Kdv方程

Kdv方程
Kdv方程

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

求动点的轨迹方程方法例题习题答案

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难 点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中 没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形 状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法”。 求动点轨迹的常用方法 动点P 的轨迹方程是指点P 的坐标(x, y )满足的关系式。 1. 直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN 切圆C 于N 。 依题意:MN MQ =,即22MN MQ = 而222NO MO MN -=,所以 (x-2)2+y 2=x 2+y 2-1 化简得:x=45 。动点M 的轨迹是一条直线。 2. 定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点 的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出 轨迹方程。 例题:动圆M 过定点P (-4,0),且与圆C :082 2=-+x y x 相切,求动圆圆心M 的轨迹 方程。 解:设M(x,y),动圆M的半径为r 。 若圆M 与圆C 相外切,则有 ∣M C ∣=r +4 若圆M 与圆C 相内切,则有 ∣M C ∣=r-4 而∣M P ∣=r, 所以 ∣M C ∣-∣M P ∣=±4 动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。其中a=2, c=4。 动点的轨迹方程为: 3. 相关点法 若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则 将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程。这种方法称为相关点法。

初等数论 第五章 同余方程

第五章同余方程 本章主要介绍同余方程的基础知识,并介绍几类特殊的同余方程的解法。 第一节同余方程的基本概念 本节要介绍同余方程的基本概念及一次同余方程。 在本章中,总假定m是正整数。 定义1设f(x) = a n x n a1x a0是整系数多项式,称 f(x) 0 (mod m) (1)是关于未知数x的模m的同余方程,简称为模m的同余方程。 若a n≡/0 (mod m),则称为n次同余方程。 定义2设x0是整数,当x= x0时式(1)成立,则称x0是同余方程(1)的解。凡对于模m同余的解,被视为同一个解。同余方程(1)的解数是指它的关于模m互不同余的所有解的个数,也即在模m的一个完全剩余系中的解的个数。 由定义2,同余方程(1)的解数不超过m。 定理1下面的结论成立: (ⅰ) 设b(x)是整系数多项式,则同余方程(1)与 f(x) b(x) b(x) (mod m) 等价; (ⅱ) 设b是整数,(b, m) = 1,则同余方程(1)与 bf(x) 0 (mod m) 等价; (ⅲ) 设m是素数,f(x) = g(x)h(x),g(x)与h(x)都是整系数多项式,又设x0是同余方程(1)的解,则x0必是同余方程 g(x) 0 (mod m) 或h(x) 0 (mod m)

的解。 证明 留做习题。 下面,我们来研究一次同余方程的解。 定理2 设a ,b 是整数,a ≡/0 (mod m )。则同余方程 ax b (mod m ) (2) 有解的充要条件是(a , m )b 。若有解,则恰有d = (a , m )个解。 证明 显然,同余方程(2)等价于不定方程 ax my = b , (3) 因此,第一个结论可由第四章第一节定理1得出。 若同余方程(2)有解x 0,则存在y 0,使得x 0与y 0是方程(3)的解,此时,方程(3)的全部解是 ??? ????-=+=t m a a y y t m a m x x ),(),(00,t Z 。 (4) 由式(4)所确定的x 都满足方程(2)。记d = (a , m ),以及 t = dq r ,q Z ,r = 0, 1, 2, , d 1, 则 x = x 0 qm r d m x r d m +≡0(mod m ),0 r d 1。 容易验证,当r = 0, 1, 2, , d 1时,相应的解 d m d x d m x d m x x )1(20000-+++,,,,Λ 对于模m 是两两不同余的,所以同余方程(2)恰有d 个解。证毕。 在定理的证明中,同时给出了解方程(2)的方法,但是,对于具体的方程(2),常常可采用不同的方法去解。 例1 设(a , m ) = 1,又设存在整数y ,使得a b ym ,则 x a ym b +(mod m ) 是方程(2)的解。 解 直接验算,有 ax b ym b (mod m )。

高三数学轨迹方程50题及答案精选

高三数学轨迹方程50题及答案 求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法. (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程. (2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求. (3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程. (5)交轨法 若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程. (6)待定系数法 求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念. 一、选择题: 1、方程y=122+--x x 表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线 2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线 3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( ) A 、x 2+y 2=1 B 、x 2+y 2=1(x ≠±1) C 、x 2+y 2=1(x ≠1) D 、y=21x - 4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( ) A 、x 2+y 2=2(x+y) B 、x 2+y 2=2|x+y| C 、x 2+y 2=2(|x|+|y|) D 、x 2+y 2=2(x -y) 5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆 C 、中点在原点的双曲线 D 、中心在(5,0)的双曲线

数论算法讲义 3章(同余方程)

第 3 章 同余方程 (一) 内容: ● 同余方程概念 ● 解同余方程 ● 解同余方程组 (二) 重点 ● 解同余方程 (三) 应用 ● 密码学,公钥密码学 3.1 基本概念及一次同余方程 (一) 同余方程 (1) 同余方程 【定义3.1.1】(定义1)设m 是一个正整数,f(x)为n 次多项式 ()0111a x a x a x a x f n n n n ++++=--Λ 其中i a 是正整数(n a ≠0(mod m )),则 f (x)≡0(mod m ) (1) 叫做模m 的(n 次)同余式(或模m 的(n 次)同余方程),n 叫做f(x)的次数,记为deg f 。 (2) 同余方程的解 若整数a 使得 f (a)≡0(mod m )成立,则a 叫做该同余方程的解。 (3) 同余方程的解数 若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。即剩余类

a C ={x |x ∈Z ,x ≡a (mod m )} 中的每个剩余都是解。故把这些解都看做是相同的,并说剩余类a C 是同余方程(1)的一个解,这个解通常记为 x ≡a (mod m ) 当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程(2)的不同的解,所有对模m 的两两不同余的解的个数,称为是同余方程(1)的解数,记作()m f T ;。显然 ()m f T ;≤m (4) 同余方程的解法一:穷举法 任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程(1),在这完全剩余系中解的个数就是解数()m f T ;。 【例1】(例1)可以验证,x ≡2,4(mod 7)是同余方程 15++x x ≡0(mod 7) 的不同的解,故该方程的解数为2。 50+0+1=1≡3 mod 7 51+1+1=3≡3 mod 7 52+2+1=35≡0 mod 7 53+3+1=247≡2 mod 7 54+4+1=1029≡0 mod 7 55+5+1=3131≡2 mod 7 56+6+1=7783≡6 mod 7 【例2】求同余方程122742 -+x x ≡0(mod 15)的解。 (解)取模15的绝对最小完全剩余系:-7,-6,…,-1,0,1,2,…,7,直接计算知x =-6,3是解。所以,该同余方程的解是 x ≡-6,3(mod 15)

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

求轨迹方程例题方法解析

求轨迹方程的常用方法 知识梳理: (一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ?? ?=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 热身: 1. P 是椭圆5 92 2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为: ( ) A 、159422=+y x B 、154922=+y x C 、12092 2=+y x D 、5 3622y x +=1 【答案】:B

线性同余方程组的解

线性同余方程组的解 学生:罗腾,江汉大学数计学院(数学与应用数学系) 指导老师:许璐,江汉大学 摘要 “孙子算经”一书中写于公元前三世纪,这个谜题如下:有堆东西不知道有多少,如果三个三地数,最后余下两个;五个五个的数,最后余下三个;七个七个的数,最后余下二个,问这堆东西共有多少?我们可以把这个问题用数学符号表示成同余式的形式: ()()().7mod 3,5mod 2,3mod 1≡≡≡x x x 定理1 设,,,,,a b c d e f 和m 均为整数,0m >,若(,)1m ?=,其中ad bc ?=-.则 线性同余方程组(mod ) (mod )ax by e m cx dy f m +≡??+≡? ,有唯一一组关于模m 的解为 ()(mod ) ()(mod ) x de bf m y af ce m ?≡?-?? ≡?-??, 其中?是?关于模m 的逆,即1(mod )m ??≡. 证 首先,将同余式(mod )ax by e m +≡两边都乘以d ,将同余式(mod )cx dy f m +≡两边都乘以b ,得到 (mod )(1) (mod )(2)adx bdy de m bcx bdy bf m +≡?? +≡? ()()12-得到 ()()mod ad bc x de bf m -≡- 令ad bc ?=-,则()mod x de bf m ??≡-.下面我们把同余式两边都乘以?,其中 1(mod ) m ??≡ ∴()()mod x de bf m ≡?- 同理,将同余式(mod )ax by e m +≡两边都乘以c ,将同余式(mod )cx dy f m +≡两边

(完整版)轨迹方程练习题

轨迹方程练习题 1.已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2 x PB PA =?,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线 2.P 是椭圆5 92 2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为: ( ) A 、159422=+y x B 、154922=+y x C 、12092 2=+y x D 、5 3622y x +=1 3.. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线 4.. 设A 1、A 2是椭圆4 92 2y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( ) A.14922=+y x B.14922=+x y C.14922=-y x D.14 92 2=-x y 5.已知椭圆的焦点是1F 、2F ,P 是椭圆上的一个动点.如果延长P F 1到Q ,使得||||2PF PQ =,那么动点Q 的轨迹是 ( ),如果M 是线段1F P 的中点,则动点M 的轨迹是( ). (A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 6.一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是: A :抛物线B :圆 C :椭圆 D :双曲线一支 7.△ABC 中,A 为动点,B 、C 为定点,B (- 2a ,0),C (2 a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________. 8.分别过12(1,0),(1,0)A A -作两条互相垂直的直线,则它们的交点M 的轨迹方程是_______. 9.已知点F 为抛物线22y x =的焦点,P 在抛物线上运动,则线段PF 的中点轨迹方程是 . 10.设A ,B 分别是直线y =和y =上的两个动点,并且||AB u u u r ,动点P 满足OP OA OB =+u u u r u u u r u u u r .记动点P 的轨迹为C ,求轨迹C 的方程.

轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 2、已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 3、线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 4、已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是() A.圆 B.椭圆C.双曲线的一支 D.抛物线 5、高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 二、 椭圆类型: 1、点M(x ,y )与定点F(2,0)的距离和它到定直线 =x 离之比为 2 1 ,求点M 的轨迹方程. 2、一个动圆与圆0562 2 =+++x y x 外切,同时与圆 091622=--+x y x 内切,求动圆的圆心轨迹方程。 3、点M(00,y x )圆1F 9)1(2 2=++y x 上的一个动点,点2F (1,0)为定点。线段2MF 的垂直平分线与1MF 相 点Q(x ,y ),求点Q 的轨迹方程; 4、设点A,B 的坐标分别是(-5,0),(5,0),直线AM,BM 于点M ,且他们的斜率的乘积为9 4 -,求点M 的轨迹 5、已知动点),(y x M 到直线4:=x l 的距离是它到点)0,1(N 的距离的2倍。(1)求动点M 的轨迹C 的方程 三、双曲线类型: 1、在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。(1)求圆心的P 的轨迹方程;

《数论算法》教案 4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α αα 2 121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

《数论算法》教案4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α ααΛ2121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论以下同余方程 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

一次同余方程精品教案

一次同余方程 【教学目标】 1.掌握一次同余方程的概念。 2.熟练运用一次同余方程解决实际问题。 3.亲历解一次同余方程的探索过程,体验分析归纳得出一次同余方程解的个数规律,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握一次同余方程的概念的运用。 难点:一次同余方程解的个数规律。 【教学过程】 一、直接引入 师:今天这节课我们主要学习一次同余方程,这节课的主要的内容有一次同余方程的概念,解一次同余方程,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解一次同余方程内容,形成初步感知。 (2)首先,我们来学习一次同余方程的概念,它的具体内容是: 通常我们把含有未知数的同余式叫做同余方程.一次同余方程的一般形式为 ,其中为正整数,为整数,且不等于零. ()mod ax b n ≡n ,a b a 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:判断是否是一次同余方程。 ()53mod 6x ≡解析:是 根据例题的解题方法,让学生自己动手练习。 练习:写出一个一次同余方程。 解:() 74mod 2x ≡(3)接着,我们再来看下一次同余方程解得个数内容,它的具体内容是: 若存在整数,使得同余式成立,则把叫做一次同余方程 c ()mo d ac b n ≡()mod x c n ≡

的解. ()mod ax b n ≡一次同余方程有解,则.反过来,当时,一次同余方程()mod ax b n ≡(),a n b |(),a n b |恰有个解. ()mod ax b n ≡(),a n 它是如何在题目中应用的呢?我们通过一道例题来具体说明。例:解一次同余方程. ()96mod15x ≡解析:注意到,且,故同余方程有3个解.原方程可化简为.由()9,153=36|()32mod5x ≡于,故,所以,原同余方程三个解分别为()321mod5?≡()224mod5x ≡?≡,,()4504mod15x ≡+?=()4519mod15x ≡+?=() 45214mod15x ≡+?=根据例题的解题方法,让学生自己动手练习。 练习:判断一次同余方程有几个解。 ()618mod 27x ≡解:注意到,且,故同余方程有3个解. ()6,27=33|18三、课堂总结 (1)这节课我们主要讲了一次同余方程概念以及解法。 (2)它们在解题中具体怎么应用? 四、习题检测 1.判断一次同余方程有几个解。 ()1575mod 25x ≡2.解一次同余方程。 ()122mod 28x ≡

高考数学(文科)-轨迹方程问题的探讨-专题练习有答案

高考数学(文科)专题练习 轨迹方程问题的探讨 一、练高考 1.【2015高考广东,文8】已知椭圆 22 2 125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 2.【2015高考天津,文5】已知双曲线22 221(0,0)x y a b a b -=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆 ()222y 3x -+=相切,则双曲线的方程为( ) A .22 1913x y -= B .22 1139 x y -= C .2 213 x y -= D .22 13 y x -= 3.【2016高考天津文数】已知圆C 的圆心在x 轴的正半轴上, 点M 在圆上,且圆心到直线20 x y -= ,则圆C 的方程为_________. 4.【2016高考新课标Ⅲ】已知抛物线2:2C y x =的焦点为F ,平行于轴的两条直线12l l 分别交C 于,A B 两 点,交C 的准线于,P Q 两点. (I )若F 在线段AB 上,是PQ 的中点,证明//AR FQ ;9 (II )若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 5.【2016高考新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程; (II )设点E 的轨迹为曲线1C ,直线l 交1C 于两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形 MPNQ 面积的取值范围. 二、练模拟 1.【广东省惠州市高三第一次调研】双曲线22 22:1(a 0,b 0)x y M a b -=>>实轴的两个顶点为,A B ,点P 为双 曲线M 上除,A B 外的一个动点,若QA PA QB PB ⊥⊥且,则动点Q 的运动轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线 x R

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,, ,,动点()P x y ,满足2PA PB x = ·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

(完整版)轨迹方程练习题.doc

轨迹方程练习题 1.已知点A( 2,0) 、 B(3,0). 动点 P( x, y) 满足 PA PB x2,则点P的轨迹为() A .圆B.椭圆C.双曲线 D .抛物线 x 2 y 2 =1 上的动点,过 P 作椭圆长轴的垂线,垂足为 M ,则 PM 中点的轨迹中点的轨迹方程2.P 是椭圆 9 5 为:() A 、4 x2 y 2 1 B 、 x 2 4 y2 1 C、 x 2 y 2 1 x 2 y 2 D 、 36 =1 9 5 9 5 9 20 5 3.. 已知椭圆的焦点是 F 、 F , P 是椭圆上的一个动点,如果延长 F P 到 Q,使得 |PQ|=|PF |,那么动点 Q 1 2 1 2 的轨迹是 ( ) A. 圆 B. 椭圆 C.双曲线的一支 D. 抛物线 1 2 是椭圆x 2 y2 1 2 1 2 的弦的端点,则直线 1 1 2 2 4.. 设 A 、A 9 =1 的长轴两个端点,P 、 P 是垂直于 A A A P 与 A P 4 交点的轨迹方程为 ( ) x 2 y 2 1 y 2 x 2 C. x 2 y 2 y 2 x 2 1 A. 4 B. 1 9 4 1 D. 4 9 9 4 9 5. 已知椭圆的焦点是F1、 F2,P是椭圆上的一个动点.如果延长F1P 到 Q ,使得| PQ | | PF2|,那么动点 Q 的轨迹是(),如果 M是线段F1P的中点,则动点 M的轨迹是 ( ). ( A)圆( B)椭圆( C)双曲线的一支( D)抛物线 6.一动圆与圆O:x2 y 2 1外切,而与圆C:x2 y 2 6x 8 0 内切,那么动圆的圆心M的轨迹是:A:抛物线 B:圆 C:椭圆 D:双曲线一支 7.△ ABC 中, A 为动点, B、 C 为定点, B( -a ,0),C( a ,0),且满足条件sinC- sinB= 1 sinA,则动点 A 的轨2 2 2 迹方程为 _________. 8. 分别过A1( 1,0), A2 (1,0) 作两条互相垂直的直线,则它们的交点M 的轨迹方程是_______. 9. 已知点 F 为抛物线y2 2x 的焦点,P在抛物线上运动,则线段PF 的中点轨迹方程是. 2 5 2 5 10. 设 A, B 分别是直线y x 和 y x 上的两个动点,并且uuur uuur uuur 5 5 OP OA OB .记动点 P 的轨迹为 C,求轨迹 C 的方程 . uuur | AB |20 ,动点P 满足

专项练习题集定义法求轨迹方程

2016年专项练习题集-定义法求轨迹方程 选择题 1、点p (x ,y 10=,则点p 的轨迹方程是( ) A .22 1259 x y += B .22 1259 x y -= C .22 1925 x y += D .22 1925 x y -= 分值:5 答案:A 【考查方向】本题考查椭圆的定义,熟练掌握椭圆的定义是解题的关键。 看做点(x,y )和点(4,0)之间的距离。 【解题思路】利用椭圆的定义即可得出. 【解析】∵点p (x ,y )在运动过程中满足关系式: 10=, ∴点p 到两定点F (4,0),F′(-4,0)的距离之和满足:|PF|+|P F′|=1o >8. 故点P 的轨迹是以点F ,F′为焦点,10为长轴长的椭圆. 易知,c=4,a=5,∴b=3,∴椭圆的方程为22 1259 x y +=,故选A . 2、已知圆1c :(x+3)2+y 2=4,圆2c (x ﹣3)2+y 2=100,动圆c 与圆1c 、圆2c 都内切,则动圆圆心的轨迹是( )

A .椭圆 B .双曲线 C .抛物线 D .圆 【分值】5 【答案】A 【考查方向】本题主要考查椭圆的定义、轨迹方程、圆与圆的位置关系及其判定。菁优网版权所有 【易错点】找不出1cc +2cc 为定值这一关系。 【解题思路】设动圆的半径为r ,由相切关系建立圆心距与r 的关系,进而得到关于圆心距的等式,结合椭圆的定义即可解决问题. 【解析】设动圆的半径为r ,动圆圆心为c (x ,y ), 因为动圆与圆1c :(x+3)2+y 2=4及圆2c (x ﹣3)2+y 2=100都内切, 则1cc =r ﹣2,2cc =10﹣r . ∴1cc +2cc =8>12c c =6 因此动圆圆心为c 的轨迹是焦点为1c 、2c ,中心在( 0,0)的椭圆. 故选A . 3、设动圆M 与y 轴相切且与圆C :x 2+y 2﹣4x=0相外切,则动圆圆心M 的轨迹方程为( ) A .y 2=8x B .y 2=﹣8x C .y 2=8x 或y=0(x <0)

圆锥曲线轨迹方程经典例题

一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得2 4 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型:

专项练习题集 定义法求轨迹方程

2016年专项练习题集-定义法求轨迹方程选择题 1、点p(x,y)是平面中的一个动点,满足: 10 =,则点p的轨迹方程是() A. 22 1 259 x y += B. 22 1 259 x y -= C. 22 1 925 x y += D. 22 1 925 x y -= 分值:5 答案:A 【考查方向】本题考查椭圆的定义,熟练掌握椭圆的定义是解题的关键。 【易错点】不能将看做点(x,y)和点(4,0)之间的距离。【解题思路】利用椭圆的定义即可得出.

【解析】∵点p (x ,y )在运动过程中满足关系式: 10=, ∴点p 到两定点F (4,0),F′(-4,0)的距离之和满足:|PF|+|P F′|=1o >8. 故点P 的轨迹是以点F ,F′为焦点,10为长轴长的椭圆. 易知,c=4,a=5,∴b=3,∴椭圆的方程为22 1259 x y +=,故选A . 2、已知圆1c :(x+3)2+y 2=4,圆2c (x ﹣3)2+y 2=100,动圆c 与圆1c 、圆 2c 都内切,则动圆圆心的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 【分值】5 【答案】A 【考查方向】本题主要考查椭圆的定义、轨迹方程、圆与圆的位置关系及其判定。菁优网版权所有

【易错点】找不出1cc +2cc 为定值这一关系。 【解题思路】设动圆的半径为r ,由相切关系建立圆心距与r 的关系,进而得到关于圆心距的等式,结合椭圆的定义即可解决问题. 【解析】设动圆的半径为r ,动圆圆心为c (x ,y ), 因为动圆与圆1c :(x+3)2+y 2=4及圆2c (x ﹣3)2+y 2=100都内切, 则1cc =r ﹣2,2cc =10﹣r . ∴1cc +2cc =8>12c c =6 因此动圆圆心为c 的轨迹是焦点为1c 、2c ,中心在( 0,0)的椭圆. 故选A . 3、设动圆M 与y 轴相切且与圆C :x 2+y 2﹣4x=0相外切,则动圆圆心M 的轨迹方程为( ) A .y 2=8x B .y 2=﹣8x C .y 2=8x 或y=0(x <0) D .y 2=8x 或y=0 【分值】5

相关文档
最新文档