO气体剧烈挥发,到上部重新凝结、降低料柱透气性,从而破坏炉况顺行。所以在富氧又采用高风温时,用喷吹燃料控制理论燃烧温度是经济合理的。若无喷吹燃料装置,则应采用加湿鼓风。 高炉富氧鼓风的特点和作用[文秘家园-www,https://www.360docs.net/doc/9512953149.html,,找范文请到文秘家园] 高炉冶炼是高温物理化学反应,参与反应的主要元素是Fe-C-O。Fe来源于矿石,包括烧结矿、球团矿、块矿等。碳来源于燃料,包括焦炭及各种喷吹物。O2来源于高炉鼓风和富氧。原先矿石和燃料是由高炉上部装入的,而从高炉下部进入炉内的仅是鼓风,后来发展高炉综合鼓风技术,即从高炉下部进入炉内的不仅有鼓风,还有富氧及各种可燃的碳氢化合物,甚至还有含铁、含CaO的粉状物质。 富氧的目的原先主要为提高风中含氧,强化高炉冶炼,后来由于喷吹燃料技术发展,高炉喷吹的天然气、重油或煤粉量过大时,导致高炉理论燃烧温度过度下降,使高炉过程困难,同时也难于继续提高喷煤量。而高炉富氧之后,可以相应提高理论燃烧温度,提高反映区的氧化气氛,形成富氧喷吹技术,特别是富氧喷煤技术,更适合国内的实际。 现在国内高炉喷煤量已普遍达到100kg/t,而宝山高炉达到200kg/t的国际水平,还有一大批高炉煤比超过了150kg/t,从高炉喷吹煤粉的实践可知道,在无富氧的条件下,煤比一般能达到100kg/t,个别可达到120kg/t,若想达到更高的水平必须配备富氧,否则将导致高炉喷煤置换比降低。目前国内高炉富氧一般在1—3%的水平,个别可能高些。国外有的国家电力充足,富氧可达到10%,甚至更高。敬业高炉这次富氧仍然是用炼钢余氧,但更大的目的在强化高炉冶炼,多出铁,当然也应相应提高煤比,所以一旦富氧,立即达到较高水平,

高炉强化冶炼

一高炉强化冶炼实践 杨锐炼铁厂一高炉 【摘要】一号高炉年休后通过采取加强原燃料管理、装料制度的调整、高风温高富氧大喷吹、大风量高压差操作及加强日常管理和设备检查维护等措施,提高了冶炼强度,各项生产经济指标得到了很大的提高。 【关键词】高炉,强化冶炼,措施 1 前言 攀钢高炉的主要炉料是以大部分高钛型钒钛磁铁矿精矿和部分普通矿粉为原料的钒钛烧结矿,炉渣中含有较高的TiO2,给高炉冶炼带来一系列与冶炼普通矿不同的特点,这主要是由于TiO2在炉内还原所引起的,所以如何减少在炉内的TiO2还原是确保冶炼钒钛磁铁矿高炉顺行的关键。炉料和渣铁在炉内停留时间长,会使TiO2的还原产物增多,进而影响高炉顺行,所以冶炼强度低时,则高炉的顺行状况不好,技术经济指标不理想,而冶炼强度较高时,则炉况比较易稳定、顺行,技术经济指标也较好。因此,较高的冶炼强度是冶炼高钛型钒钛型磁铁矿高炉稳定顺行的必要条件[1]。 攀钢一高炉有效容积1200m3,设有1个出铁口,2个渣口,18个风口,采用SS布料器,并罐式无料钟炉顶,采用4座内燃式热风炉。近段时间来,由于冷却设备、炉前设备事故多、操作制度等原因,始终不能稳产高产,技术经济指标没能得到优化,公司于2011年4月初对1号高炉进行了检修。 表1 2010年12月—2011年6月1号高炉主要经济指标 月份利用系数 /t·(m3·d) -1 风量/ m3·min-1 风温 /℃ 综合冶炼强度/ t·(m3·d) -1 焦比 /kg·t-1 煤比/ kg·t-1 富氧 /m3·h-1 2010.12 2.662 3100 1193 1.426 436 122.06 6845 2011.1 2.613 3050 1186 1.376 429 118.11 6280 2011.2 2.615 3069 1192 1.411 435 122.25 6590 2011.3 2.599 3043 1196 1.426 451 123.95 6795 2011.4 2.660 3095 1191 1.458 465 122.64 6760 2011.5 2.643 3057 1194 1.436 455 124.17 6866 2011.6 2.691 3153 1193 1.452 438 129.39 6950 注:2011年4月、5月休风时间未在统计内,6月统计到上旬

高炉炼铁(附彩图)

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要 方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降

和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

有害元素对高炉炼铁的影响及控制措施

编号:AQ-JS-05842 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 有害元素对高炉炼铁的影响及 控制措施 Influence of harmful elements on blast furnace ironmaking and control measures

有害元素对高炉炼铁的影响及控制 措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 l引言 高炉炼铁原料中的有害元素主要有铅、锌、碱金属等。锌在高炉内循环富集已严重影响高炉顺行和热制度稳定,渗入炉衬的zn蒸汽在炉衬内冷凝下来,造成高炉炉缸炉底砖衬上涨,风口大套上翘开裂、中套上翘变形、炉皮开裂、炉缸水温差上升等一系列后果,严重危害一代高炉寿命。通过控制入炉原料有害元素含量,优化高炉操作,减少有害元素在高炉内循环富集,取得一定效果。本文以新钢8#1050m。高炉为例。 2有害元素的来源 通过对原燃料检测成份分析可以看出,碱金属来源主要来焦炭,其次是烧结矿和球团矿,而zn的来源,主要是山上球团厂球团矿和

烧结矿。zn的主要来源是生产烧结矿、球团矿的精矿粉,不法商贩将瓦期灰回收来的金属料加入精矿粉中,使原料Zn含量大大提高。 3对高炉的影响 (1)有害元素破坏砖衬及炉体。2004年3月份开始,陆续发现风口中套变形,继而出现大套法兰上翘开裂套冒煤气现象,并伴随煤气泄漏明显发展最终造成炉缸炉皮开裂。 (2)造成炉皮开裂,冷却板损坏。由于有害元素在炉内富集,在炉身中下部软融带附近,有害元素吸附或渗透进入砖缝,造成砖衬被侵蚀和异常膨胀,使冷却板暴露在高温气流中易受冲击而损坏。随着原燃质量下降,有害元素入炉增加,在内的富集增加,对砖衬的破坏力度加大。造成炉皮开裂的主要原因是使用含Zn高的原料的结果,从风口粘结物取样分析可知,zn在炉知富集是造成炉缸炉皮开裂的主要原因。 (3)均压、管路堵塞。由于zn含量大幅增加,随煤气排出的zn 增加,随煤气逸出的zn元素,在均压管管路中凝集,造成管路堵塞。2006年问_次发生管路堵塞现象,经过吹扫管路,立刻恢复正常均

高炉富氧知识

高炉富氧鼓风的特点和作用 高炉冶炼是高温物理化学反应,参与反应的主要元素是fe-c-o。fe来源于矿石,包括烧结矿、球团矿、块矿等。碳来源于燃料,包括焦炭及各种喷吹物。o2来源于高炉鼓风和富氧。原先矿石和燃料是由高炉上部装入的,而从高炉下部进入炉内的仅是鼓风,后来发展高炉综合鼓风技术,即从高炉下部进入炉内的不仅有鼓风,还有富氧及各种可燃的碳氢化合物,甚至还有含铁、含cao 的粉状物质。 富氧的目的原先主要为提高风中含氧,强化高炉冶炼,后来由于喷吹燃料技术发展,高炉喷吹的天然气、重油或煤粉量过大时,导致高炉理论燃烧温度过度下降,使高炉过程困难,同时也难于继续提高喷煤量。而高炉富氧之后,可以相应提高理论燃烧温度,提高反映区的氧化气氛,形成富氧喷吹技术,特别是富氧喷煤技术,更适合国内的实际。 什么叫高炉富氧鼓风?富氧鼓风有几种加氧方式?各有何特点? 高炉富氧鼓风是往高炉鼓风中加入工业氧(一般含氧85%~99.5%),使鼓风含氧超过大气含量,其目的是提高冶炼强度以增加高炉产量和强化喷吹燃料在风口前燃烧。鼓风含氧按下式计算: 鼓风含氧=大气中含氧+富氧率式中,鼓风含氧的单位为%;大气中含氧一般取21%;富氧率按下式计算: 富氧率= 富氧量 富氧率=风量+富氧量 式中,富氧率的单位为%;富氧量的单位为m3/min;风量的单位为m3/min,或以吨铁所用的风量和吨铁耗的氧气量为单位计算。 常用的富氧方式有3种: (1)将氧气厂送来的高压氧气经部分减压后,加入冷风管道,经热风炉预热再送进高 炉; (2)低压制氧机的氧气(或低纯度氧气)送到鼓风机吸入口混合,经风机加压后送至高 炉; (3)利用氧煤枪或氧煤燃烧器,将氧气直接加入高炉风口。 第(1)种供氧方式可远距离输送,氧压高,输送管路直径可适当缩小,在放风阀前加入,易于连锁控制,休减风前先停氧,保证供氧安全,但热风炉系统一般存在一定的漏风率,特别是中小高炉漏风率较高,氧气损失较多。 第(2)种供氧方式的动力消耗最省,它可低压输至鼓风机吸入口,操作控制可全部由鼓风机系统管理,但氧气漏损较多。 第(3)种方式是较经济的用氧方法,旨在提高煤枪出口区域的局部氧浓度,改善氧煤混合,提高煤粉燃烧率,扩大喷吹量;其缺点是供氧管线要引到风口平台,安全防护控制措施较繁琐,没经过热风炉预热的氧气冷却煤粉的作用大于水冷及空气冷却效果,又存在不 利于燃烧的一面。

有害元素对高炉冶炼的影响

立志当早,存高远 有害元素对高炉冶炼的影响 有害元素通常指硫(S)、磷(P)、钾(K)、钠(Na)、铅(Pb)、Zn(锌)、As(砷)、Cu。通常高炉冶炼对铁矿石要求如下: Pb 小于0.1%、Zn 小于0.1%、As 小于0.07%、Cu 小于0.2%、 K2O+Na2O≤0.25%。 硫(S):硫对钢材是最为有害的成份,它使钢材产生热脆性。铁矿石中硫含量高,高炉脱硫成本增大,所以入炉铁矿石含硫愈少愈好。 磷(P):磷对钢材来说也是常见有害元素之一,它使钢材产生冷脆性。铁矿石中的磷,在高炉冶炼时100%进入生铁,烧结也不能脱磷,控制生铁含磷量主要是靠控制铁矿石含磷量。脱磷只能通过炼钢来进行,增加了炼钢的脱磷成本。因此,铁矿石含磷越低越好。 碱金属:碱金属主要有钾和钠。钾、钠对高炉的影响不是正比例性质,高炉本身有一定的排碱能力,碱金属在控制范围内对高炉影响不大。但是入炉铁矿石碱金属含量太多,超过高炉排碱能力,就会形成碱金属富集,导致高炉中上部炉料碱金属含量大大超过入炉料原始水平。铁矿石含有较多的碱金属极易造成软化温度降低,软熔带上移,不利于发展间接还原,造成焦比升高。球团含有碱金属会造成球团异常膨胀引起严重粉化,恶化料柱透气性。碱金属对焦炭性能破坏也很严重。另外,高炉中上部碱金属化合物黏附在炉墙上,促使炉墙结厚、结瘤并破坏砖衬。因此,铁矿石含碱金属越低越好。 铅(Pb):铅在高炉中几乎全部被还原,由于密度高达11.34t∕m³,故沉于死铁层之下,易破坏炉底砖缝,有可能会造成炉底烧穿。 锌(Zn):锌很容易气化,锌蒸汽容易进入砖缝,氧化成为ZnO 后膨胀,破坏炉身上部耐火砖衬。

高炉富氧改造

高炉富氧系统电气测控及改造 摘 要:本文对高炉新增富氧喷吹系统的电气仪表检测控制系统及其 改造进行了说明和建议。 关键词:高炉富氧 调节控制 改造与建议 一、前言: 今年五月,我厂对4座高炉新增了富氧喷吹系统,之前富余的氧气都放散到大气中,对环境造成很大污染,引响周围居民的生活,将这些富余的氧气用于高炉生产,不仅起到环保的作用,还能提高高炉的生铁产量3%左右,可谓一举两得。但氧气存在易燃易暴的特点,故在高炉应用中,须加强这方面的控制措施,下面就根据我厂实际情况介绍电气测控系统和改造内容。 二、概述: 1、新增富氧管道及仪表测控点如下图: 放散氮气放散阀手动阀 氧气总管 调节阀阀前压力 阀后压力切断阀流量计 冷风管 仪表测控系统中的主要配件采用广东明珠生产的气动调节阀和

快速切断阀,智能型数控仪表采用昆山仪表,再配用ZPD-2000系列电动阀门定位器等组成。 2、工作过程: 原设计采用精确控制体系,二路仪表控制线路,根据调节阀前后压力组成压力检测控制,对氧气压力进行控制;另一路对进入高炉冷风管道的富氧流量检测控制,同时也可以切断氧气流量。 三、存在的问题: 1、原快速切断阀也用于流量调节,在实际时,不利于控制和切断,因无反馈,开断不清楚; 2、原来是根据冷风压力低于60KPa来控制快速切断阀,但有时候需临时休风或不需要输送热风时,氧气会持续输入造成氧气浪费等; 3、快速切断阀在实际使用过程中,定位器输出气压变化较慢,不利于快速切断的需要,且动作时有不可靠的打不开或关不死现象存在。 四、改造措施: 1、取消快速切断阀的调节控制,通电即开,断电则关,并加装切断阀通断指示灯,灯亮表示切断阀打开,灯灭表示切断阀关闭; 2、取自冷风压力控制切断的信号改到取热风压力信号; 3、取消快速切断阀的定位器,减少气源控制的中间环节,快速切断更可靠和快速。 4、将快速切断开关和清扫反吹装置合成一个开关,使控制更方便直

相关文档
最新文档