初中数学竞赛第二轮专题复习2几何

初中数学竞赛第二轮专题复习2几何
初中数学竞赛第二轮专题复习2几何

CB' AC '

CB' AC '

sin ∠ACC ' sin ∠CBB '

初中数学竞赛第二轮专题复习(2)

几何证明的基本方法(1)

一、常用定理

梅涅劳斯定理 设 A', B', C ' 分别是Δ ABC 的三边 BC ,CA ,AB 或其延长线上的点,若 A', B', C '

三点共线,则

BA' CB' AC '

? ? = 1.

A' C B' A C ' B

梅涅劳斯定理的逆定理 条件同上,若 BA' ? ? = 1. 则 A', B', C ' 三点共线。

A' C B' A C ' B

塞瓦定理 设 A', B', C ' 分别是Δ ABC 的三边 BC ,CA ,AB 或其延长线上的点,若 AA', BB ', CC '

三线平行或共点,则 BA' ? ? = 1.

A' C B' A C ' B

塞瓦定理的逆定理

设 A', B', C ' 分别是Δ ABC 的三边 BC ,CA ,AB 或其延长线上的点,若

BA' CB' AC '

? ? = 1. 则 AA', BB ', CC ' 三线共点或互相平行。

A' C B' A C ' B

角元形式的塞瓦定理

A', B', C ' 分别是 Δ ABC 的三边 BC ,CA ,AB 所在直线上的点,则

AA', BB ', CC ' 平行或共点的充要条件是 sin ∠BAA' ? ? = 1.

sin ∠A' AC sin ∠C ' C B sin ∠B' BA

广义托勒密定理 设 ABCD 为任意凸四边形,则 AB?CD+BC?AD≥AC?BD,当且仅当 A ,B ,C ,D 四点共圆时取等号。

斯特瓦特定理 设 P 为Δ ABC 的边 BC 上任意一点,P 不同于 B ,C ,则有

PC BP AP 2=AB 2?

+AC 2?

-BP?PC.

BC

BC

欧拉定理 Δ ABC 的外心 O ,垂心 H ,重心 G 三点共线,且 O G =

二、基本方法

1

2

GH .

(一)线段相等

证明两线段相等常可从如下角度去考虑: ( 1)从角考虑:在同一三角形中等角对

等边,在同圆或等圆中等圆周角对等弦、等圆心角对等弦;

( 2)从线考虑:线段中垂

线上的点到线段两端点的距离相等,角的平分线上的点到角的两边的距离相等,平行 的两直线间的距离相等,关于某直线(或某点)对称的两点到直线(或某点)的距离 相等,圆的垂径平分弦相等,两圆的内(或外)公切线长相等,从一点向圆引的两条 切线长度相等;( 3)从形考虑:全等形的对应边相等,特殊多边形中的边与边、边与 对角线、对角线与对角线之间相等,和差、倍分(例如,直角三角形斜边上的中线等 于斜边的一半,含 30 0 的直角三角形的斜边是

30 0 角所对边的两倍),三角形、梯形的

中位线与底边的关系,平行四边形的对边相等,对角线互相平分等等;

( 4)从计算考

虑:可直接计算两线段相等,可通过等量代换转算,可利用比

例式、等积式转算,还可利用一系列定理、公式,例如边比定

理、张角公式等等.

1.1利用三角形中等角对等边:

例题1:如图,设I为△ABC内切圆圆心,而与点A不同的

点D是直线AI与△ABC外接圆的交点,求证:DB=DC=DI.

1.2利用平行四边形对边相等:

例题2:求证:如果圆的内接四边形的两条对角线互相垂直,

则从对角线交点至一边中点的线段等于圆心到这一边的对边

的距离.

1.3利用圆中几类角间关系:

例题3:如图,在△ABC中,AB

点E在BA的延长线上,且

BD=BE=AC,△B DE的外接圆与△

ABC的外接圆交于F,求证:BF=AF

十CF.

(二)角度相等

证明两角度相等常从如下几个方面考虑:(1)从角考虑:直接计算,等量代换,在同一三角形中,等边对等角等;(2)从线考虑:角的平分线的定义及判定,平行线

中的同位角,内错角等;(3)从形考虑:全等形的对应角,相

似形的对应角。圆中圆周角、圆心角、弦切角及相互关系。特

殊多边形中的有关角等;(4)从计算考虑:利用三角函数式计

算等间接计算

平面几何中的线段和角度问题,宛如郁郁葱葱,茫无际涯

的森林,构成了枝繁叶茂,生机勃勃的几何度量问题林海,这

两类问题总是相互联系,相互作用,相互依存,相互制约着的,

因而这两类间题的求解思路,也是相互利用,相互关联的.

1.1利用相似三角形对应角相等:

例题1:如图,设圆内接锐角△ABC,过从B、C为切点的切线相交于点N,取BC 的中点M,试证:∠BAM=∠C AN.

d ,且 1 ( ( ( .

1.2 利用角平分线及内心性质:

例题 2:如图,设 OC 是圆 S 1 的一条弦,今知以 O

为圆心的圆 S 2 与 OC 相交于点 D ,点 D 不与点 C 重 合,且圆 S 2 与圆 S 1 相交于点 A 和 B ,证明: DC 平 分∠ ACB .

1.3 利用内角平分线逆定理:

例题 3: 如图, PA 、PB 、 P C 、PD 的长分别为 a 、 b 、 c 、

1 1 1

+ = + ,又 AB 、 C D 相交于 Q ,求证: PQ

a b c d

平分∠ CPD .

(三)证明平行

论证两直线平行,常从如下几方面着手,从角考虑: 1)通过证被第三条直线截得的同

位角相等、内错角相等、同旁内角互补等来确定两直线平行; 2)从线考虑:通过证两直线

同垂直(或同平行)于第三条直线来确定两直线平行; 3)从形考虑:通过证两直线上的线段是 某些特殊图形,如平行四边形的一组对边,三角形或梯形的中位线和底边等来确定两直线平 行;(4)从比例式考虑:通过证对应线段成比例来确定过对应分点的直线平行;(5)从有关 结论来考虑,在有关图形中,有一些美妙的结论,如同圆中夹等弧的两弦(或一弦与一切线) 平行,过相交(或相切)两圆交点的割线交两圆于四点,同一圆上的两点的弦互相平行; 6) 还可从运用其他方法方面考虑:诸如面积法、几何变换法、向量法等

1.1 利用角相等:

例题 1: 如图,自圆 O 外一点 A 引切线,切点为 B ,过

AB 的中点 M 作割线交圆于 C 、D ,连 AC 、AD 又交圆于 E 、 F ,求证: AB// EF .

1.2 利用与第三条直线平行(垂直):

例题 2: 如图,在△ ABC 中, BD 、 C E 为高, F 、 G 分别为

ED 、 B C 的中点, O 为外心,求证: AO // FG .

1.3 利用平行四边形对边平行:

例题 3: 如图,在正方形 ABCD 内任取一点 E ,连 AE ,

BE ,在△ ABE 外分别以 AE 、 B E 为边作正方形 AEMN 和

EBFG ,连 NC 、 A F ,求证: NC// AF .

1.4利用三角形中位线与底边平行:

例题4:如图,设BP,C Q是△ABC的内角平分线,

AH、A K分别为A至BP,C Q的垂线,证明:KH//BC.

1.5利用三角形线段相似比:

例题5△:如图,在ABC的边AB、BC、CA上分别取点M、

K、L,使MK//AC、M L//BC,令BL与MK交于P,AK与

ML交于Q,求证:PQ//AB.

1.6利用过相交(或相切)两圆交点分别作割线交两圆于

四点,同一圆上的两点的弦互相平行:

例题6:如图,已知在凸四边形ABCD中,直线CD

与以AB为直径的圆相切,直线AB与以CD为直径的

圆相切,求证:BC//RD.

(四)证明垂直

论证两直线相交垂直常从如下几方面考虑,(1)从角考虑:相交成直角的两直线垂直,相交得邻补角相等的两直线垂直,直径所张圆周角的两边垂直;(2)从线考虑:分别与两互垂线平行的两直线垂直,一条直线和两平行线中的一条垂直也和另一条垂直、同圆中夹弧和为半圆的两相交弦垂直,等腰三角形的顶角平分线(或底边中线)

和底边垂直,菱形的两条对角线垂直,过三角形顶点和垂心的直线与顶点所对的边垂

直,两相交圆的连心线与公共弦垂直等;(3)从形考虑:与直角三角形相似对应于直

角的角的两边垂直,圆内接四边形对角相等时角的两边垂直.分别为两边对应垂直的两个相似三角形的第三边的两直线垂直等;(4)从有关结论考虑:满足勾股定理逆定理条件的三角形两短边垂直一线段的两端到另一线段两端距离的平方差相等时此两

线段垂直;(5)还可从其他方法方面考虑:诸如同一法、反证法等.

1.1利用相交两直线所成角为900角:

例题1:如图,已知P、Q分别是正方形ABCD的边AB、B C上的

点,且BP=BQ,过B点作PC的垂线,垂足为H,求证:DH⊥H Q.

1.2 利用相交得邻补角相等的两直线垂直:

例题 2:如图,圆 O 经过△ ABC 的顶点 A 、C ,分别与 AB ,BC 交于 K 和 N ,△ABC

和△ KBN 的两个外接圆相交于点 B 、 M , .求证: OM ⊥ M B .

1.3 利用直径所张圆周角两边垂直(同例题 2):

1.4 如果一条直线和两条平行线中的一条垂直,则也和另 一条垂直(同例题 2):

1.5 利用等腰三角形四线合一:

例题 5: 如图,圆 O 1 与圆 O 2 相交于 A 、 B 两点, O 1 在圆

O2 的圆周上,圆 O 1 的弦 AC 交圆 O 2 于 D 点,求证: O 1D ⊥ B C .

1.6 利用三角形的垂心性质:

例题 6:在矩形 ABCD 的两边 AB 和 BC 上向外作等边△ ABE

和△ BCF , E A 和 FC 的延长线交于 M ,求证: BM ⊥ E F .

1.7 利用相似直角三角形性质:

例题 7:从等腰三角形 ABC 的底边 AC 的中点 M 作 BC 边的

垂线 MH ,点 P 是 MH 的中点,证明: AH ⊥ B P .

1.8 利用勾股定理的逆定理:

例题 8: 如图,在△ ABC 中,边 BC 等于其余两边之和的一

半,求证:∠ B AC 的平分线垂直于连结内心、 外心的线段 .

(五)点共线问题

同在一条直线上的许多点叫做共线点,或者说这些点共直线。点共直线是一类有趣而引

人入胜的间题,所以长期以来,点共直线的问题,受到人们的关注,历史上众多的数学家也

获得了许多美妙的结果:诸如欧拉线、牛顿线、西姆松线,卡诺定理、戴沙格定理、奥倍尔 定理、帕普斯定理、清宫定理等,点共直线问题仍是数学爱好者青睐的题型之一。

求解点共直线问题涉及的概念较多,覆盖知识面较广,综合性也较强,因此,在求解时

可能陷人困境,为了尽快找到一种切实有效的思路可从如下几个方面去考虑:1)从角考虑: 证得以中间一点为顶点,两侧两点所在射线所成的角为平角,证得以中间一点为顶点且作一

直线,其余两点所在射线构成对顶角,证得以一点为顶点且作一射线,其余两点所在射线与

( ( ( F F

前一条射线所成的两个角相等; 2

)从线考虑:证第三点在过另两点的直线上,证得三点两 两连结的直线各与同一直线垂直(或平行),证得三点两两连结的线段有和或差关系;(3) 从形考虑:证三点所成的三角形面积为零,证得以一点为位似中心,其余两点为位似变换的 一双对应点; 4)从有关结论考虑:注意到梅涅劳斯定理、张角公式等; 5)从方法上考虑: 可考虑反证法、同一法、面积法等。

论证四点(或四点以上)在一直线上,可先设一条过两点的直线,再让其余各点在此直

线上,或多次运用三点共直线,再证这些直线重合.

1.1 欲证 X 、Y 、Z 三点共线,连结 XY 和 YZ ,证明∠XYZ=1800:

例题 1: 如图,在线段 AB 上任取一点 M ,以线段 AM , BM

为一边,在 AB 的同旁作正方形 AMCD , BEHM ,这两个正方 形的外接圆相交于 M 、 N 两点,求证: B 、 N 、 C 三点共线 .

1.2 欲证 X 、Y 、Z 三点共线,适当地选一条过 Y 的直线 PQ ,证明∠XYQ=∠PYZ: 例题 2:如图,在直角三角形 ABC 中 ,CH 为斜边 AB 上的高,

以 A 为圆心, AC 为半径作圆 A ,过 B 作圆 A 的任一割线交 圆 A 于 D ,交 CH 于 ( D 在 B 、 之间),又作∠ ABG= ∠ A BD , G 在圆周上, G 与 D 在 AB 两侧,求证: E 、H 、 G 三点共线 .

1.3 欲证 X ,Y ,Z 三点共线,适当地选一条过 X 的射线 XP ,证明∠PXY=∠PXZ: 例题 3:如图,已知 O 是锐角△ ABC 的外心,BE 、CF 为 AC 、

AB 边上的高,自垂足 E 、 F 分别作 AB 、 A C 的垂线,垂足为 G 、 H , E G 、 F H 相交于 K 。求证: A 、 K 、 O 三点共线 .

1.4 欲证 X ,Y ,Z 三点共线,连接 XY ,YZ (或 XZ ),证其垂直(或平行)某直

线:

例题 4△: ABC 的外接圆 I 上, M 、N 、L 分别为弧 BC 、CA 、AB 中点,连接 NL 与

AB 交于 D ,连接 MN 与 BC 交于 E ,证明: D 、 E 、 I 三点共线 .

1.5欲证三点共线,证其中一点在连结另两点的直线上:

例题5:设在正方形ABCD的边BC上任取一点P,过A、B、P

三点作一圆与对角线BD相交于点Q,过C、P、Q三点再作一圆

与BD又交于一点R,证明:A、R、P三点共线.

1.6运用面积方法证三点共线:

例题6:设四边形ABCD外切于圆O,对角线AC和BD的中点

分别为M、N,试证:M、N、O三点共线.

1.7运用梅涅劳斯定理之逆定理证三点共线:

例题7:设AC、C E是正六边形ABCDEF的两条对角线,点M、

N分别内分AC、CE,使:

AM CN3

==

AC CE3

求证:B、M、N三点共线.

(六)线共点问题

某一点在一平面内的若干条直线上,或一平面内若干条直线过同一点称直线共点。三角

形的三中线、三高线、三边中垂线、三内角平分线分别共点于其重心、垂心、外心、内心是众所周知的。直线共点问题是常见的题型之一,也是平面几何中的典

型问题之一。求解直线共点问题与求解点共直线问题一样,也常从角、

线、形、有关结论等几个方面去考虑.

1.1转化为点共线问题:

例题1△:如图,在正ABC中,D、E、F、M、N、P分别为BC、

CA、AB、FD、FB及DC的中点,证明:AM、EN、FP共点.

1.2注意到交点恰好是三角形的巧合点(内心、外心、垂心、

重心等):

例题 2:如图,圆 O 内切于△ ABC , A 1、 B 1、 C 1 分别为 BC 、 CA 、 AB 边上的切点,

AO ,BO ,CO 分别交圆于 A 2、B 2、C 2,求证:A 1A 2、B 1B 2、C 1C 2 共点 .

例题 3:如图,凸四边形 ABCD 的对角线互相垂直,过 AB 、AD

的中点 K 、M 分别引对边 CD ,CB 的垂线 KP ,MT ,求证: KP 、 MT 、 A C 共点 .

例题 4: 如图,设△ ABC 为锐角三角形, H 为自 A 向边 BC 所引高的垂足,以 AH

为直径的圆, 分别交边 AB 、AC 于 M 、N (且与 A 不同),过 A 作直线 L 1 垂直于 MN , 类似地作出直线 L 2、 L 3,求证: L 1、 L 2、 L 3 共点 .

1.3 注意到交点恰好是三角形的特殊点(顶点、中点、分

点等):

例题 5: 四边形 ABCD 内接于圆 O ,对角线 AC 与 BD 相交

于 P ,设△ ABP 、△ BCP 、

△ CDP 和△ DAP 的外心分别是 O 1、 O 2、 O 3、 O 4,求证: OP 、 O 1O 3、 O 2O 4 三直线共 点 .

1.4 运用塞瓦定理之逆定理证直线共点:

例题 5: 以△ ABC 各边为底边向外作相似的锐角△

AC 1B 、△ BA 1C 、△ CB 1A ,若∠ AB 1C= ∠ ABC 1=∠ A 1BC ,∠ BA 1C= ∠ BAC 1=∠ B 1AC ,

求证 : AA 1、 BB 1、 CC 1 共点 .

初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转 典型例题 【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE, △是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN 边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以 及线段BM,DK的中点是某正方形的顶点. L

【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线, AD DK =.求证:HBD △也是等边三角形. 【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点, M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证: RM QS =. E C H D B A Q ? S M P C B A R

【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB = ,PD =求正方形ABCD 的面积. 【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长. D

【例7】 设O 是等边ABC △内一点,已知115AOB ?∠=,125BOC ?∠=,求以线段OA 、OB 、 OC 为边所构成的三角形的各内角大小. 【例8】 如图,在ABC △中,90ACB ?∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =, 2PC =,求BPC ∠. A P C

如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=. 【例9】 如图,在等腰直角ABC △中,90ACB ?∠=,CA CB =,P 、Q 在斜边AB 上,且 45PCQ ?∠=,求证:222PQ AP BQ =+. A D C B A Q B C P

初中数学竞赛第二轮专题复习(4)几何

初中数学竞赛第二轮专题复习(4) 几何 1、如图,D ,E 分别为?AB C的边AB ,AC 上的点,且不与?A BC 的顶点重合.已知AE 的长为m,AC 的长为n,A D,AB的长是关于x 的方程2140x x mn -+=的两个根. (Ⅰ)证明:C ,B,D,E 四点共圆; (Ⅱ)若∠A=90°,且m=4, n=6,求C,B ,D,E 所在圆的半径. 解:(Ⅰ)连接DE,根据题意在△ADE 和△ACB 中,A D×A B=mn=A E×A C,即AD AE AC AB =. 又∠DAE=∠CAB ,从而△ADE ∽△ACB 因此∠AD E=∠A CB ,所以C , B, D, E 四点共圆. (Ⅱ)m=4, n =6时,方程x2-14x +mn=0的两根为x1=2,x 2=12. 故AD =2,AB =12. 取CE 的中点G ,DB 的中点F,分别过G,F 作AC ,AB 的垂线,两垂线相交于H点,连接DH . 因为C , B , D, E 四点共圆,所以C, B , D, E 四点所在圆的圆 心为H,半径为DH. 由于∠A=90°,故GH∥AB,H F∥AC .H F=AG=5,D F=12 (12-2)=5. 故C,B,D,E四点所在圆的半径为 . 2、在等腰?AB C中,顶角∠AC B=80°,过A , B引两直线在?ABC 内交于一点O.若∠O AB=10°, ∠OBA=20°,求∠ACO 的大小,并证明你的结论. 解:60ACO ∠=?(4分) 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '',由10OAB ∠=?知20BAB '∠=?且AB AB '=,ABB '为等 腰三角形,故80AB B ACB '∠=?=∠,从而知,,,A B B C '四点共圆,再由20ABO ∠=?知60OBB '∠=?,BB O '?为 等边三角形.由四点共圆知100ACB '∠=?,又 30OBC B BC '∠=∠=?,OB B B '=,BC 公共,故OBC B BC '???. 再由100ACB '∠=?,80ACB ∠=?,故20OCB ∠=?,从而得证:60ACO ∠=?. 答题要点:60ACO ∠=? 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '' ①OBB '?为正三角形;

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

数学初中竞赛大题训练:几何专题(含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

全国初中数学知识竞赛辅导方案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 全国初中数学知识竞赛辅导方案 王选民 为了在全国数学知识竞赛中取得优异成绩,将对学生辅导方案总结如下: 一、了解掌握优生的特点 一般我们选择参加竞赛的学生都是学优生,当我们与“优生”进行面谈时,应该清醒地认识到,他们能成为“优生”,是学生家长和老师共同教育的结果。尤其要看到这些“优生”的两重性:一方面,他们的行为习惯、学习习惯、学习成绩以及各种能力比一般学生在这个年龄容易出现的毛病外,也存在着他们作为老师的“好学生”、家长的“好孩子”所特有的一些毛病。 具体说来,“优生”一般具有以下特点: 1、思想比较纯正,行为举止较文明,自我控制的能力比较强,一般没有重大的违纪现象。 2、求知欲较旺盛,知识接受能力也较强,学习态度较端正,学习方法较科学,成绩较好。 3、长期担任学生干部,表达能力、组织能力以及其它工作能力都较强,在同学中容易形成威信。 4、课外涉及比较广泛,爱好全面,知识面较广。 5、由于智力状况比较好,课内学习较为轻松,因而容易自满,不求上进。 6、长期处于学生尖子的位置,比较骄傲自负,容易产生虚心。 7、有的“优生”之间容易产生互相嫉妒、勾心斗角的狭隘情绪和学习上的

不正当竞争。 8、从小就处在受表扬、获荣誉、被羡慕的顺境之中,因而他们对挫折的心理承受能力远不及一般普通学生。 以上几点,只是就一般“优生”的共性而,当然不一定每一个“优生”都是如此。 辅导优生的具体措施 1、创设能引导学优生主动参与的教育环境。 2、了解学生在兴趣、学习偏好、学习速度、学习准备以及动机等方面的情况。这些资料为教师制定活动和计划时的依据,也是“促进学生主动地、富有个性地学习的需要”。 3、为尖子设计学习方案。学优生学习新知识时,比其他学生花的时间少,他不需要很多的练习就已经理解新知识,因此,做的练习也少。让他们做那些已经理解的题目就很多难让学生体会到智力活动的乐趣。长此以往,反而可能在一定程度上降低学生对于智力生活的敏感性。教师应该备有不同层次介绍同一主题的资料,采用向学生布置分组作业的方法,从众多的方案和活动中选取与他们的知识、技能水平相当的项目,指定他们完成。 4、解决学优生心理问题:学优生在心理状态上,易产生骄气,居高临下,听不进半点批评,心理脆弱。在价值取向上,易产生唯我独尊,以自我为中心的个性倾向和价值取向,不把其他同学的感觉、好恶、需要放在一定的位置;在行为方式上,由于始终把自己当学优生,与一般同学不一样,束缚了自己,娱乐活动不愿参加,集体劳动怕吃苦。 针对这种状况,教学中应注意: 学优生学习成绩优异,但不能“一俊遮百丑”。在鼓励保持学习上的竞争姿态和上进好胜的同时,要创造条件和环境,磨练他们的意志,培养他们的创造能力,规范他们的行为意识。

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中数学竞赛专题辅导因式分解(一)

初中数学竞赛专题辅导因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

初中数学竞赛 几何专题:点共线问题(含答案)

初中数学竞赛 几何专题:点共线问题(含答案) 1. 锐角三角形ABC 中,45BAC ∠=?,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、 AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心. 解析 如图,由条件45BAE ∠=?,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点. 另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知 12EM MF BC ==,1 2 EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点. 从而命题获证. 2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE , 点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线. 解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=?,有 tan cot ASB ATB S SP AS BS P T S AT BT αβ'?===?'?△△ MS ST MS SP ST TE TE PT = ?== , 即点P 与点P '重合. 3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上. 解析 连结OB 、OD . B M N A S P T F E D M C N O L A K B

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初中数学竞赛辅导资料

初中数学竞赛专题选讲 识图 一、内容提要 1.几何学是研究物体形状、大小、位置的学科。 2.几何图形就是点,线,面,体的集合。点是组成几何图形的基本元素。《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。 3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。因此单独研究点、线、面、体,要靠正确的想像 点:只表示位置,没有大小,不可再分。 线:只有长短,没有粗细。线是由无数多点组成的,即“点动成线”。面:只有长、宽,没有厚薄。面是由无数多线组成的,“线动成面”。 4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。 识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。还要注意一般图形和特殊图形的差别。 二、例题 例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形? E 解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD,∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。 乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O) △AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。

丁图中共有等边三角形48个: 边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15 顶点在下▼的个数有 1+2+3+4=10 边长2个单位:顶点在上▲的个数有 1+2+3+4=10 顶点在下▼的个数有 1+2=3 边长3个单位:顶点在上▲的个数有 1+2+3=6 边长4个单位:顶点在上▲的个数有 1+2=3 边长5个单位:顶点在上▲的个数有 1 以上要注意数一数的规律 例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同一 直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不出 现有4个点的两两连线,那么最多可连成几条线段?试画出图形。 (1989年全国初中数学联赛题) 解:从点A 1与其他5点连线有5条,从点A 2与其他4点(A 1除外)连线 有4条,从A 3与其他3点连线有3条(A 1,A 2除外)……以此类推,6个 点两两连线共有线段1+2+3+4+5=15(条),或用每点都与其他5点连 线共5×6再除以2(因重复计算)。 要使图形不出现有4个点的两两连线,那么每点只能与其他4个点连线, 共有(6×4)÷2=12(条)如下图:其中有3对点不连线:A 1A 4,A 2A 5, A 3A 6 A 3 A 1 A 2 例3.如图水平线与铅垂线相交于O ,某甲沿水平线,某乙铅垂线同时匀速前 进,当甲在O 点时,乙离点O 为500米,2分钟后,甲、乙离点O 相等; 又过8分钟,甲、乙再次离点O 相等。求甲和乙的速度比。 解:如图设甲0,乙0为开始位置,甲1,乙1为前进2分钟后位置,甲2,乙2 乙2 为再前进8分钟的位置。再设甲,乙的速度分别为每分钟x,y 米,根据题意得 ? ??-=-=500101025002y x y x 甲 O 甲1 甲2 解得12x=8y 乙1 ∴x ∶y=2∶3

全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用

第十一讲勾股定理与应用 在课内我们学过了勾股定理及它的逆定理. 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即 a2+b2=c2. 勾股定理逆定理如果三角形三边长a,b,c有下面关系: a2+b2=c2 那么这个三角形是直角三角形. 早在3000年前,我国已有“勾广三,股修四,径阳五”的说法. 关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法. 证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和. 过C引CM∥BD,交AB于L,连接BG,CE.因为 AB=AE,AC=AG,∠CAE=∠BAG, 所以△ACE≌△AGB(SAS).而 所以 S AEML=b2.①

同理可证 S BLMD=a2.② ①+②得 S ABDE=S AEML+S BLMD=b2+a2, 即 c2=a2+b2. 证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知 △ADG≌△GEH≌△HFB≌△ABC, 所以 AG=GH=HB=AB=c, ∠BAG=∠AGH=∠GHB=∠HBA=90°, 因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即 化简得 a2+b2=c2.

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

初中数学竞赛几何证明题综合训练

几何证明题综合训练 1. 线段或角相等的证明 (1) 利用全等△或相似多边形; (2) 利用等腰△; (3) 利用平行四边形; (4) 利用等量代换; (5) 利用平行线的性质或利用比例关系 (6) 利用圆中的等量关系等。 2. 线段或角的和差倍分的证明 (1) 转化为相等问题。如要证明a=b±c ,可以先作出线段p=b±c ,再去证明a=p , 即所谓“截长补短”,角的问题仿此进行。 (2) 直接用已知的定理。例如:中位线定理,Rt △斜边上的中线等于斜边的一半; △的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。 3. 两线平行与垂直的证明 (1) 利用两线平行与垂直的判定定理。 (2) 利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。 (3) 利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。 【竞赛例题剖析】 【例1】从⊙O 外一点P 向圆引两条切线PA 、PB 和割线PCD 。从A 点作弦AE 平行于CD ,连结BE 交CD 于F 。求证:BE 平分CD 。 【分析1】构造两个全等△。 连结ED 、AC 、AF 。 CF=DF ←△ACF ≌△EDF ← ←? ?? ?? ?????←←∠=∠∠=∠=∠←∠=∠←??? ∠=∠=四点共圆、、、P B F A ABP AFC ABP AEF EFD EFD AFC CD //AE EDF ACF ED AC ←∠PAB=∠AEB=∠PFB 【分析2】利用圆中的等量关系。连结OF 、?? ?? ?=∠←=∠←=、、、P B F O 90 OBP 90OFP DF CF 0 ←∠PFB=∠POB ← ←? ??←∠=∠←∠=∠是切线、PB PA AEB POB CD //AE AEB PFB

全国初中数学竞赛辅导(初1)上

全国初中数学竞赛辅导(初一) (上) 目录 第一讲有理数的巧算 (1) 第二讲绝对值 (10) 第三讲求代数式的值 (17) 第四讲一元一次方程 (24) 第五讲方程组的解法 (32) 第六讲一次不等式(不等式组)的解法 (40) 第七讲含绝对值的方程及不等式 (47) 第八讲不等式的应用 (56) 第九讲“设而不求”的未知数 (64) 第十讲整式的乘法与除法 (73) 第十一讲线段与角 (79) 第十二讲平行线问题 (88)

第一讲有理数的巧算 有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性. 1.括号的使用 在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单. 例1计算: 分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.

注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算. 例2计算下式的值: 211×555+445×789+555×789+211×445. 分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算. 解原式=(211×555+211×445)+(445×789+555×789) =211×(555+445)+(445+555)×789 =211×1000+1000×789 =1000×(211+789) =1 000 000. 说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧. 例3计算:S=1-2+3-4+…+(-1)n+1·n. 分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法. 解S=(1-2)+(3-4)+…+(-1)n+1·n. 下面需对n的奇偶性进行讨论: 当n为偶数时,上式是n/2个(-1)的和,所以有 当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

相关文档
最新文档