外源添加物对食药用菌液体发酵影响的研究进展

外源添加物对食药用菌液体发酵影响的研究进展
外源添加物对食药用菌液体发酵影响的研究进展

外源添加物对食药用菌液体发酵影响的研究进展

发表时间:2018-02-09T09:59:38.017Z 来源:《科技中国》2017年9期作者:张智超,路小玉,孟青青,吴海英[导读] 摘要:在食药用菌液体发酵的过程中影响因素有很多,加入不同的添加物,对菌丝的培养具有不同的影响,本文阐述了外源添加物对食药用菌液体发酵的影响,希望为以后食药用菌的研究可以提供一些可以参考的资料。

摘要:在食药用菌液体发酵的过程中影响因素有很多,加入不同的添加物,对菌丝的培养具有不同的影响,本文阐述了外源添加物对食药用菌液体发酵的影响,希望为以后食药用菌的研究可以提供一些可以参考的资料。

关键词:外源添加物食药用菌液体发酵影响众所周知,真菌的种类是非常多的,高达十万种左右,而可以食用的目前已知的大约1000多种,经过研究能够产生药效的大约300多种,目前大概有数十种的食用真菌已经大量用药。食药用菌目前来说具有非常高的商业价值,液体发酵技术可以大大提高食药用菌发酵产物的产量,近几年,经过医药学家孜孜不倦的研究,发现一些外源添加物对提高食药用菌代谢产物的产量具有非常重要的的作用。

一、中药对食药用菌液体发酵的影响

食药用菌分泌的酶对中药含有的各类营养成分加以利用,可以提高真菌生长的速度,同时也能促进代谢产物的合成,通过在食药用菌液体发酵过程中添加中药发现,真菌在代谢过程中通过对中药中的一些成分进行生物的转化,从而消除了中药原本存在的毒素,还有可能会产生新的物质,增加了发酵产物的药性,现在为止,添加的中药主要有两类,草本植物和药用昆虫,通过添加不同剂量和单双味的中药来判定那种中药、何种计量对食药用菌的生长最好。中药的成分和剂量对食药用菌的影响的差异是非常大的,比如茶叶粉、穿心莲粉等可促进对茯苓菌体的生长,而三七粉和葛根粉对茯苓菌体的生长则具有抑制作用。

二、生长因子对食药用菌液体发酵的影响

生长因子作为氨基酸和维生素以及代谢产物的前体,是食药用菌生长所必需的有机化合物,生长因子在食药用菌菌丝生长和代谢产物合成时可以作为酶的辅基参与新陈代谢,加快菌丝的生长速度。维生素类的物质还能参与菌丝生长过程中的代谢,通过笔者研究参考资料得知维生素B1和维生素B2可以促进桑黄菌丝的生长,把维生素B1和维生素B2混合使用还会有更大的效果,在食药用菌发酵过程中中同时加入维生素B1和维生素B2,桑黄菌丝的生长速度会大大提高,从而提高多糖的产量,在发酵过程中加入添加物之后,食药用菌可以直接利用外源添加物合成次生代谢产物,而不再需要自身通过酶的发酵再合成,节省了时间,同时保存了自身的能量,因而加大了生长的速度,提高了产量。

三、油脂类产物对食药用菌液体发酵的影响

通过在食药用菌发酵过程中加入油脂类的物质发现,油脂类的物质除了作为消泡剂外,还会影响真菌的生长代谢。人们利用这一发现,把油脂类的物质作为诱导因子来提高食药用菌特定活性成分的合成,人们通过这培养基中加入植物油、脂肪酸等油脂类的外源添加物来观察对食药用菌发酵的影响,发现油脂类的脂肪酸可以通过改变真菌细胞膜的结构和通透性来影响真菌生长代谢过程中所产生的酶活性从而来促进真菌菌丝的生长。油脂类的脂肪酸能促进灵芝菌丝的生长,同时还能促进真菌细胞内多糖的合成,油脂类所含有的硬脂酸可以促进真菌细胞内多糖的产生同时还能促进灵芝细胞外多糖的生产。植物油能促进食药用菌的生长代谢,是一种有效的调控方式。

四、信号因子对食药用菌液体发酵的影响

信号分子在调控食药用菌的生长代谢过程中起着非常重要的作用,在食药用菌的发酵过程中可以通过激活某些代谢途径从而提高食药用菌代谢产物的产量。所谓的信号因子指的就是激素、气体分子(NO、CO)等,其中激素是食药用菌液体发酵中应用最广的一种信号传导媒介,其中,陈安徽发现了发现细胞分裂素6-苄氨基嘌呤 (6-benzylaminopurine,6.BA)可以大大提高蝉拟青霉的产量,而且还能缩短蝉拟青霉的发酵周期,同时也改变了蝉拟青霉菌丝体中活性物质的代谢节奏,魏原芝则发现了不同的植物激素对杏鲍菇的生长代谢影响也不同,就算是同一植物激素浓度不同对杏鲍菇的影响也是不一样的,可能是由于植物激素激活了杏鲍菇菌丝生长所需要的氨基酸和蛋白质等代谢酶的合成,从而加快了菌丝对营养物质的吸收,从而提高了菌丝的生长和代谢的速度。

一氧化氮(NO)是一种重要的活性氮,可以诱导真菌代谢产物的合成,王松华等在灵芝的培养中加入硝普钠(sodium nitroprusride,SNP)作为外源一氧化氮的供体进行发酵,通过研究发现加入的浓度不同,对灵芝菌体的生长和胞外、胞内多糖的合成影响也是不同的。当加入的浓度为0.5 mmol/L时,对灵芝菌体的生长以及胞外、胞内多糖的合成是有促进作用的,然而当浓度大于4 mmol/L时,灵芝菌丝及胞外、胞内的多糖的产量反而会下降,说过浓度过高的SNP反而不利于菌体和多糖的产生。

五、外源添加物对食药用菌发酵影响的原理

通过上面的研究可以发现,外源添加物对食药用菌的发酵过程会产生很大的影响,通过对添加中药、生长因子、油脂类物质、信号分子对食药用菌代谢产物合成以及酶的活性的影响可以看出食药用菌的代谢主要是依靠酶的作用来完成的。它通过两种方式来完成,一种是通过调节酶的活性,提高代谢产物合成途径中必须要用到的一些酶的活力或者抑制一些与合成产物无关的一些酶的活性,把食药用菌细胞内的物质和能量导向目标的合成产物,从而提高目标合成代谢产物的产量。另一种就是调节酶的合成,通过加入外源添加物来诱导食药用菌代谢产物途径中所必需酶的基因表达,来促进必需酶的合成,从而打开了特定次生代谢产物的代谢途径。提高了反应的速率和代谢途径的通量。累积特定的目的代谢产物的产量,这是利用了遗传学的原理。代谢产物是在胞内合成的,通过向胞外分泌影响了细胞壁、细胞质和细胞膜的通透性,而代谢产物中胞内的积累对自身的合成也有一定的抑制作用。也是影响代谢产物分泌以及其胞外产量的重要因素之一。

六、结语

食药用菌随着人们对健康越来越重视而在目前的市场中备受人们的青睐,食药用菌不仅营养丰富,而且用于食物中还非常的美味,加之具有药理的作用,因而人们对它的需求也在日益的增加。为了满足市场的需要,国内外的研究人员都在大力的研究食药用菌的液体发酵技术,通过研究食药用菌液体发酵代谢产物的合成途径,从而发现了外源添加物可以有效的对食药用菌液体发酵代谢产物的合成产生调控作用,通过研究不同的添加物对食药用菌液体发酵的不同影响,从而可以得到最合适的添加物的成分和浓度,提高食药用菌的药理和产量,实现食药用菌资源高值化的利用,无论在理论上还是实践上指导真菌发酵生产都具有重要的研究意义。随着食药用菌代谢产物生物合成途径及调控机制研究的不断突破,通过一些关键合成酶基因的表达和相关代谢途径中重要酶活性的调控,将是今后食药用菌液体发酵代谢调控研究的热点。

食用菌液体菌种生产方法

食用菌液体菌种的生产方法(发酵罐法) 传统菌种生产工艺,一般是由试管母种扩繁成二级种、三级种,生产周期长、污染率高、成本高、需大量人工、管理困难。液体菌种生产具有纯度高、活力强、繁殖快的特点,接种到培养料内有流动性好、萌发点多,发菌迅速等特种点。应用于生产与固体菌种相比有以下优点: 1.菌种生产周期短。固体种一般需25—40天,而液体种仅需3—7天。 2.接种后,萌发点多萌发点多、发菌快、出菇周期短。接种24小时菌丝布满料面,3—15天长满菌袋,一般品种10天左右可出菇。 3.接种方便、成本低。用液体菌种接种一般每袋成本是1—3分,每人每小时可接800袋以上,提高效益4—5倍。 4.适宜工厂化生产。可直接用于栽培料进行出菇,大批量生产菌袋。为食用菌集约化、标准化生产创造了条件。因此,适宜我国国情的液体菌种设备的出现,必将在食用菌生产领域引发一场新的革命。 液体菌种具有固体(颗粒)菌种无可比拟的优势,但是液体菌种生产设备是近几年刚发展起来并逐渐成熟的,因此很多人对此很陌生。在这里我们对此进行简单介绍 一、液体菌种设备基本原理 任何一种食用菌自身的生长必须满足其对温度、湿度、需氧量、养分等的需要,同时必须避免杂菌感染。在深层发酵技术上称之为选择性发酵技术,如啤酒生产技术当属此例,而白酒生产则是生物菌群发酵技术。 液体菌种发酵设备(包括四大系统,温控系统由控制器、电热管等组成;供气系统由空气压缩机、输送管道、空气过滤器等组成;冷却系统由热交换器、进出水管道组成;搅拌系统由射流器、提升管等组成。 二、液体菌种生产的关键技术 1、溶氧量 液体菌种生产中最关键的是培养液中氧的溶解量,因为在菌丝生长过程中,必须不断的吸收溶解其中的氧气来维持自身的新陈代谢,氧气在液体(水)中的溶解量与压力、温度有关,同时与培养液的接触面积、渗透压有很大的关系。因此我们设计发酵设备时有效地解决了这些问题,如安装射流器使气泡细碎度增加等。 2、空气过滤 技术的关键就是保证进入的空气无菌度高,因此必须选择孔径小、材料先进的过滤膜。一般细菌直径在0.5-5um,酵母菌在1-10um,病毒一般在20-400mu,所以选择过滤膜时应综合考虑以上因素。当然如果选的太小,成本将大幅度提高。另外环境对于空气影响很大,在空气压缩机房、制种车间必须保持环境清洁。 3、培养液 培养液是菌丝生长发育的营养源,要求营养全面均衡。不同的菌种对营养要求偏重不同。配制原料有糖、麸皮、磷酸二氢钾、硫酸镁、维生素、蛋白胨、土豆汁、酵母浸膏等。配置培养液时,先将土豆片、麸皮一起煮熟,将汁液滤出,后加入其它辅料混匀即可。 4、接种 培养器上端有接种口,也是装料口,将母种并瓶后加入抑菌剂,而后必须在火焰圈的保护下倒入罐体内,要求动作快、操作准确。

食、药用菌专家王志强老师

王志强(Chee-chang Wan )个人简 历 王志强老师,1998年毕业于上海交通大学农学院园艺专业,毕业后供职于上海市农业科学院食用菌研究所,从事食药用真菌的栽培、育种等研发工作;德国柏林自由大学、波兰华沙市蔬菜研究院访问学者。曾任上海市农业科学院食用菌研究所育种研发中心副主任,菌种厂厂长等职务。主要从事食、药用菌的工厂化生产和育种研究: 1.1995—1998:在本科阶段,师从著名食用菌专家殷戎一教授(丹麦哥本哈根皇家菇场首席科学家),进行食用菌栽培及生物学特性研究; 2.1999年:任烟台九发集团生产部见习经理,负责双孢蘑菇的工厂化生产优良品种的选育工作,通过一年半的努力筛选出一个产量和质量超过欧洲当家品种F56的优良品种; 3.1999年—2001年:赴德国柏林自由大学作访问学者,学习细胞免疫学;之后又赴波兰华莎市蔬菜研究院系统学习欧洲最先进的食用菌工厂化生产技术。

4.2001年5月—10月:赴浙江盘安全面负责反季节工厂化生产双孢蘑菇,鲜菇出口日本基地的生产技术工作,取得了良好的经济效益。由于这是当时浙江省第一个双孢蘑菇反季节鲜菇出口基地,因此受到时任浙江省委书记张德江的亲自接见。 5.2001年7月—10月:赴山东定陶县(出口基地)全面负责四十万瓶双孢蘑菇麦粒菌种的生产工作并负责培训当地技术人员,使当地双孢蘑菇生产技术快速提升,最近几年面积不断扩大,提高了当地农户的收入。 6.2002年5月—12月:赴河南濮阳市,全面负责十个珍稀品种(杏鲍菇、白灵菇、姬松茸、秀珍菇、姬菇、柳松菇、鸡腿菇、猴头菇、蟹味菇、大球盖菇)的引进、示范、推广工作,获得了很好的社会和经济效益。 7.2003年6月—8月:赴崇明岛负责150多个灵芝品种的品种比较试验。筛选出了多个适宜液体发酵,制药的优良品种

食用菌液体菌种生产方法(发酵罐法)

食用菌液体菌种生产方法(发酵罐法) 传统菌种生产工艺,一般是由试管母种扩繁成二级种、三级种,生产周期长、污染率高、成本高、需大量人工、管理困难。液体菌种生产具有纯度高、活力强、繁殖快的特点,接种到培养料内有流动性好、萌发点多,发菌迅速等特种点。应用于生产与固体菌种相比有以下优点: 1.菌种生产周期短。固体种一般需25—40天,而液体种仅需3—7天。 2.接种后,萌发点多萌发点多、发菌快、出菇周期短。接种24小时菌丝布满料面,3—15天长满菌袋,一般品种10天左右可出菇。 3.接种方便、成本低。用液体菌种接种一般每袋成本是1—3分,每人每小时可接800袋以上,提高效益4—5倍。 4.适宜工厂化生产。可直接用于栽培料进行出菇,大批量生产菌袋。为食用菌集约化、标准化生产创造了条件。因此,适宜我国国情的液体菌种设备的出现,必将在食用菌生产领域引发一场新的革命。 液体菌种具有固体(颗粒)菌种无可比拟的优势,但是液体菌种生产设备是近几年刚发展起来并逐渐成熟的,因此很多人对此很陌生。在这里我们对此进行简单介绍 一、液体菌种设备基本原理 任何一种食用菌自身的生长必须满足其对温度、湿度、需氧量、养分等的需要,同时必须避免杂菌感染。在深层发酵技术上称之为选

择性发酵技术,如啤酒生产技术当属此例,而白酒生产则是生物菌群发酵技术。 液体菌种发酵设备(包括四大系统,温控系统由控制器、电热管等组成;供气系统由空气压缩机、输送管道、空气过滤器等组成;冷却系统由热交换器、进出水管道组成;搅拌系统由射流器、提升管等组成。 二、液体菌种生产的关键技术 1、溶氧量 液体菌种生产中最关键的是培养液中氧的溶解量,因为在菌丝生长过程中,必须不断的吸收溶解其中的氧气来维持自身的新陈代谢,氧气在液体(水)中的溶解量与压力、温度有关,同时与培养液的接触面积、渗透压有很大的关系。因此我们设计发酵设备时有效地解决了这些问题,如安装射流器使气泡细碎度增加等。 2、空气过滤 技术的关键就是保证进入的空气无菌度高,因此必须选择孔径小、材料先进的过滤膜。一般细菌直径在0.5-5um,酵母菌在1-10um,病毒一般在20-400mu,所以选择过滤膜时应综合考虑以上因素。当然如果选的太小,成本将大幅度提高。另外环境对于空气影响很大,在空气压缩机房、制种车间必须保持环境清洁。 3、培养液 培养液是菌丝生长发育的营养源,要求营养全面均衡。不同的菌种对营养要求偏重不同。配制原料有糖、麸皮、磷酸二氢钾、硫酸镁、

食用菌液体深层发酵技术与应用

作者:--来源:互联网点击数:847 更新时间:2010年03月06日【字体:大中小】 液体发酵技术属于现代生物技术之一。深层发酵技术直接生产食用菌菌体,同时获得富含氨基酸等营养成分的发酵液。 深层发酵培养基的选择 1、食用菌液体深层发酵技术研究的关键是培养基。不同食用菌要用不同的培养基进行培养,因此,培养基的选择与配制是食用菌液体深层发酵技术的关键。 食用菌的深层液体发酵生产主要是采用了抗生素生产的工艺和设备,其工艺大致是:母种-一级种子-二级种子-发酵罐深层发酵。 根据培养基组成的不同,可分为天然培养基和合成培养基。天然培养基的组成均为天然有机物,合成培养基则是采用一些已知化合成分的营养物质作为培养基,无论哪一种培养基,其组成都离不开碳源、氮源、无机盐、微量元素、维生素和生长素等。 2、选择培养基时应注意的问题 (1) 氮源过多会引起菌丝生长过于旺盛,不利于代谢产物的积累。碳源不足,又容易引起菌体衰老和自溶,碳、氮比不当,会影响菌丝按比例地吸收营养物质。 (2) 同一种原料因产地不同其营养成分有差异,这在氮源表现得较明显,如大豆、玉米浆、蛋白陈等,必须记下每一种原料的产地、批号、生产厂等,并对原料进行化学成分分析。 (3) 水质对发酵生产的影响也很大,自来水、地表水、河水、并水、雪水等,其中所含溶解氧、金属离子及酸碱度等均有差异。另外,有的水中还含有较多的氯离了。因此应对水质进行化学分析。 (4) 高温(或高压)灭菌会引起某些营养成分的破坏,特别是还原糖、氨基酸和肽类等共同加热时,会形成与—羟甲基糠醛及类黑精等物质。赖氨酸最容易与糖发生反应,形成棕色物。这些在选择培养基及灭菌时都应预先想到。 食用菌的摇瓶培养 将食用菌的试管母种接人已灭菌的三角瓶培养液中,然后置于摇床上振荡培养,这种培养方式即为摇瓶培养。经过摇瓶培养的菌丝体呈球状、絮状等多种形态。培养液可呈糊状,消液状等状态,有或无清香味及其他异味。菌液中有菌株发酵产生的次生代谢产物,可呈不同的颜色。在进行菌株的初期培养或生理生代研究时,一般皆采用摇瓶培养法。 影响摇瓶培养菌丝体及次生代谢产物产生的因素有:培养温度、摇床的振荡频率和瓶子的装料系数、pH值、菌龄、接种量、培养液的粘度和光照等。 食用菌的发酵罐深层培养 发酵罐深层培养具有生产周期短、产量高、效益大等优点,是食用菌进行大量生产的重要途径。 1、深层发酵的一般设备。 深层发酵生产要住发酵罐内不断地输入无菌空气以保证耗氧的需要及维持罐内有一定的压力,防止外界杂菌的侵入,发酵生产必须具有如下设备: (1)灭菌消毒设备 灭菌的方法很多,但食用菌的发酵生产中多采用“空消和实消”灭菌形式:空消即对发酵罐及管道进行空着消毒。实消即培养液置于发酵罐内用高压蒸汽消毒,其优点是只需蒸汽发生器这一专业设备,操作比较简便,其缺点是由于是在高温下且长时间的情况进行灭菌,故培养液极易发生过热而导致营养成分破坏。 (2)空气净化设备 发酵生产要求进入罐体的空气须是洁净无菌的干燥空气,由于空气压缩机输出的空气温度高,且含有杂菌、油、水等,因此必须经过处理后,才能进入罐体。

菌种的发酵工艺

第一章绪论 第一节概述 工业发酵是利用微生物的生长和代谢活动来生产各种有用物质的一门现代工业,而现代发酵工程则是指直接把微生物(或动植物细胞)应用于工业生产的一种技术体系,是在化学工程中结合了微生物特点的一门学科。因而发酵工程有时也称作微生物工程。在本章中,我们将对发酵的基本概念,工业上常用的微生物及其生长代谢特性,以及发酵工程原理作—简单介绍。 一、基本概念 1,发酵一词的来源 发酵现象早巳被人们所认识,但了解它的本质却是近200年来的事。英语中发酵一词fermentation是从拉丁语fervere派生而来的,原意为“翻腾”,它描述酵母作用于果汁或麦芽浸出液时的现象。沸腾现象是由浸出液中的糖在缺氧条件下降解而产生的二氧化碳所引起的。在生物化学中把酵母的无氧呼吸过程称作发酵。我们现在所指的发酵早已赋予了不同的含义。发酵是生命体所进行的化学反应和生理变化,是多种多样的生物化学反应根据生命体本身所具有的遗传信息去不断分解合成,以取得能量来维持生命活动的过程。发酵产物是指在反应过程当中或反应到达终点时所产生的能够调节代谢使之达到平衡的物质。实际上,发酵也是呼吸作用的一种,只不过呼吸作用最终生成CO2和水,而发酵最终是获得各种不同的代谢产物。因而,现代对发酵的定义应该是:通过微生物(或动植物细胞)的生长培养和化学变化,大量产生和积累专门的代谢产物的反应过程。 2,发酵的定义 (1)狭义“发酵”的定义 在生物化学或生理学上发酵是指微生物在无氧条件下,分解各种有机物质产生能量的一种方式,或者更严格地说,发酵是以有机物作为电子受体的氧化还原产能反应。如葡萄糖在无氧条件下被微生物利用产生酒精并放出二氧化碳。同时获得能量,丙酮酸被还原为乳酸而获得能量等等。 (2)广义“发酵”的定义 工业上所称的发酵是泛指利用生物细胞制造某些产品或净化环境的过程,它包括厌氧培养的生产过程,如酒精、丙酮丁醇、乳酸等,以及通气(有氧)培养的生产过程,如抗生素、氨基酸、酶制剂等的生产。产品即有细胞代谢产物,也包括菌体细胞、酶等。 3,发酵工程(Fermentation Engineering)的定义 应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学。 二、发酵的特点 发酵和其他化学工业的最大区别在于它是生物体所进行的化学反应。其主要特点如下: 1,发酵过程一般来说都是在常温常压下进行的生物化学反应,反应安全,要求条件也比较简单。 2,发酵所用的原料通常以淀粉、糖蜜或其他农副产品为主,只要加入少量的有机和无机氮源就可进行反应。微生物因不同的类别可以有选择地去利用它所需要的营养。基于这—特性,可以利用废水和废物等作为发酵的原料进行生物资源的改造和更新。 3,发酵过程是通过生物体的自动调节方式来完成的,反应的专一性强,因而可以得到较为单—的代谢产物。 4,由于生物体本身所具有的反应机制,能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位地氧化、还原等化学转化反应,也可以产生比较复杂的高分子化合物。 5,发酵过程中对杂菌污染的防治至关重要。除了必须对设备进行严格消毒处理和空气过滤外,反应必须在无菌条件下进行。如果污染了杂菌,生产上就要遭到巨大的经济损失,要是感染了噬菌体,对发酵就会造成更大的危害。因而维持无菌条件是发酵成败的关键。 6,微生物菌种是进行发酵的根本因素,通过变异和菌种筛选,可以获得高产的优良菌株并使生产设备得到充分

微生物发酵类药物

微生物发酵中药的相关调查 中药发酵制药技术是在继承中药炮制学发酵法的基础上,吸取了微生态学研究成果,结合现代生物工程的发酵技术而形成的高科技中药制药新技术,是从中药(天然 药物) 制药方面寻找药物的新疗效。传统的中药发酵多是在天然的条件下进行的, 而现在的中药发酵制药技术是在充分吸收了近代微生态学、生物工程学的研究成果 而逐渐形成的。其先进发酵工艺特点是:以优选的有益菌群中的一种或几种、一株 或几株益生菌作为菌种,加入中药提取液中,再按照现代发酵工艺制成产品,它是一 种含有中药活性成分、菌体及其代谢产物的全组分发酵液的新型中药发酵加工制剂。 一、微生物发酵中药的应用历史 早在千余年前,我国已开始用发酵方法制药,直到现在临床仍在应用的发酵(制品) 中药有六神曲、半夏曲、淡豆豉、豆黄等,其工艺均为固体发酵。 1、微生物发酵中药中所应用到的很多微生物是药用真菌或者含有真菌的混合菌群,其中药用真菌很多本身作为中药来应用。因此一定意义上讲,中药与微生物,特别 是与一些药用真菌具有密切的联系。 早在东汉年间《神龙本草经》中,就有灵芝、茯苓、猪苓、雷丸等药用真菌分 别列项论述,这些药物至今沿用不衰。 2、微生物发酵中药应用历史悠久,也是传统中药加工炮制的重要方法之一,一般 主要是起到中药复合炮制的作用。而且很多发酵之后的药物在临床应用上取得了较 好效果。 微生物发酵中药在中医药应用中得到了很大的体现。如片仔癀的主要成分是三 七的微生物发酵物;神曲由面粉、赤小豆、苦杏仁、鲜青蒿、鲜苍耳、鲜辣蓼按一 定比例混匀后经发酵而成的曲剂。 3、某些传统的微生物制剂一直使用至今,其中以不同中药作为辅料,采用微生物 处理后自身成为发酵物组成的一部分,如半夏炮制,神曲制备等。同时随着历史的 发展,微生物发酵中药的应用也在不断变化。 半夏在整个炮制过程中使用到了一些中药,最终形成具有一定功效的以半夏为 主要组成部分的中药炮制品。半夏至汉代始用汤洗去毒,即为炮制品。南北朝时增 加生姜制、热汤洗、白芥子末制、头醋制等炮制品。唐代增加姜汁制,宋代增加麸炒、热洒炒、酸浆浸、米醋炒浸、生姜甘草桑白皮制、猪苓制、白矾制、萝卜制、 姜矾牙皂制和半夏曲。金之时期,增加米泔浸、香油炒、菜油拌炒。明代增加盐水洗、面炒醋制、杏仁炒。清代增加巴豆制、活生姜制、猪胆汁炒、皂荚白矾姜汁竹 沥制,有仙半夏和法半夏。由此可见,半夏的炮制方法繁多,而且种类各异,如仙 半夏、半夏曲等,已经成为含半夏的一个复方 二、微生物发酵中药的研究现状  中药发酵研究开始于80 年代,但仅是对真菌类自身发酵的研究,如灵芝菌丝体、冬虫夏草菌丝体、槐耳发酵等,大都是单一发酵。虽有报道加入中药,但也仅是将中 药当做菌丝体发酵的菌质,同时研究发现,含有中药的菌质对原发酵物的功效有影响,只是未见深入研究。目前,已有学者呼吁中药发酵制药可按新药审批办法规定开发新药。同时也开展了另一项研究,即生物转化,我们认为它与中药发酵是密不可分的 1、利用中药为培养基的组成部分,构建药性菌质,比较发酵前后中药相关成分的

液体发酵技术

液体发酵技术 1. 液体发酵技术简介 1.1液体发酵的概念 液体发酵技术是现代生物技术之一,它是指在生化反应器中,模仿自然界将食药用菌在生育过程中所必需的糖类、有机和无机含有氮素的化合物、无机盐等一些微量元素以及其它营养物质溶解在水中作为培养基,灭菌后接入菌种,通入无菌空气并加以搅拌,提供食用菌菌体呼吸代谢所需要的氧气,并控制适宜的外界条件,进行菌丝大量培养繁殖的过程。工业化大规模的发酵培养即为发酵生产,亦称深层培养或沉没培养。工业化发酵生产必需采用发酵罐,而实验室中发酵培养多采用三角瓶。得到的发酵液中含有菌体、被菌体分解及未分解的营养成分、菌体产生的代谢产物。发酵液直接供作药用或供分离提取,也可以作液体菌种。 1.2 液体发酵技术的发展简史 液体深层发酵技术这一概念是20世纪40年代由美国弗吉尼亚大学生物工程专家Elmer L,Gaden.Jr设计出培养微生物系统的生物反应器,成为该项技术的创始人。据资料报道,液体深层发酵技术应用于食药用菌方面的研究始于美国。1948年,H.Humfeld用深层发酵来培养蘑菇(Agaricus campestris)菌丝体,并首先提出了用液体发酵来培养蕈菌的菌丝体。从此食药用菌的发酵生产在世界范围内兴起;1953年,美国的S.Block博士用废苷汁深层培养了野蘑菇(Agaricus arvensis);1958年J.Szuess第一个用发酵罐培养了羊肚菌(Morchella esculenta)。从此,食药用菌的生产渐渐跨入了大规模工业化生产的领域。日本的杉森恒武等于1975、1977年用1%的有机酸和0.5%的酵母膏组成液体培养基,取得了大量香菇菌丝体。我国是在1958年开始研究蘑菇、侧耳等的深层发酵的。1963年羊肚菌液体发酵开始工业化生产试验。自此以后,大规模采用液态发酵生产食药用菌逐渐展开。当时主要研究灵芝(Ganoderma lucidum)、蜜环菌(Armillariella mellea)、银耳(Tremella fuciformis)等的液体发酵应用于医药工业。70年代开始研究香菇(Lentinula edodes)、冬虫夏草(Cordyceps sinensis)、黑木耳(Auricularia auricula)、金针菇(Flammulina velutipes)、猴头(Hericium erinaceus)、草菇(V olvariella volvacea)等的液体发酵。 2 液体发酵培养的特点 2.1原料来源广泛,价格低廉 食药用菌的液体培养所需的碳源可用工业葡萄糖、工业淀粉及山芋粉等;氮源可采用黄豆饼粉、蚕蛹粉、麸皮粉等。为了降低成本,通常还取用部分工业废水为代用品,如糖蜜废母液、木材水解液、各种大豆深加工废水、玉米深加工废水及淀粉废水等,原料来源相当广泛。 2.2菌丝体生长快速 在液体培养中,液体培养基的营养成分分布均匀,有利于菌类营养体的充分接触和吸收。菌丝细胞能在反应器内处于最适温度、pH、氧气和碳氮比的条件下生长,能及时排放呼吸作用产生的代谢废气,因此新陈代谢旺盛,菌丝生长分裂迅速,能在短时间内积累大量的菌丝体和多糖、多肽等具有生理活性的代谢产物。

食用菌液体深层发酵在医药方面的应用

食用菌液体深层发酵在医药方面的应用 食用菌在深层发酵过程中,其发酵产品作为药品,如口服液、软饮料等已被人们接受。在发酵过程中,产生多糖、多肽、生物碱、萜类化合物、甾醇、甙类、酶、核酸、氨基酸、微生素等多种生理活性物质。这些物质有对人体心血管、肝脏、神经系统等人体器官的防病治病作用以及抗癌、抗炎、抗衰老、抗菌、抗溃疡等功效。 近30年来已有一些产品投放市场,如马来酸麦角新碱注射液、香菇多糖片(注射液)、猴菇菌片、蜜环菌片、香云片、云芝糖肽胶囊等。 下面简单介绍下食用菌的液态发酵过程 (1)香菇多糖的生产: 1)工艺流程: 26℃26℃26℃,8天斜面母种————→一级摇瓶种子——————→二级摇瓶种子—————→三级15天静置12~15天60-80转/分 26℃,12~15天26℃,5~6天罐压39~59千帕 摇瓶种子———————→种子罐—————————————→ 60~80转/分1米3发酵液通人1米3/分空气 2)培养基: ①斜面培养基(%):葡萄糖2.0,酵母膏0.5,磷酸二氢钾0.l,7水硫酸镁0.1,琼脂2.0,pH值自然。 ②种子培养基(%):葡萄糖1.0,蛋白胨0.12,酵母膏0.12,磷酸二氢钾0.15,7水硫酸镁0.05,微量元素液0.1,pH值7.00。 ③发酵培养基(%):葡萄糖5.0,蛋白胨0.25,酵母膏0.25,氯化钙0.05,磷酸二氢钾 0.25,7水硫酸镁0.05,微量元素液0.2,pH值7.0。 一般情况下,8天菌龄时香菇多糖产生最多。用水浸提浓缩即可生产香菇多糖粉剂。若要生产饮料,则可在发酵液中加入0.06%~0.1%的柠檬酸,调pH值为5.5,加热至45—55℃,保持5~6小时,再升温至75℃,30分灭酶活,板框过滤,取滤液加入30%白糖液,加柠檬酸调pH值为5.0,加入0.01%山梨酸钾。此液滤后即为香菇保健饮料。 (2)银耳孢子的发酵: 1)生产工艺: 28℃28℃,2天28℃,3天 斜面菌种———→一级摇瓶种子——————→二级摇瓶种子—————→发酵罐4天220转/分220转/分 28℃,60~68小时 —————————————————————→ 280~330转/分,1米3发酵液通入1米3/分空气 2)培养基: ①斜面菌种:PDA。 一级摇瓶种子:马铃薯20%,蔗糖2%,硫酸铵0.2%,pH自然。 二级摇瓶种子:同一级摇瓶种子。

实验二 生产菌株发酵条件的优化 - 副本

实验二生产菌株发酵条件的优化 实验时间:10.23 10.25 实验班级:生物1601B 实验组号: 6 实验报告人:同组成员:刘文白李仕清 1、实验目的 (1)了解发酵条件对产物形成的影响,用单因子试验找出筛选所得菌株的最佳发酵条件。 (2)掌握发酵培养基的配制原则,熟悉用正交试验优化发酵培养基的方法。 2、实验原理 发酵条件对产物的形成有着非常重要的影响,其中培养基pH、培养温度和通气状况是三类最主要的发酵条件。培养基pH 一般指灭菌前的pH,可通过酸碱调节来控制,由于发酵过程中pH会不断改变,所以最好用缓冲溶液来调节;通气状况可用培养基装量和摇床转速来衡量,另外,瓶口布的厚薄也会影响到氧气的传递,为了防止杂菌污染,瓶口布以8层纱布为好。 发酵培养基是指大生产时所用的培养基,由于发酵产物中一般含有较高比例的碳元素,因此培养基中的碳源含量也应该比种子培养基中高,如果产物的含氮量高,还应增加培养基中的氮源比例。但必须注意培养基的渗透压,如果渗透压太高,又会反过来抑制微生物的生长,在这种情况下可考虑用流加的方法逐步加入碳氮源。 培养基组分对发酵起着关键性的影响作用。工业发酵培养基与菌种筛选时所用的培养基不同,一般以经济节约为主要原则,因此常用廉价的农副产品为原料。选择碳源时常用山芋粉、麸支、玉米粉等代替淀粉。而用豆饼粉、黄豆粉等作为氮源。此外,还应考虑所选原料不至于影响下游的分离提取工作。由于这些天然原料的组分复杂,不同批次的原料成分各不相同,在进行发酵前必须进行培养基的优化试验。 发酵培养基中的原料多是大分子物质,微生物一般不能直接吸收,必须通过胞外酶的作用后才能被利用,所以是一些“迟效性”营养物质。而微生物分泌的

桑黄菌液体培养工艺的研究

信阳师范学院大学生科研项目 申请书 项目类别(在相应序号上划○) 1.人文社会科学研究项目 ②自然科学研究项目 所属学科:微生物学 课题名称:桑黄菌液体培养工艺的研究 申请者:郑芳 所学专业:生物科学 系(院)名称:生命科学学院 申请日期:2009.10.09 信阳师范学院制

论证报告 一、本课题研究本课题的实际意义和理论意义 1.1 本项目研究的意义: 桑黄属担子菌纲、多孔菌目、多孔菌科、层孔菌属,是珍贵的药用真菌, 用于治疗血崩、血淋、脱肛泻血、带下、闭经、脾虚泄泻等。桑黄是目前国际公认的生物抗癌领域中药效非常好的药用真菌。由于天然的桑黄菌数量非常稀少, 加上国内各产地的掠夺性开采, 已难以成为稳定的工业产品来源。因此, 寻求人工培育的方法, 研究以大量易得的菌丝体形式代替子实体入药已成为当务之急, 这对于保护天然资源、解决资源匮乏、满足市场需要、提高经济效益, 均具有十分重要的意义。本文探讨了桑黄菌液体发酵的最适培养基, 为进一步研究液体发酵工艺及提取桑黄有效成分做准备。 1.2同类研究工作国内外研究现状与存在的问题: 自1948年美国Humfeld H等成功地对蘑菇进行深层发酵和1958年Szuees J等以发酵罐对羊肚菌的深层培养以来,液体深层发酵技术在食药用菌制种、综合利用等方面的应用日趋广泛。我国已进行深层发酵并工业化生产应用的食药用菌有冬虫夏草、云芝、竹荪等。但桑黄菌液体深层培养正处于研究起步阶段,桑黄菌菌丝生长最适培养基质和培养条件尚未研究清楚,单位体积培养基质收获的菌丝量非常少。因此,开展液体深层培养条件下对桑黄菌的营养需求特性和液体培养工艺条件进行全面深入系统的研究,以便为其发酵生产提供科学依据。 真菌多糖是非细胞毒物质,作为药物的最大优点是安全、无毒副作用,是一类理想的非特异性免疫增强剂。其抗肿瘤作用的显著特点不是直接作用于癌细胞,而是通过参与机体免疫反应,调节机体的免疫力而使肿瘤受到抑制,起到免疫疗法的作用。鉴于真菌多糖显著的抗癌活性及其独特的免疫增强作用,上世纪90年代在南京举行的国际食用菌研讨会上,桑黄菌已被列为当前国内外最为热门的抗癌防癌食药用菌研究之一。但至今在国内市场上尚未见到桑黄菌多糖产品。因此,抓住机遇,加快桑黄菌发酵多糖的开发,具有重大的社会效益和经济效益。 获取桑黄菌多糖有两条途径:一是从共生与树木根集的子囊果中提取;二是通过深层培养,从深层发酵获得的菌丝体中提取。目前,国内正在加紧桑黄菌液体培养菌丝体技术的研究,但尚未取得技术上的突破。概括起来,主要存在以下问题与不足:(1)缺少对液体培养桑黄菌菌丝体营养需求以及培养条件的系统的全面的研究。对其液体培养生长特性与规律的了解不深入。(2)液体发酵菌丝体干重低(约 lg/l0L发酵液),工业化大规模生产尚未实现。(3)忽略了液体培养条件下胞外多糖的研究与开发利用。因此,开展桑黄菌液体深层培养及其活性多糖的研究,具有非常重要的现实意义和学术价值。 二、本课题的研究内容、特色和创新之处,预计突破哪些难题 2.1本项目的研究内容: 本课题拟在下列几个方面展开研究 (1)桑黄菌液体发酵最适宜营养基质的筛选研究。 (2)桑黄菌液体发酵最适宜发酵条件的研究。 (3)桑黄菌液体发酵工艺研究。 (4)桑黄菌发酵多糖的提取工艺研究。 (5)桑黄菌发酵多糖组分的分离纯化。 2.2本课题的特色 在液体培养过程中,菌丝细胞能在反应器中(锥形瓶)适温度、最适酸碱度,最适碳、氮比等条件下生长,呼吸作用所产生的代谢废气又能及时排放,因此新陈代谢旺盛,菌丝生长迅速,在短时间内就可以获得大量菌丝体,从菌丝体中提取生物活性强,免疫力强,对肿瘤细胞抑制力强的块菌多糖,避开了利用块菌菌株共生树木形成子囊果的漫长生长周期。而此具有生产时间短,效率高,成本低等优点。因此,液体发酵已作为药用真菌生产发展的一个新方向,具有很强的生命力。 2.3课题创新之处 自然界中形成的桑黄子实体非常稀少,特别是形成可用子实体需要多年,这是因为受生理生态的特殊性和复杂性及外部条件的制约,而且人工栽培难度较大.因此对桑黄菌的开发利用将转向液体发酵这一方

DNS法对食用菌发酵液淀粉酶活力的测定

DNS法对食用菌发酵液淀粉酶活力的测定 摘要选取广泛栽培的著名食用菌香菇、平菇和姬菇菌丝体为研究菌种,采用3,5-二硝基水杨酸(DNS)比色法检测供试食用菌的淀粉酶产生能力。以2%可溶性淀粉为唯一碳源的查氏液体培养基诱导发酵,供试食用菌产生的淀粉酶活力在1.513~3.417 U/ mL,为食用菌工业发酵菌种的选育提供了参考依据和分析方法。 AbstractEnzyme energy of amylase from edible fungi was determinated based on 3,5-dinitryl-salicyle(DNS).Taking czapek as induction medtum in whith the only carbon source was 2% soluble starch,and amylase energy ranged from 1.513 to 3.417 U/mL among Lentinula edodes,Pleurotus ostreatus,Pleurotus cornucopiae,so as to put forward a reference and analysis method for the edible fungistrain selection. Key wordsedible fungi;fermention;DNS;amylase;activity determination 经过人工驯化培养的食用真菌的菌丝体,可以栽培扭结成食药用价值很高的子实体。近年来,人们发现食用真菌菌丝体也可以仿效青霉菌发酵,大规模生产食用菌多糖、抗生素、酶制剂等亟待研发的生物活性物质[1]。食用菌发酵有赖于适宜的工艺条件与生物反应器,但更取决于具工业开发价值的生产菌种的生理性状,其中包括食用菌生产菌种对环境的适应性,归结为食用菌的代谢能力,能够利用廉价原料迅速生长并大量合成目的产物。许多工业发酵菌种不能直接利用淀粉,生物工厂必须对原材料进行预处理,通过液化、糖化生产微生物可以直接利用的淀粉水解糖。如果选育出具有淀粉酶活力的生产菌种,就可以实现边糖化边发酵,可极大地提高生产效率。因此,探讨灵敏而准确的食用菌淀粉酶活力的测定技术,具有重要的生理学意义和实践应用潜力。 淀粉酶活性测定方法较多[2],但大致分为4类:一是测定底物淀粉的消耗量,有粘度法、浊度法和碘—淀粉比色法等;二是生糖法,测定产物葡萄糖的生成量;三是色原底物分解法;四是酶偶联法。利用3,5-二硝基水杨酸(DNS)比色法测定还原糖含量来反映淀粉酶活力是目前较常采用的方法。此法是用比色法测定淀粉酶作用于淀粉后生成的还原糖的量,以单位重量样品在一定时间内生成的麦芽糖的量表示酶活力。该方法测试所用试剂易得,溶液有效期长,且测试精确度高,结果比较可靠。故笔者采用此法来测定供试食用菌产生淀粉酶的活力[3-5]。 1材料与方法 1.1供试材料 香菇(Lentinula edodes)、平菇(Pleurotus ostreatus)和姬菇(Pleurotus

液体菌种的制作及使用方法

液体菌种的制作及使用方法 发布时间:2009-05-21 阅读: 1215次〖打印文章〗〖关闭窗口〗 液体菌种的制作及使用方法 随着食用菌生产的发展,食用菌制种方法在传统固体制作的基础上在不断的改进和提高,其中液体菌种的制作便是其中之一。 液体发酵技术是现代生物技术之一,起源于美国。它是指在生化反应器中,模仿自然界将食药用菌在生育过程中所必需的糖类、有机和无机含有氮素的化合物、无机盐等一些微量元素以及其它营养物质溶解在水中作为培养基,灭菌后接入菌种,通入无菌空气并加以搅拌,提供食用菌菌体呼吸代谢所需要的氧气,并控制适宜的外界条件,进行菌丝大量培养繁殖的过程。工业化大规模的发酵培养即为发酵生产,亦称深层培养或沉没培养。液体菌种由于具有生产规模化、控制自动化、生长无菌化、发菌高速化的生产应用优势,为食用菌产业化的发展提供了良好的种源条件,是食用菌产业化发展的必然方向,已被业内人士所看好。液体菌种是用液体培养基培养而成的菌种。近年来,国内外正积极研究液体菌种的培养与利用。与固体菌种相比,它具有菌种生产周期短、菌龄整齐一致、接种方便、接于固体菌料发酵快、适宜于工厂化生产等优点,因而受到了广大栽培者的欢迎。目前我国已能进行深层发酵的食用菌有:香菇、平菇、凤尾菇、美味侧耳、鲍鱼菇、金针菇、黑木耳、猴头、

草菇、蜜环菌、茯苓、滑菇和冬虫夏草等。 一、液体菌种的培养方法 常见的有采用摇床来生产的摇瓶培养法和采用发酵罐来生产的深 层培养法。若少量生产,可以用摇瓶培养法。深层培养需要一整套工业发酵设备,如锅炉、空气压缩机、空气净化系统、发酵罐等,故投资大,只适用于工厂化的大规模生产。而摇瓶培养投资少,设备技术简单,适合一般菌种厂生产使用。本节主要介绍摇瓶培养的技术方法。 1、食用菌液体发酵的培养基 根据培养基中组成的不同,可分为天然培养基和合成培养基。天然培养基的组成均为天然有机物。合成培养基则是采用—些已知化学成分的营养物质作培养基。在生产上,还根据工艺将培养基分为孢子培养基、种子培养基及发酵培养基。但无论如何划分,每一种培养基的组成中都离不开碳、氮、无机盐、微量元素、维生素和生长素等。 1.1、碳、氮比(C/N) 碳、氮比指碳源及氮源在培养基中的含量比。构成菌丝细胞的碳、氮比通常是:8~12:1。由于菌丝生长过程中,一般需50%的碳源作为能量供给菌丝呼吸,另50%的碳源组成菌体细胞。因此培养基中理想碳、氮比的理论值为16~24:1。在液体培养中以菌丝增殖为目的的培养,通常碳、氮比以20:1为宜。 虽然食用真菌的液体培养一般要求较高的碳与氮比,即C:N=20:1左右生长较好,但许多菌种也能在较宽的碳、氮比范围内生长。不同的菌种所要求合适的碳、氮比,可通过实验求得。

淀粉酶菌株的选育、发酵工艺的研究和酶的纯化

淀粉酶菌株的选育、发酵工艺的研究和酶的纯化 摘要:淀粉酶是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一, 为了提高淀粉酶的生产水平,首先通过淀粉培养基从土壤中筛选出产淀粉酶的活性菌株,对菌 株初步鉴定后进行紫外线诱变,筛选出产量高、性状优良的突变菌株,再用正交试验的方法 对其发酵条件进行优化,实验最后采用硫酸铵沉淀法初步纯化发酵得到的淀粉酶并对酶活性 进行了测定。 关键词:淀粉酶;分离筛选;紫外线诱变;优化;提纯 1、引言 淀粉酶是能够分解淀粉糖苷键的一类酶的总称,包括α-淀粉酶、β-淀粉酶、糖化酶和异淀粉酶,是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一。淀粉酶种类繁多,特点各异,在造纸、印染、酿造、果汁和食品加工、医药、洗涤剂、工业副产品及废料的处理、青贮饲料及微生态制剂等多种领域具有广阔的用途。 我国是传统的农业大国,发展淀粉深加工工业是解决当前淀粉生产积压的好出路,而几乎所有淀粉深加工工业的基础都是以淀粉质原料的水解作为第一步,因此淀粉质原料的液化情况直接关系到产品后期的加工工艺和产品的质量。所以,改进淀粉液化工艺也是降低生产成本,提高产品市场竞争能力的一种重要手段。 显然,改进淀粉液化工艺首要任务就是提高淀粉酶的生产水平。 那如何提高淀粉酶的生产水平呢?我们知道,现在淀粉酶主要来源于植物和微生物,并通过发酵完成生产,因此筛选出高产、稳定的淀粉酶产生菌是淀粉酶生产的头等大事。本文试图从土壤中分离出产淀粉酶的枯草杆菌,通过紫外线诱变育种及发酵条件优化来得到高产、稳定的淀粉酶产生菌株,并对发酵得到的淀粉酶进行初步提纯,以达到加深对发酵工程上游技术中菌种选育的认识、掌握紫外线诱变育种的原理和方法、了解发酵条件对产物形成的影响、熟悉发酵条件的优化方法、掌握分光光度法测液化型淀粉酶活力的基本原理和方法、掌握初步纯化淀粉酶的方法的实验目的。 2、材料与方法 2.1实验材料 2.1.1样品:贵师大综合楼附近的土壤 2.1.2培养基和试剂:淀粉培养基、牛肉膏蛋白胨(斜面)、牛肉膏蛋白胨(液体)种子培养基、淀粉酶发酵培养基、生理盐水、碘液、2%可溶性淀粉、硫酸铵、乙酸溶液、磷酸氢二钠-柠檬酸缓冲液、标准糊精溶液 2.1.3 仪器设备:全自动高压灭菌锅、培养皿、恒温培养箱、超净工作台、恒温摇床、离心机、分光光度计、恒温水浴锅、移液管、PH试纸、吸耳球、玻璃棒、量筒、试管、试管架、酒精灯、电子天平、三角烧瓶、洗瓶、接种针、接

不同食用菌种类的液体菌种发酵种配方

不同食用菌种类的液体菌种发酵种配方 (1)平菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸30克,蛋白胨1.5克,磷酸二氢钾1.5克,硫酸镁0.75克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (2)金针菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (3)白灵菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (4)香菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (5)杏鲍菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (6)榆黄蘑配方:马铃薯100克,红糖12克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾1.5克,硫酸镁0.75克,维生素B11片,聚氧丙稀甘油0.3毫升,p H值自然; (7)茶新菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸50克,蛋白胨2. 5克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (8)鲍鱼菇配方:马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (9)鸡腿菇配方:马铃薯100克,红糖12克,葡萄糖12克,麦麸40克,蛋白胨2. 0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然;

常见食用菌液体菌种培养基配方大全

常见食用菌液体菌种培养基配方大全 大家对食用菌的培养基配方都非常熟悉,但是却没有将培养基配方统一归纳出来,在此跟大家一起分享常见的10种食用菌液体菌种培养基配方。 (1)平菇培养基配方 马铃薯100克,红糖15克,葡萄糖10克,麦麸30克,蛋白胨1.5克,磷酸二氢钾1.5克,硫酸镁0.75克,维生素B11片,聚氧丙稀甘油0.3毫升,pH值自然; (2)金针菇培养基配方 马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH值自然; (3)白灵菇培养基配方 马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH值自然; (4)香菇培养基配方 马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH值自然; (5)杏鲍菇培养基配方

马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH值自然; (6)鸡腿菇培养基配方 马铃薯100克,红糖12克,葡萄糖12克,麦麸40克,蛋白胨2.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH值自然; (7)黑木耳培养基配方 马铃薯100克,红糖15克,葡萄糖10克,麦麸40克,蛋白胨2.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH值自然; (8)猴头菇培养基配方 马铃薯100克,红糖15克,葡萄糖10克,麦麸45克,蛋白胨2.5克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH值自然; (9)双孢菇培养基配方 马铃薯100克,红糖15克,葡萄糖10克,麦麸50克,蛋白胨2.0克,酵母膏1.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH 值自然; (10)灰树花培养基配方 马铃薯100克,红糖15克,葡萄糖15克,麦麸45克,蛋白胨3.0克,磷酸二氢钾2.0克,硫酸镁1.0克,维生素B11片,聚氧丙稀甘油0.3毫升,pH值自然;

液体发酵技术

液体发酵技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

液体发酵技术 1. 液体发酵技术简介 1.1液体发酵的概念 液体发酵技术是现代生物技术之一,它是指在生化反应器中,模仿自然界将食药用菌在生育过程中所必需的糖类、有机和无机含有氮素的化合物、无机盐等一些微量元素以及其它营养物质溶解在水中作为培养基,灭菌后接入菌种,通入无菌空气并加以搅拌,提供食用菌菌体呼吸代谢所需要的氧气,并控制适宜的外界条件,进行菌丝大量培养繁殖的过程。工业化大规模的发酵培养即为发酵生产,亦称深层培养或沉没培养。工业化发酵生产必需采用发酵罐,而实验室中发酵培养多采用三角瓶。得到的发酵液中含有菌体、被菌体分解及未分解的营养成分、菌体产生的代谢产物。发酵液直接供作药用或供分离提取,也可以作液体菌种。 1.2 液体发酵技术的发展简史 液体深层发酵技术这一概念是20世纪40年代由美国弗吉尼亚大学生物工程专家Elmer L,Gaden.Jr设计出培养微生物系统的生物反应器,成为该项技术的创始人。据资料报道,液体深层发酵技术应用于食药用菌方面的研究始于美国。1948年,H.Humfeld用深层发酵来培养蘑菇(Agaricus campestris)菌丝体,并首先提出了用液体发酵来培养蕈菌的菌丝体。从此食药用菌的发酵生产在世界范围内兴起;1953年,美国的S.Block博士用废苷汁深层培养了野蘑菇(Agaricus arvensis);1958年J.Szuess第一个用发酵罐培养了羊肚菌(Morchella esculenta)。从此,食药用菌的生产渐渐跨入了大规模工业化生产的领域。日本的杉森恒武等于1975、1977年用1%的有机酸和0.5%的酵母膏组成液体培养基,取得了大量香菇菌丝体。我国是在1958年开始研究蘑菇、侧耳等的深层发酵的。1963年羊肚菌液体发酵开始工业化生产试验。自此以后,大规模采用液态发酵生产食药用菌逐渐展开。当时主要研究灵芝(Ganoderma lucidum)、蜜环菌(Armillariella mellea)、银耳(Tremella fuciformis)等的液体发酵应用于医药工业。70年代开始研究香菇(Lentinula edodes)、冬虫夏草(Cordyceps sinensis)、黑木耳(Auricularia auricula)、金针菇(Flammulina velutipes)、猴头(Hericium erinaceus)、草菇(Volvariella volvacea)等的液体发酵。 2 液体发酵培养的特点 2.1原料来源广泛,价格低廉 食药用菌的液体培养所需的碳源可用工业葡萄糖、工业淀粉及山芋粉等;氮源可采用黄豆饼粉、蚕蛹粉、麸皮粉等。为了降低成本,通常还取用部分工业废水为代用品,如糖蜜废母液、木材水解液、各种大豆深加工废水、玉米深加工废水及淀粉废水等,原料来源相当广泛。 2.2菌丝体生长快速

相关文档
最新文档