液体发酵技术

液体发酵技术
液体发酵技术

液体发酵技术

-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

液体发酵技术

1. 液体发酵技术简介

1.1液体发酵的概念

液体发酵技术是现代生物技术之一,它是指在生化反应器中,模仿自然界将食药用菌在生育过程中所必需的糖类、有机和无机含有氮素的化合物、无机盐等一些微量元素以及其它营养物质溶解在水中作为培养基,灭菌后接入菌种,通入无菌空气并加以搅拌,提供食用菌菌体呼吸代谢所需要的氧气,并控制适宜的外界条件,进行菌丝大量培养繁殖的过程。工业化大规模的发酵培养即为发酵生产,亦称深层培养或沉没培养。工业化发酵生产必需采用发酵罐,而实验室中发酵培养多采用三角瓶。得到的发酵液中含有菌体、被菌体分解及未分解的营养成分、菌体产生的代谢产物。发酵液直接供作药用或供分离提取,也可以作液体菌种。

1.2 液体发酵技术的发展简史

液体深层发酵技术这一概念是20世纪40年代由美国弗吉尼亚大学生物工程专家Elmer L,Gaden.Jr设计出培养微生物系统的生物反应器,成为该项技术的创始人。据资料报道,液体深层发酵技术应用于食药用菌方面的研究始于美国。1948年,H.Humfeld用深层发酵来培养蘑菇(Agaricus campestris)菌丝体,并首先提出了用液体发酵来培养蕈菌的菌丝体。从此食药用菌的发酵生产在世界范围内兴起;1953年,美国的S.Block博士用废苷汁深层培养了野蘑菇(Agaricus arvensis);1958年J.Szuess第一个用发酵罐培养了羊肚菌(Morchella esculenta)。从此,食药用菌的生产渐渐跨入了大规模工业化生产的领域。日本的杉森恒武等于1975、1977年用1%的有机酸和0.5%的酵母膏组成液体培养基,取得了大量香菇菌丝体。我国是在1958年开始研究蘑菇、侧耳等的深层发酵的。1963年羊肚菌液体发酵开始工业化生产试验。自此以后,大规模采用液态发酵生产食药用菌逐渐展开。当时主要研究灵芝(Ganoderma lucidum)、蜜环菌(Armillariella mellea)、银耳(Tremella fuciformis)等的液体发酵应用于医药工业。70年代开始研究香菇(Lentinula edodes)、冬虫夏草(Cordyceps sinensis)、黑木耳(Auricularia auricula)、金针菇(Flammulina velutipes)、猴头(Hericium erinaceus)、草菇(Volvariella volvacea)等的液体发酵。

2 液体发酵培养的特点

2.1原料来源广泛,价格低廉

食药用菌的液体培养所需的碳源可用工业葡萄糖、工业淀粉及山芋粉等;氮源可采用黄豆饼粉、蚕蛹粉、麸皮粉等。为了降低成本,通常还取用部分工业废水为代用品,如糖蜜废母液、木材水解液、各种大豆深加工废水、玉米深加工废水及淀粉废水等,原料来源相当广泛。

2.2菌丝体生长快速

在液体培养中,液体培养基的营养成分分布均匀,有利于菌类营养体的充分接触和吸收。菌丝细胞能在反应器内处于最适温度、pH、氧气和碳氮比的条件下生长,能及时排放呼吸作用产生的代谢废气,因此新陈代谢旺盛,菌丝生长分裂迅速,能在短时间内积累大量的菌丝体和多糖、多肽等具有生理活性的代谢产物。

2.3生产周期短

通过食药用菌液体发酵培养获得大量的菌丝体和生理活性物质一般仅需要2-7天的时间,且菌龄整齐,而固体培养需要30-60天。

2.4 能有效降低菌种污染率

液体菌种接入固体培养料时,具有流动快,易分散、发菌点多、萌发快等特点,能有效地降低袋栽食用菌在接种过程中的污染。

2.5 工厂化生产、无季节性

生产中的食用菌液体发酵是在发酵罐内、控制最佳条件来培养菌体的,因此不受季节性限制。而固体培养往往需要有很大的培养空间,条件难以控制,且受季节影响较大

3 食药用菌液体发酵的培养基

在食药用菌的液体培养中,影响发酵成败的关键因素有两个:第一是菌种,第二是培养基。

优良的培养基应该具备以下特点:①目的物产生率高;②产生目的物的菌丝体生长良好,发酵周期短;③培养基成本低、原料来源广;④培养基对目的物的提取干扰少,目的物后处理工艺简单、得率高。

液体培养基的组成

根据培养基中组成的不同,可分为天然培养基和合成培养基。天然培养基的组成均为天然有机物。合成培养基则是采用—些已知化学成分的营养物质作培养基。

在生产上,还根据工艺将培养基分为孢子培养基、种子培养基及发酵培养基。但无论如何划分,每一种培养基的组成中都离不开碳、氮、无机盐、微量元素、维生素和生长素等。

(一)碳源

碳源的含义为营养物化学成分中必需含有大量的“C”元素,即含有“碳水化合物”。碳源主要用于供应菌株生命活动所需要的能量,构成菌体细胞及代谢产物,是食药用菌液体培养的主要营养成分。

碳源包括糖类(单糖、双糖、多糖)、脂肪和某些有机酸。双糖及多糖首先由菌体产生的酶分解为单糖后再被利用。食药用菌利用单糖、一般通过有氧分解、最终产物是二氧化碳、水和能量。

为降低培养基成本,药用真菌的发酵常用—些粗粮、杂粮或粮食加工之后的下脚料作为原料,如玉米粉、蔗糖糖蜜、甜菜糖蜜等。还可利用野生植物淀粉的水解产物代替粮食作发酵原料。

不同的菌种对碳源种类的要求及利用亦不—样,但绝大多数药用真菌都能利用葡萄糖、麦芽糖、蔗糖和淀粉。实际生产时,首先要通过实验了解菌株所能利用的几种碳源是什么,然后选出利用最好、来源较广、成本较低的原料作碳源。

必须指出,同一菌种在固体培养与液体培养时,所能利用的碳源是不同的。例如香菇、金针菇、凤尾菇等在固体培养时可利用木质素、半纤维素及纤维素作为碳源,而在液体培养时就不宜用这些碳源。

(二)氮源

氮源指营养物化学成分中必需大量含“N”的物质。氮源主要用于构成菌体细胞物质和含氮代谢物,是食药用菌液体培养的主要营养成分。

常用的氮源可分为有机氮源和无机氮源两大类。黄豆饼粉、花生饼粉、棉籽饼粉、玉米浆、蛋白胨、酵母粉、鱼粉、蚕蛹粉、麦麸、酒糟、菌丝体等属于有机氮源;氨水、硫酸铵、尿素、硝酸铵、硝酸钠、磷酸氢二铵、氯化铵等为无机氮源。有机氮源除含有丰富的蛋白质、多肽和游离氨基酸之外,往往还含有少量糖、脂肪、微量元素及维生素、生长素等。对绝大多数食药用菌,有机氮源比无机氮源更适合菌体的生长。某些菌则只能利用铵盐和硝酸盐。一般,铵盐能较快被菌体利用,NH4+进入细胞中可直接掺入有机化合物中;而NO3-被细胞吸收后,先还原成NH4+,才用于合成有机化合物。NH4+或NO3-被吸收后.会引起培养基酸化或碱化,因此在配制这类培养基时,应在培养基中加入少量缓冲物质。

不同菌种对氮源种类的要求及利用程度亦不一致,因此在确定培养基前应在实验中设法找到菌种所能利用的几种较好氮源及最佳氮源,然后根据成本、原料来源是否容易等因素确定氮源组成。

同—菌种在固体培养及液体培养时,可利用的最佳氮源不同

三)碳、氮比(C/N)

碳、氮比指碳源及氮源在培养基中的含量比。构成菌丝细胞的碳、氮比通常是:8~12:1。由于菌丝生长过程中,一般需50%的碳源作为能量供给菌丝呼吸,另50%的碳源组成菌体细胞。因此培养基中理想碳、氮比的理论值为

16~24:1。

多数食药用菌的固体培养,在营养菌丝生长阶段,含氮量以

0.016%~0.064%为宜,即C:N=20:1;在子实体生长阶段以0.016%~0.032%为宜,即C:N=30~40:1为好。因此,降低培养基中的氮源是产生子实体的前体。但在液体培养中就不存在这个问题,以菌丝增殖为目的的培养,通常碳、氮比以20:1为宜。

虽然药用真菌的液体培养一般要求较高的碳与氮比,即C:N=20:1左右生长较好,但许多菌种也能在较宽的碳、氮比范围内生长。不同的菌种所要求合适的碳、氮比,可通过实验求得。

(四)无机盐与微量元素

许多无机盐及微量元素对菌种的生理过程的影响与其浓度有关。不同的菌种,对无机盐及微量元素要求的最适浓度也不同。

1.磷磷是细胞中核酸、核蛋白等重要物质的组成部分,又是许多辅酶(或辅基)高能磷酸键的组成部分。磷是食药用菌液体发酵不可缺少的物质,常加入磷酸二氢钾以提供磷,加入量大约为0.1%~0.15%。

2.镁镁在细胞中起着稳定核蛋白、细胞膜和核酸的作用,而且是—些重要酶的活化剂,是药用真菌液体培养中不可缺少的营养成分。一般通过加入硫酸镁以提供镁,浓度通常是0.05%~0.075%。

3.钾、钙、钠钾不参与细胞结构物质的构成,但控制原生质的胶态和细脑膜的透性。钙离子与细胞透性有关。钠离子能维持细胞渗透压,钠离子可以部分代替钾离子的作用。三种物质需求量甚微,若采用天然培养基,可不必另加。

4.硫、铁硫是菌体细胞蛋白质的组成部分(胱氨酸、半胱氨酸及蛋氨酸中皆含硫),铁是细胞色素、细胞色素氧化酶和过氧化氢酶的组成部分,亦是菌体有氧代谢中不可缺少的元素。

5.锌、锰、钴、铜锌、锰、钴等离子是某些酶的辅基或激活剂。铜是多元酚氧化酶的活性基。

在配制培养基时应注意,镁和磷的添加不宜过多,否则会带来危害。菌体对锌、锰、钴、铜等微量元素的需求量甚少,一般天然有机原料中均有,不必另加。

碳酸钙本身不溶于水,但可以调节培养其中的酸碱度。

磷酸盐与碳酸钙不宜混合灭菌,否则会形成不溶于水的磷酸盐,使可溶性的磷酸盐浓度大大降低。

(五)维生素与生长素

维生素在细胞中作为辅酶的成分,具有催化功能。大多数药用真菌的培养都与B族维生素有关,而与维生素A、K关系不大。水溶性维生素对菌体的影响比脂溶性维生素大。维生素B1是目前已知对绝大多数药用真菌生长有利的维生素。其适宜浓度在50~1000μg/L之间。

由于药用真菌对维生素的需求量甚微,因此在使用天然有机原料为培养基时—般不需另加。有时也可加入少量维生素B1。

生长素包括三十烷醇、吲哚乙酸、赤霉素、α-萘乙酸、激动素等,在植物细胞的组织培养中用的较多。在食用菌的固体栽培中,目前还用一些菌丝生长促进剂及子实体增产促进剂等.但在食药用真菌的液体培养中应用较少。

六)化合物

利用食药用菌具有生物转化的特点,在培养基中加入某种化合物,经过生物合成后成为我们所需要的化合物。

在合成甾体激素(如可的松)时,利用某些食药用真菌进行氧化,往往能在专一位置上导入所需要的含氧基团,大大缩减了合成步骤,并加快合成速度。利用药用真菌的生物氧化作用合成药物,是一广阔的应用领域。这一应用的前提是必须搞清药用真菌的生物合成特性及生物转化的能力。

具有生物合成能力的药用真菌,目前已知的多是些黑曲霉、黄曲霉、华根霉及酵母菌等,而非一些能产生子座及子实体的子囊菌或担子菌。这方面的工作还有待深入研究。

在液体培养基中加入—些药性基质,经过药用真菌发酵后观察药性基质的变化,这是一个新开拓的讲究领域,其发展前景十分远大。

4食药用菌的摇瓶培养

药用真菌的液体培养在实验室中进行,一般通过摇瓶培养实现。即将药用真菌试管母种接入灭过菌的三角瓶培养液中,然后置于往复式或旋转式摇床上培养。

食醋制作工艺知识

←一、食醋发展状况 ●我国酿造醋有两千多年的悠久历史,品种繁多,由于酿造的地理环境、原料与工艺不同,也就 出现许多不同地区及不同风味的食醋。随着人们对醋的认识,醋已从单纯的调味品发展成为烹调型、佐餐型、保健型和饮料型等系列。 ●烹调型:这种醋酸度为5%左右,味浓、醇香,具有解腥去膻助鲜的作用。对烹调鱼、肉类 及海味等非常适合。若用酿造的白醋,还不会影响菜原有的色调。 ●佐餐型:这种醋酸度为4%左右,味较甜,适合拌凉菜、蘸吃,如凉拌黄瓜,点心,油炸食 品等,它都具有较强的助鲜作用。这类醋有玫瑰米醋、纯酿米醋与佐餐醋等。 ●保健型:这种醋酸度较低,一般为3%左右。口味较好,每天早晚或饭后服1匙(10毫升)为 佳,可起到强身和防治疾病的作用,这类醋有康乐醋、红果健身醋等。制醋蛋液的醋也属于保健型的一种,酸度较浓为9%。这类醋的保健作用更明显。 ●饮料型:这种醋酸度只有1%左右。在发酵过程中加入蔗糖、水果等,形成新型的被称之为 第四代饮料的醋酸饮料(第一代为柠檬酸饮料、第二代为可乐饮料、第三代为乳酸饮料)。具有防暑降温、生津止渴、增进食欲和消除疲劳的作用,这类饮料型米醋尚有甜酸适中、爽口不粘等特点,为人们所喜欢。这类饮料有山楂、苹果、蜜梨、刺梨等浓汁,在冲入冰水和二氧化碳后就成为味感更佳的饮料了。 ←二、食醋标准 ●定义: 酿造食醋:单独或混合使用各种含有淀粉、糖的物料或酒精,经微生物发酵酿制成的液体调味品。 配制食醋:以酿造食醋为主体,与冰乙酸、食品添加剂等混合配制而成的调味食醋。 ●现行标准: 酿造食醋 GB18187-2000 配制食醋 SB10337-2000 ←三、食醋工艺 ●食醋的工艺流程:原料处理——泡米——磨浆——蒸煮——液化——糖化——酒精发酵——醋 酸发酵——取醋——陈酿——过滤——精制——灭菌——包装——检验——成品 ●生产工艺分固态法及液态法两类。 固态发酵醋是一种传统工艺,产品质量高、风味好,酸味柔和、回味绵长等,这与所用原料精良、参与酿造的微生物种类较多、酶系较全、生产周期较长、经过陈酿等因素有关。但也存在缺点,即淀粉利用率低、生产周期长、劳动强度大、机械化程度低等。 液态发酵醋,尤其是液态深层自吸发酵食醋,是近几年发展较快的一种食醋工艺,其优点是原料利用率高,机械化程度高,劳动强度小,单位产能占地面积小,全封闭发酵生产工作环境较好,但风味与传统食醋相比较,有一定差异,风味纯正、清香等。 ●传统的固态法酿醋工艺主要有3种。1、用大曲制醋:以高粱为主要原料,利用大曲中分泌的酶, 进行低温糖化与酒精发酵后,将成熟醋醅的一半置于熏醅缸内,用文火加热,完成熏醅后,再加入另一半成熟醋醅淋出的醋液浸泡,然后淋出新醋。最后,将新醋经三伏一冬日晒液与捞冰的陈酿过程,制成色泽黑裼、质地浓稠、酸味醇厚、具有特殊芳香的食醋。著名的有山西老陈醋。2、用小曲制醋:以糯米和大米为原料,先利用小曲(又称酒药)中的根霉和酵母等微生物,在米饭粒上进行固态培菌,边糖化边发酵。再加水及麦曲,继续糖化和酒精发酵。然后酒醪中

食用菌液体深层发酵技术与应用

作者:--来源:互联网点击数:847 更新时间:2010年03月06日【字体:大中小】 液体发酵技术属于现代生物技术之一。深层发酵技术直接生产食用菌菌体,同时获得富含氨基酸等营养成分的发酵液。 深层发酵培养基的选择 1、食用菌液体深层发酵技术研究的关键是培养基。不同食用菌要用不同的培养基进行培养,因此,培养基的选择与配制是食用菌液体深层发酵技术的关键。 食用菌的深层液体发酵生产主要是采用了抗生素生产的工艺和设备,其工艺大致是:母种-一级种子-二级种子-发酵罐深层发酵。 根据培养基组成的不同,可分为天然培养基和合成培养基。天然培养基的组成均为天然有机物,合成培养基则是采用一些已知化合成分的营养物质作为培养基,无论哪一种培养基,其组成都离不开碳源、氮源、无机盐、微量元素、维生素和生长素等。 2、选择培养基时应注意的问题 (1) 氮源过多会引起菌丝生长过于旺盛,不利于代谢产物的积累。碳源不足,又容易引起菌体衰老和自溶,碳、氮比不当,会影响菌丝按比例地吸收营养物质。 (2) 同一种原料因产地不同其营养成分有差异,这在氮源表现得较明显,如大豆、玉米浆、蛋白陈等,必须记下每一种原料的产地、批号、生产厂等,并对原料进行化学成分分析。 (3) 水质对发酵生产的影响也很大,自来水、地表水、河水、并水、雪水等,其中所含溶解氧、金属离子及酸碱度等均有差异。另外,有的水中还含有较多的氯离了。因此应对水质进行化学分析。 (4) 高温(或高压)灭菌会引起某些营养成分的破坏,特别是还原糖、氨基酸和肽类等共同加热时,会形成与—羟甲基糠醛及类黑精等物质。赖氨酸最容易与糖发生反应,形成棕色物。这些在选择培养基及灭菌时都应预先想到。 食用菌的摇瓶培养 将食用菌的试管母种接人已灭菌的三角瓶培养液中,然后置于摇床上振荡培养,这种培养方式即为摇瓶培养。经过摇瓶培养的菌丝体呈球状、絮状等多种形态。培养液可呈糊状,消液状等状态,有或无清香味及其他异味。菌液中有菌株发酵产生的次生代谢产物,可呈不同的颜色。在进行菌株的初期培养或生理生代研究时,一般皆采用摇瓶培养法。 影响摇瓶培养菌丝体及次生代谢产物产生的因素有:培养温度、摇床的振荡频率和瓶子的装料系数、pH值、菌龄、接种量、培养液的粘度和光照等。 食用菌的发酵罐深层培养 发酵罐深层培养具有生产周期短、产量高、效益大等优点,是食用菌进行大量生产的重要途径。 1、深层发酵的一般设备。 深层发酵生产要住发酵罐内不断地输入无菌空气以保证耗氧的需要及维持罐内有一定的压力,防止外界杂菌的侵入,发酵生产必须具有如下设备: (1)灭菌消毒设备 灭菌的方法很多,但食用菌的发酵生产中多采用“空消和实消”灭菌形式:空消即对发酵罐及管道进行空着消毒。实消即培养液置于发酵罐内用高压蒸汽消毒,其优点是只需蒸汽发生器这一专业设备,操作比较简便,其缺点是由于是在高温下且长时间的情况进行灭菌,故培养液极易发生过热而导致营养成分破坏。 (2)空气净化设备 发酵生产要求进入罐体的空气须是洁净无菌的干燥空气,由于空气压缩机输出的空气温度高,且含有杂菌、油、水等,因此必须经过处理后,才能进入罐体。

液态发酵年产10000吨米醋厂生产工艺设计

液态发酵年产10000吨米醋厂生产工艺设计

年产5000吨食醋设计说明书1 设计任务书 设计项目:液态发酵年产10000吨米醋厂生产工艺设计 设计规模:33.34吨 生产工艺:液态深层发酵 工作制度:全年工作发酵日300天,三班作业,连续生产 主要原料:玉米 辅助原料:谷糠,麸皮 成品:4度酿造米醋 理化指标:总酸(以乙酸计):g/100ml≥3.50 不挥发酸(以乳酸计):无 可溶性无盐固形物:g/100ml≥0.50 微生物指标:菌落总数:(个/ml)≤10000 大肠菌群:(MPN/100ml)≤3 致病菌(系指肠道治病菌);不得检出 产品相关标准:要符合GB2719-1996《米醋卫生标准》,GB18187-2000《酿 造米醋》,ZBX66004-86《米醋质量标准》 感官指标:具有正常的米醋色泽,气味和滋味,不涩,无其他不良气味和 异味,无悬浮物,不浑浊,无沉淀,无异物,无醋鳗,醋 虱。 2 产品方案 2.1 生产规模 醋厂年产量为5000t,厂设计采取统一的规划布局,规范化建设,科学化管理,规模化生产。一体化经营,完全采用现代化企业管理模式 将逐渐形成规模。 2.2主要原料的规格 粮食:应符合GB2715的规定 酿造用水:应符合GB5749的规定 食用盐:应符合GB5461的规定 食用酒精:应符合GB10343的规定 糖类:应符合相应国家标准或行业标准规定 食品添加剂:应选用GB2760中允许使用的添加剂,还应符合 相应的食品添加剂的产品标准 2.3 工期设定 生产品种为4度酿造米醋,年产量5000t,采用瓶装生产,设

计日产 量为16.7t 2.4 产品质量及标准 GB/T601-1988 化学试剂滴定分析(容量分析)用标准溶液的 制备 GB2715-1981 粮食卫生标准 GB2719-1996 米醋卫生标准 GB2760-1996 食品添加剂使用卫生标准 GB4789.22-1994 食品卫生微生物检验调味品检验 GB/T5009.41-1996食品卫生标准分析方法 GB5461—2000 食用盐 GB5749—1985 生活饮用水卫生标准 GB/T6682—1992 分析实验室用水规格和试验方法 GB7718—1994 食品标签通用标准 GB10343—1989 食用酒精 3 生产工艺流程设计 3.1工艺流程选择论证 3.2 工艺流程图

柠檬酸液态发酵及提取工艺

柠檬酸液态发酵及提取工艺 0802班生物科学饶慧 (指导教师:胡远亮) 0前言 柠檬酸(citric acid)又名枸橼酸,学名2-羟基丙烷三羧酸(2-hydroxytricarboxylic acid)或2-羟基丙烷-l,2,3-三羧酸(2-hydroxy propane-1,2,3-triearboxylic acid)是生物体主要代谢产物之一,在自然界中分布很广,主要存在于柠檬、柑橘、菠萝、梅、李、梨、桃、无花果等果实中,尤以未成熟者含量居多。分子式:C6H8O7(相对分子质量:192.13),无色透明或半透明晶体,或粒状、微粒状粉末,虽有强烈酸味,但令人愉快,稍有涩味。极易溶于水,溶解度随温度的升高而增大;从结构上讲柠檬酸是一种三羧酸类化合物,并因此而与其他羧酸有相似的物理和化学性质,加热至175°C时它会分解产生二氧化碳和水,剩余一些白色晶体。柠檬酸是一种较强的有机酸,有3个H+可以电离;加热可以分解成多种产物,与酸、碱、甘油等发生反应。 柠檬酸被称为第一食用酸味剂,极广泛地用作酸味剂、增溶剂、缓冲剂、抗氧化剂等,用于饮料、糖果、酿造酒、冰淇淋、酸奶、罐头食品、豆制品与调味品等的生产中。另外,在药物、美容品、化妆品工业上也有着重要的应用。它是香料和饮料的酸化剂,在食品和医学上用作多价螯合剂,同时是化学中间体,用于制造药物,也可用于金属清洁剂、媒染剂等。柠檬酸的盐类、酯类和衍生物也各具特点,用途极为广泛而有良好的发展前景。 柠檬酸循环(citric acid cycle)又称三羧酸循环(tricarboxylic acid cycle),克雷布斯循环(Krebs cycle)。体内物质糖、脂肪或氨基酸有氧氧化的主要过程。通过生成的乙酰辅酶A与草酰乙酸缩合生成三羧酸(柠檬酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环,从而为细胞提供了降解乙酰基而提供产生能量的基础。 实验发酵机理: 1)以薯干粉、玉米粉或淀粉等糖类为原料经黑曲霉柠檬酸产生菌(我们采用黑曲霉M288)糖化后产生高浓度的葡萄糖。 2)黑曲霉利用糖类发酵产生柠檬酸:葡萄糖以EMP(糖酵解途径或者)、HMP

食用菌液体深层发酵在医药方面的应用

食用菌液体深层发酵在医药方面的应用 食用菌在深层发酵过程中,其发酵产品作为药品,如口服液、软饮料等已被人们接受。在发酵过程中,产生多糖、多肽、生物碱、萜类化合物、甾醇、甙类、酶、核酸、氨基酸、微生素等多种生理活性物质。这些物质有对人体心血管、肝脏、神经系统等人体器官的防病治病作用以及抗癌、抗炎、抗衰老、抗菌、抗溃疡等功效。 近30年来已有一些产品投放市场,如马来酸麦角新碱注射液、香菇多糖片(注射液)、猴菇菌片、蜜环菌片、香云片、云芝糖肽胶囊等。 下面简单介绍下食用菌的液态发酵过程 (1)香菇多糖的生产: 1)工艺流程: 26℃26℃26℃,8天斜面母种————→一级摇瓶种子——————→二级摇瓶种子—————→三级15天静置12~15天60-80转/分 26℃,12~15天26℃,5~6天罐压39~59千帕 摇瓶种子———————→种子罐—————————————→ 60~80转/分1米3发酵液通人1米3/分空气 2)培养基: ①斜面培养基(%):葡萄糖2.0,酵母膏0.5,磷酸二氢钾0.l,7水硫酸镁0.1,琼脂2.0,pH值自然。 ②种子培养基(%):葡萄糖1.0,蛋白胨0.12,酵母膏0.12,磷酸二氢钾0.15,7水硫酸镁0.05,微量元素液0.1,pH值7.00。 ③发酵培养基(%):葡萄糖5.0,蛋白胨0.25,酵母膏0.25,氯化钙0.05,磷酸二氢钾 0.25,7水硫酸镁0.05,微量元素液0.2,pH值7.0。 一般情况下,8天菌龄时香菇多糖产生最多。用水浸提浓缩即可生产香菇多糖粉剂。若要生产饮料,则可在发酵液中加入0.06%~0.1%的柠檬酸,调pH值为5.5,加热至45—55℃,保持5~6小时,再升温至75℃,30分灭酶活,板框过滤,取滤液加入30%白糖液,加柠檬酸调pH值为5.0,加入0.01%山梨酸钾。此液滤后即为香菇保健饮料。 (2)银耳孢子的发酵: 1)生产工艺: 28℃28℃,2天28℃,3天 斜面菌种———→一级摇瓶种子——————→二级摇瓶种子—————→发酵罐4天220转/分220转/分 28℃,60~68小时 —————————————————————→ 280~330转/分,1米3发酵液通入1米3/分空气 2)培养基: ①斜面菌种:PDA。 一级摇瓶种子:马铃薯20%,蔗糖2%,硫酸铵0.2%,pH自然。 二级摇瓶种子:同一级摇瓶种子。

食醋的生产工艺

食醋生产工艺 1.食醋生产过程中的主要生物化学变化。 答 一是原料中淀粉的分解,即糖化过程; 二是酒精发酵,即酵母菌将可发酵性的糖转化成乙醇; 三是醋酸发酵,即醋酸菌将乙醇转化成乙酸。 2.食醋色、香、味、体是如何形成的? 答 ①酸味的形成:原料中的淀粉经霉菌(或酶制剂)、酵母菌和醋酸菌的分解生成了醋酸,是食醋中酸味的主要来源。除醋酸外,食醋中还含有乳酸、延胡索酸、琥珀酸、苹果酸、柠檬酸、酒石酸、α-酮戊二酸等不挥发性酸。 ②甜味的形成:食醋中的糖类来源于各种原料,其中以葡萄糖与麦芽糖最多,此外还有甘露糖、阿拉伯糖、半乳糖、糊精、蔗糖等。另外甘油、甘氨酸等也具有一定的甜度。 ③鲜味的形成:食醋中的鲜味来源于食醋中的氨基酸,如谷氨酸及谷氨酸-钠盐均有鲜味。 ④咸味的形成:醋酸发酵完毕之后,加入食盐不仅能抑制醋酸菌对醋酸的进一步氧化,而且还给食盐带来咸味,并促成各氨基酸给予食醋鲜味。 ⑤苦味、涩味的形成:食醋的苦味和涩味主要来源于盐卤。另外,微生物在代谢过程中形成的胺类,如四甲基二胺,1,5-二氨基戊胺,

都是苦味物质,它们赋予食醋苦味。有些氨基酸也呈苦味。过量的高级醇呈苦涩味。 ⑥香味的形成:食醋中香味物质含量很少,但种类很多。只有当各种组分含量适当时,才能赋予食醋以特殊的芳香。 ⑦色素的形成:食醋的色素来源于原料本身和酿造过程中发生的一些变化。原料中如高粱含单宁较多,易氧化生成黑色素。原料分解生成的糖和氨基酸发生美拉德反应生成氨基糖呈褐色,葡萄糖在高温下脱水生成焦糖。另外,还可人工添加色素,如添加酱色或炒米色,以增加色泽。 ⑧醋体的形成:食醋的体态决定于它的可溶性固形物的含量。组成可溶性固形物的主要物质有食盐、糖分、氨基酸、蛋白质、糊精、色素等。固形物含量高,体态粘稠;反之则稀薄。 3.食醋生产中常用的糖化菌、酵母菌和醋酸菌各有哪些?其生理特性如何? 答 1常用糖化菌及其特性 ①甘薯曲霉 培养最适温度为37℃。含有较强活力的单宁酶与糖化酶,有生成有机酸的能力。适宜于甘薯及野生植物酿醋时作糖化菌用。常用的菌株为AS3.324。 ②邬氏曲霉 邬氏曲霉是由黑曲霉中选育出来的。该菌能同化亚硝酸盐,淀粉糖化

发酵液体饲料

发酵液体饲料 早在19世纪末,来自屠宰场的下脚料和肉屑就被作为最初的液体饲料原料,到21世纪的今天,世界各国已开始广泛使用液体饲料,对液体饲料的应用也日益增长。近年来,研究者们发现,液体饲料经发酵较使用酸化剂可产生更多的酸,至此,饲喂前的精细发酵已成为液体饲料的一个新进展。这使得发酵液体饲料成为人们研究的新热点。 1 发酵液体饲料的优越性 发酵液体饲料(Fermented liquid Feed,简写FLF),作为一种新型饲料,它的最早使用是在20世纪80年代末的荷兰,当时的发酵液体饲料实际上就是湿拌料。之后,丹麦、法国、瑞典、西班牙、瑞士等国也陆续加入到了使用者的行列,发酵液体饲料开始得以探索性的使用,而液体饲料发酵技术也被越来越多的人所接受。相对于液体饲料而言,发酵液体饲料在以下几个方面对断奶仔猪表现了极大的优越性:(1)维持肠绒毛生长,同时提高采食量。小肠绒毛是猪体内生长最快的组织,其生长所需的多种养分直接从肠道吸收而得,即使是短暂的“饥饿”也会使肠绒毛长度迅速下降,从而影响肠道的吸收能力(Plugke等,1996)。而发酵液体饲料解决了固体饲料出现的适口性差的问题,能为断奶仔猪提供适宜的养分,维持了肠绒毛的生长,同时提高了采食量;(2)提高胃中酸度,防御细菌入侵。断奶仔猪缺乏胃酸这一防御细菌入侵的首道防线,使用发酵液体饲料能

加强对日粮的酸化作用,显著提高胃中的酸度(大约降低2个pH值),从而可以控制日粮和肠道中的病原菌;(3)有益后肠微生物菌群,增强抑菌作用。饲喂发酵液体饲料未能明显改变整个消化道的乳酸菌数量,但能显著降低小肠后部后肠和结肠中大肠杆菌的数量(Jense n等,1998),从而可使大肠杆菌隐性感率大辐度降低,具有较好的杀菌效果。 2 发酵液体饲料在断奶仔猪生产中的应用 近几年来,发酵液体饲料在欧洲已广泛使用,并成为人们研究的热点。然而,关于发酵液体饲料的研究也只是集中在养猪生产中,更确切地说是对断奶仔猪的研究,而对生长猪、母猪等却鲜有报道。迄今为止,研究者认为,发酵液体饲料在断奶仔猪生产中的应用主要表现在对仔猪生产性能的影响和对猪胃酸度及肠道菌群的影响两个方面。 2.1 对断奶仔猪生产性能的影响 发酵液体饲料对断奶仔猪生产性能的影响主要是促进仔猪采食,提高日增重。Russel等(1996)在研究中发现,使用乳酸菌发酵液体饲料显著提高了断奶仔猪的采食量和生长速度,与对照组(颗粒饲料,含乳清粉,适口性好对)相比较,采食量增加了20%,日增重提高了25%,而且仔猪对发酵液体饲料饲喂效果良好,没有出现断奶仔猪的腹泻现象。丹麦农业部Foulum研究中心的Jensen于1998

液体深层发酵

液体深层发酵 一、液体深层发酵的操作方式。根据操作方式的不同,液体深层发酵主要有分批发酵、连续发酵和补料分批发酵三种类型。 1、分批发酵。营养物和菌种一次加入进行培养,直到结束放出,中间除了空气进入和尾气排出,与外部没有物料交换。特点:一次性;发酵过程中,营养不断减少,微生物不断增殖,环境非稳态;微生物生长的四个时期明显。应用:广泛。 2、连续发酵。连续发酵是指以一定的速度向发酵罐内添加新鲜培养基,同时以相同的速度流出培养液,从而使发酵罐内的液量维持恒定,微生物在稳定状态下生长。稳定状态可以有效地延长分批培养中的对数期。特点:培养基等量流入流出;各种变化=0;微生物群体生长的四个时期不存在。应用:常用于废水处理、葡萄糖酸、酒精、氨基酸发酵等工业中。优点:操作稳定;利于机械、自动化;提高设备的利用率;减少灭菌次数;易于过程优化。缺点:易染菌;微生物易变异;对产品类型的适应性不广;对设备及附件要求高。 3、补料分批发酵。补料分批发酵又称半连续发酵,是介于分批发酵和连续发酵之间的一种发酵技术,是指在微生物分批发酵中,以某种方式向培养系统补加一定物料的培养技术。通过向培养系统中补充物料,可以使培养液中的营养物浓度较长时间地保持在一定范围内,既保证微生物的生长需要,又不造成不利影响,从而达到提高产率的目的。特点:可以解除底物抑制、产物抑制、分解阻遏或克服微生物过度生长;提高有用产物的转化率;应用:应用广泛,用于面包酵母、氨基酸、抗生素等工业;二、发酵工艺控制。发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。反映发酵过程变化的参数可以分为两类:(1)直接参数:可以直接采用特定的传感器检测的参数。它们包括反映物理环境和化学环境变化的参数,如温度、压力、搅拌功率、转速、泡沫、发酵液粘度、浊度、pH、离子浓度、溶解氧、基质浓度等。(2)间接参数:至今尚难于用传感器来检测的参数,包括细胞生长速率、产物合成速率和呼吸嫡等。这些参数需要根据一些直接参数,借助于电脑计算和特定的数学模型才能得到。上述参数中,对发酵过程影响较大的有温度、pH、溶解氧浓度等。 1、温度:温度能影响酶的活性,也能影响生物合成的途径。温度还会影响发酵液的物理性质,以及菌种对营养物质的分解吸收等。应采用具备热交换装置发酵罐。 2、pH:pH能够影响酶的活性,以及细胞膜的带电荷状况。还会影响培养基中营养物质的分解等。常用的控制方法有:①调整生理碱性和酸性盐类的比例;②选择不同C、N的种类和比例;③添加缓冲剂。 3、溶解氧:在发酵过程中菌种只能利用溶解氧。因此,必须向发酵液中连续补充大量的氧,并要不断地进行搅拌,以提高氧在发酵液中的溶解度。 4、泡沫:发酵过程中,通气、搅拌、微生物的代谢过程及培养基中某些成分的分解等,都有可能产生泡沫。过多的持久性泡沫对发酵是不利的。常采用机械消泡和消泡剂消沫。 5、营养物质的浓度:发酵液中各种营养物质的浓度,特别是碳氮比、无机盐和维生素的浓度,会直接影响菌体的生长和代谢产物的积累。三、发酵设备。进行微生物深层培养的设备统称发酵罐。由于微生物有好氧与厌氧之分,所以其培养装置也相应地分为好氧发酵设备与厌氧发酵设备。(1)液态好氧发酵罐。特点:有冷却装置。有通风装置。代表:机械搅拌发酵罐、通气搅拌发酵罐。(2)液态厌氧发酵罐。特点:有冷却装置。没有通风装置。代表:酒精发酵罐、啤酒发酵罐。 1、机械搅拌式发酵罐。它是利用机械搅拌器的作用,使空气和发酵液充分混合,促进氧的溶解,以保证供给微生物生长繁殖和代谢所需的溶解氧。类型:通用式发酵罐、自吸

液态深层发酵制醋的研究及发展方向

液态深层发酵制醋的研究及发展方向 醋酸发酵可以说起源于食醋的发酵,而食醋发酵在古代最早只是酿酒受细菌污 染的结果,即所谓"酒酸变醋"。因此醋酸发酵的历史几乎与酿酒一样悠久,可以追 溯至一万年前。能生产食醋的原料很多如葡萄、苹果、青菜等果蔬原料,大米、玉 米、高粱等天然含糖原料,食用酒精等。早先 获得醋酸的方法有天然发酵醋的蒸馏和木材的分解蒸馏,即所谓"木酸"。真正的醋 酸发酵应该是从快速制醋法开始发展起来的。它是现代淋醋工艺的前身,此法在国 外称为"德国工艺",由德国波恩的弗林斯公司(Heinrich Frings)做了许多改进 ,他们采用强制通气、控制温度、酒醪喷淋等 措施提高了传热优质效率,大大提高了发酵速率,这种工艺采用12%~15%高浓度 的乙醇,其醋酸的转化率可达98%,产酸速率可达5L/立方米.d,一个半世纪以来 ,此法一直是工业生产食醋的重要方法。 深层发酵的工艺是上世纪50年代发展起来的一种新工艺,当时德国的Hromatk a和Ebner在1994年和1951年报道了对于工业深层发酵工艺的初步研究,与淋醋工艺 相比,深层发酵的乙醇氧化速率提高了约30倍,生产可以高度自动化,经济效益 明显提高。 深层发酵又称全面发酵,这一方法最早应用于抗生素的工业生产,工业规模生 产大设备完成于西德的Frings公司的醋化器,其生产能力为该公司所设计的循环醋 化器法的6~7倍。不久,美国的Cohee和Burgoon 以及Magor设计出了连续发酵装置Cavicator。我国起步较晚,自上世纪70年代 开始研究以来,目前,在全国许多地方得到推广应用。这一工艺劳动生产效率高, 液化、糖化、酒精发酵、醋酸发酵都可在液态下进行,醋酸发酵的要点是将酒液及 扩培的醋酸菌借强大的无菌空气或自吸的气流进行充分搅拌,使气、液面积尽量加 大,进行全面酒精的氧化以生产醋酸。由于反 应迅速,生产周期大大缩短,全部工艺仅用50~70小时,同时产生大量热能,须迅 速冷却,保持菌种最适作用温度,因而能源消耗提高,所以通气条件及冷却条件是 本工艺的关键因素。 深层发酵的特点在于接入大量纯菌种的醋酸菌在较短时间稳定地生产大量食醋 ,在一定条件下生产出质量一致的产品及高酸度的食醋产品。 用酒精稀释液生产酸度11 %~12 %酒精醋时,要将酒精稀释至5 %~6.5%

液体发酵技术

液体发酵技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

液体发酵技术 1. 液体发酵技术简介 1.1液体发酵的概念 液体发酵技术是现代生物技术之一,它是指在生化反应器中,模仿自然界将食药用菌在生育过程中所必需的糖类、有机和无机含有氮素的化合物、无机盐等一些微量元素以及其它营养物质溶解在水中作为培养基,灭菌后接入菌种,通入无菌空气并加以搅拌,提供食用菌菌体呼吸代谢所需要的氧气,并控制适宜的外界条件,进行菌丝大量培养繁殖的过程。工业化大规模的发酵培养即为发酵生产,亦称深层培养或沉没培养。工业化发酵生产必需采用发酵罐,而实验室中发酵培养多采用三角瓶。得到的发酵液中含有菌体、被菌体分解及未分解的营养成分、菌体产生的代谢产物。发酵液直接供作药用或供分离提取,也可以作液体菌种。 1.2 液体发酵技术的发展简史 液体深层发酵技术这一概念是20世纪40年代由美国弗吉尼亚大学生物工程专家Elmer L,Gaden.Jr设计出培养微生物系统的生物反应器,成为该项技术的创始人。据资料报道,液体深层发酵技术应用于食药用菌方面的研究始于美国。1948年,H.Humfeld用深层发酵来培养蘑菇(Agaricus campestris)菌丝体,并首先提出了用液体发酵来培养蕈菌的菌丝体。从此食药用菌的发酵生产在世界范围内兴起;1953年,美国的S.Block博士用废苷汁深层培养了野蘑菇(Agaricus arvensis);1958年J.Szuess第一个用发酵罐培养了羊肚菌(Morchella esculenta)。从此,食药用菌的生产渐渐跨入了大规模工业化生产的领域。日本的杉森恒武等于1975、1977年用1%的有机酸和0.5%的酵母膏组成液体培养基,取得了大量香菇菌丝体。我国是在1958年开始研究蘑菇、侧耳等的深层发酵的。1963年羊肚菌液体发酵开始工业化生产试验。自此以后,大规模采用液态发酵生产食药用菌逐渐展开。当时主要研究灵芝(Ganoderma lucidum)、蜜环菌(Armillariella mellea)、银耳(Tremella fuciformis)等的液体发酵应用于医药工业。70年代开始研究香菇(Lentinula edodes)、冬虫夏草(Cordyceps sinensis)、黑木耳(Auricularia auricula)、金针菇(Flammulina velutipes)、猴头(Hericium erinaceus)、草菇(Volvariella volvacea)等的液体发酵。 2 液体发酵培养的特点 2.1原料来源广泛,价格低廉 食药用菌的液体培养所需的碳源可用工业葡萄糖、工业淀粉及山芋粉等;氮源可采用黄豆饼粉、蚕蛹粉、麸皮粉等。为了降低成本,通常还取用部分工业废水为代用品,如糖蜜废母液、木材水解液、各种大豆深加工废水、玉米深加工废水及淀粉废水等,原料来源相当广泛。 2.2菌丝体生长快速

食醋液态发酵条件优化的研究

文章编号:1006-8481(2008)06-0024-05 食醋液态发酵条件优化的研究 徐根娣,冷云伟 (中国矿业大学,江苏 徐州 221008) 摘 要:为了提高食醋生产效率,对食醋液态发酵过程中的营养条件即碳源、氮源、无机盐及生长因子分别进行了研究,并对其进行了优化,选择碳源为2%葡萄糖,氮源为0.5%酵母膏+0.5%蛋白胨,无机盐为0.05% KH 2P O 4+0.05%FeS O 4。同时,应用正交试验和极差分析法评估了食醋液态发酵过程中主要环境条件,确定 了最佳培养条件为发酵温度32℃、初始酒精度4mL /d L 、初始pH 值为6.0和接种量10%。在优化条件下,发酵时间缩短,产酸速度提高。 关键词:食醋液态发酵;条件优化;生产效率 中图分类号:TS264.2+2 文献标识码:A Study on the opti m i za ti on of v i n egar li qu i d ferm en t a ti on XU Gen -di,L EN G Yun -w ei (China University of M ining and Technol ogy,Xuzhou,J iangsu,221008) Abstract:I n order t o i m p r ove vinegar p r oductivity,s ome nutriti onal conditi ons including carbon s ources,nitr ogen s ources,inorganic salts and gr owth fact ors in vinegar liquid fer mentati on are studied and op ti m ized as f oll owings:2%Glucose is carbon s ources,0.5%yeast extract and 0.5%pep t one are nitr ogen s ources,0.05%KH 2P O 4and 0.05%FeS O 4are inorganic salts .O rthogonal test and range analysis are used t o evaluate the envir on mental fact ors in vinegar liquid fer mentati on,and the op ti m al conditi ons are set as f oll owings:te mperature 32℃,initial alcohol degree 4mL /d L,initial pH degree 6.0and inoculu m s concentrati on 10%.Under op ti m u m conditi ons,fer menting peri od is short 2ened and acid p r oducti on s peed is i m p r oved . Key W ords:vinegar liquid fer mentati on;conditi on op ti m izati on;p r oductivity 0 前言 食醋是深受人们喜爱的调味品,用食醋作佐料烹调食品,在我国具有悠久的历史。近年来,随着人们保健意识的不断增强,醋的保健功能亦日夜受到重视。现代研究发现,醋含有丰富的营养 物质,并可防治多种疾病,经常食醋可以软化血管、降低血压、预防动脉硬化及治疗糖尿病,醋还有减肥、美容、杀菌和抗癌等独特作用[1] 。食醋 的这些功能越来越被人们所重视,其消费量也随 之不断增加。 传统的食醋制法多采用固态发酵,近年来不 收稿日期:2008-08-20 作者简介:徐根娣(1983-),女,江苏盐城市人,硕士研究生。研究方向:食品生物技术。 ? 42 ?

液体酿酒技术

继承和发展传统酿造技术,“君明生物”已成为液态酿酒行业的中坚。在有效地吸收我国传统固态酿酒技术和液态酿酒技术的基础上,引进国际上先进的酿酒理论和工艺,“君明生物”独创的“液态酿酒新技术”在保持了“液态生料酿酒技术”出酒率高,酒糟(饲料)含蛋白质高,营养全面的同时,使所产白酒的酒质更好,口感更佳,具有:纯粮原浆,醇香浓郁,清澈透明如矿泉水,好喝不上头的特点。这一新技术投资少,见效快,效益高,风险低,产品大众化易销售,市场开发空间广阔,更适合农村、乡镇利用当地自然资源和人力资源,开创中、小型酿酒、养殖业。该技术优势明显已成农村经济发展中,快速致富的首选项目! “君明液态酿酒及高蛋白糖化饲料生产技术”对粮食进行有效的生物深加工,使粮食的附加值成倍的增长,绿色无污染。可同时从几个行业中(如:酿酒、饲料、养殖、能源、种植等)获得可观的经济效益和社会效益。通过扩大的养殖业可为土地改良、减少板结、提高使用率提供更多的“有机肥类”,实现农村立体化养殖业、种植业的良性循环和发展。 让山更绿,水更清,民更富,造福子孙! ★【功能卓越,物美价廉的新型酿酒设备】 科学的技术,更要依靠与其相配套的先进设备,来体现其巨大的经济效益内涵。 “君明牌”新型液态酿酒设备(又名:“饲料发生器”),以现代液态酿酒理论为指导,采用国际食品设备加工标准,采用0Ri18Ni9Ti进口不锈钢为原料,精心设计加工而成。它具有:结构简单、合理、轻便、成本低(仅为同类产品的2/3),生产操作简单、稳定,常温常压,运行安全可靠,经济耐用,使用寿命十年以上。设备终身保修,常年提供免费技术指导。 ★【优质瓶装品牌酒的最佳伙伴-基酒】 科学的技术,更要依靠与其相配套的先进设备,来体现其巨大的经济效益内涵。 “君明牌”新型液态酿酒设备(又名:“饲料发生器”),以现代液态酿酒理论为指导,采用国际食品设备加工标准,采用0Ri18Ni9Ti进口不锈钢为原料,精心设计加工而成。它具有:结构简单、合理、轻便、成本低(仅为同类产品的2/3),生产操作简单、稳定,常温常压,运行安全可靠,经济耐用,使用寿命十年以上。设备终身保修,常年提供免费技术指导。 ★【优质的高产“酒曲”,是成功的保证】 “君明生物”以现代酿酒理念为指导,以科技生物工程为手段,独家研创的“液态增香型高产酒曲”、“液态复合香型高产曲种”,是微生物超浓缩群体。具有活性强,淀粉转化率高,性能稳定,出酒率高的特点。百斤大米可以生产50%白酒95斤以上,百斤玉米可以生产50%白酒75斤以上。酒的口感好,酒质高。该酒曲用量少(0.58-0.68市斤/百斤粮),操作简单,劳动强度低,发酵周期短(2-12天),成本低,利润高,安全卫生,是液态生、熟料酿酒,膨化发酵酿酒等工艺最理想的发酵用曲种。由于该酒曲科技含量高,生物活性强,也成为广大液态生料酿酒厂和用户,更新换代,提升技术的理想酒曲。 “君明液态复合香型高产酒曲”同时还可以应用于米酒、涝糟、食用醋、桔杆发酵等行

液体发酵技术

液体发酵技术 1. 液体发酵技术简介 1.1液体发酵的概念 液体发酵技术是现代生物技术之一,它是指在生化反应器中,模仿自然界将食药用菌在生育过程中所必需的糖类、有机和无机含有氮素的化合物、无机盐等一些微量元素以及其它营养物质溶解在水中作为培养基,灭菌后接入菌种,通入无菌空气并加以搅拌,提供食用菌菌体呼吸代谢所需要的氧气,并控制适宜的外界条件,进行菌丝大量培养繁殖的过程。工业化大规模的发酵培养即为发酵生产,亦称深层培养或沉没培养。工业化发酵生产必需采用发酵罐,而实验室中发酵培养多采用三角瓶。得到的发酵液中含有菌体、被菌体分解及未分解的营养成分、菌体产生的代谢产物。发酵液直接供作药用或供分离提取,也可以作液体菌种。 1.2 液体发酵技术的发展简史 液体深层发酵技术这一概念是20世纪40年代由美国弗吉尼亚大学生物工程专家Elmer L,Gaden.Jr设计出培养微生物系统的生物反应器,成为该项技术的创始人。据资料报道,液体深层发酵技术应用于食药用菌方面的研究始于美国。1948年,H.Humfeld用深层发酵来培养蘑菇(Agaricus campestris)菌丝体,并首先提出了用液体发酵来培养蕈菌的菌丝体。从此食药用菌的发酵生产在世界范围内兴起;1953年,美国的S.Block博士用废苷汁深层培养了野蘑菇(Agaricus arvensis);1958年J.Szuess第一个用发酵罐培养了羊肚菌(Morchella esculenta)。从此,食药用菌的生产渐渐跨入了大规模工业化生产的领域。日本的杉森恒武等于1975、1977年用1%的有机酸和0.5%的酵母膏组成液体培养基,取得了大量香菇菌丝体。我国是在1958年开始研究蘑菇、侧耳等的深层发酵的。1963年羊肚菌液体发酵开始工业化生产试验。自此以后,大规模采用液态发酵生产食药用菌逐渐展开。当时主要研究灵芝(Ganoderma lucidum)、蜜环菌(Armillariella mellea)、银耳(Tremella fuciformis)等的液体发酵应用于医药工业。70年代开始研究香菇(Lentinula edodes)、冬虫夏草(Cordyceps sinensis)、黑木耳(Auricularia auricula)、金针菇(Flammulina velutipes)、猴头(Hericium erinaceus)、草菇(V olvariella volvacea)等的液体发酵。 2 液体发酵培养的特点 2.1原料来源广泛,价格低廉 食药用菌的液体培养所需的碳源可用工业葡萄糖、工业淀粉及山芋粉等;氮源可采用黄豆饼粉、蚕蛹粉、麸皮粉等。为了降低成本,通常还取用部分工业废水为代用品,如糖蜜废母液、木材水解液、各种大豆深加工废水、玉米深加工废水及淀粉废水等,原料来源相当广泛。 2.2菌丝体生长快速 在液体培养中,液体培养基的营养成分分布均匀,有利于菌类营养体的充分接触和吸收。菌丝细胞能在反应器内处于最适温度、pH、氧气和碳氮比的条件下生长,能及时排放呼吸作用产生的代谢废气,因此新陈代谢旺盛,菌丝生长分裂迅速,能在短时间内积累大量的菌丝体和多糖、多肽等具有生理活性的代谢产物。

醋发酵工艺

食醋是以淀粉质为原料,经过淀粉糖化、酒精发酵、醋酸发酵三个主要过程及后熟陈酿而酿制成的一种酸、甜、咸、鲜诸味协调的酸性调味品。 食醋的种类 1.按所用原料分类:用粮食为原料酿制的食醋称为粮食醋或米醋;用薯类原料酿制的食醋称薯干醋;以麸皮为原料酿制的食醋叫麸醋;以含糖原料,如废糖蜜、糖渣、蔗糖等为原料可配制糖醋;用果汁和果酒可酿制果醋;用白酒、酒精和酒糟等可配制酒醋;用冰醋酸加水兑制成醋酸醋;而用野生植物及中药材等酿制的叫代用原料醋。 2.按原料处理方法分类:粮食原料不经过蒸煮糊化处理,直接用来制醋,所得的为生料醋;经过蒸煮糊化处理的原料酿制的食醋为熟料醋。 3.按生产工艺分类: 3.1.按制醋用糖化曲分类 (1)麸曲醋:以麸皮和谷糠为原料,人工培养纯粹曲霉菌制成麸曲做糖化剂,以纯培养的酒精酵母作发酵剂酿制的食醋称为麸曲醋。用麸曲作糖化剂优点很多,如淀粉出醋率高,生产周期短,成本低,对原料适应性强等。但麸曲醋风味不及老法曲醋,麸曲也不易长期贮存。 (2)老法曲醋:老法曲是以大麦、小麦、豌豆为原料,以野生菌自然培养获取菌种而制成的糖化曲。由于曲子的酶系统较复杂,所以老法曲配制的食醋风味优良,曲子也便于长期贮存。但老法曲耗用粮食多,生产周期长,出醋率低,生产成本高,故除了传统风味的名牌醋使用外,多不使用。 3.2.按醋酸发酵方式分类 (1)固态发酵醋:用固态发酵工艺酿制的食醋,风味优良,是我国传统的酸醋方法。其缺点是生产周期长,劳动强度大,出醋率低。 (2)液态发酵醋:用液态发酵工艺酿制的食醋,其中包括传统的老法液态醋、速酿塔醋及液态深层发酵醋,其风味和固态发酵醋有较大区别。 (3)固稀发酵醋:食醋酿造过程中的酒精发酵阶段为稀醇发酵,醋酸发酵阶段为固态发酵,出醋率较高。 4.按颜色分类:熏醋和老陈醋颜色呈黑褐色或棕褐色,可称为浓色醋。如果食醋没有添加焦糖色或不经过熏醅处理,颜色为浅棕黄色,称淡色醋。用酒精为

灵芝菌丝体深层液体发酵的菌种选育

灵芝菌丝体深层液体发酵的菌种选育 作者 学校哈尔滨学院 院系食品科学与工程 班级 10-2 学号

摘要:本文主要列举了灵芝菌丝体深层液体发酵的菌种选育的几种方法,有人工选择,诱变育种,杂交育种,细胞融合工程育种,基因工程育种,通过对比比较,可选出对公司或个人最适合的菌种选育方法。 Abstract: This paper enumerates several methods of breeding strains of Ganoderma lucidum mycelium deep liquid fermentation, artificial selection, mutation breeding, cross breeding, cell fusion engineering breeding, gene engineering breeding, by comparison, can choose the most suitable for company or individual species breeding method. 关键词:菌种选育人工选择诱变育种杂交育种细胞融合工程育种基因工程育种 Keywords: Strain breeding , artificial selection , mutation breeding , cross breeding , Cell fusion engineering breeding , Gene engineering breeding .

灵芝为担子菌纲多孔菌科灵芝属,是一种药,食两用真菌。全世界有104种,我国主要有20多种可作药用,其中重要的有赤芝,紫灵芝,薄树芝等,多分布于贵,鲁,冀,吉,苏,浙等省。自古誉为瑞草仙药,是扶正培本的珍品。它在防病治病,延年益寿等方面的作用得到中外学者的公认。现代医学表明,灵芝具有很高的营养价值和保健价值。 但人工栽培灵芝的生长周期长(大于2~3个月),受环境影响大,产量低、品质不稳定,生产成本高,极大地影响了灵芝及其生物活性物质在饲料业中的发展。因此,近年来人们转向灵芝菌液体深层发酵培养的研究,获得灵芝菌丝体及其活性生长代谢产物(灵芝酸、灵芝多糖等),并通过发酵条件的控制,缩短生产周期,降低生产成本,使灵芝及其生物活性物质饲料添加剂在畜牧业中应用和推广成为可能。 灵芝真菌液体深层发酵培养的基本过程是:生产菌种→孢子制备→种子制备→发酵→发酵产物(提取、精制)→产品。在液体深层发酵生产的过程中,影响生产周期、生产水平和生产成本高低的最主要因素有3个:生产菌种、培养基成分和发酵工艺参数。本文就是灵芝菌丝体深层液体发酵的菌种选育一综述。 在液体发酵生产的过程中,生产菌种的特性是决定生产周期和生产水平的最重要因素。从自然界分离出的灵芝菌,依靠自身代谢调节系统,趋向于平衡生长和繁殖,生长速度慢,生产能力低,不能满足饲料工业规模化生产的需要。为此,采用种种方法来打破灵芝菌的正常代谢,使之失去自我保守性的调节控制,不仅快速生长而且大量积累我们所需要的目标代谢产物(如灵芝多糖、灵芝酸等)。为达到此目的,主要措施就是进行灵芝菌菌种选育工作。菌种是灵芝的根 本。菌种性状的优劣直接影响到生产。因此,必须认真做好菌种的选育工作。通常菌种选育有以下几种方法: 1 人工选择 人工选择也称淘汰法。它是较原始的育种方法,即从自然界有的菌种中通过人工选择,利用人工方法来控制生物的生殖,使生物生殖有选择的进行,从而去劣存优,形成人类所需要的优质新品种。人工选择方法简便,主要有以下几个步骤: (一)收集原始品种根据灵芝的特点,确定采种目标尽可能收集菇形漂亮,朵大,无病虫害等有代表性的菌株。 (二)分离纯种种菇采到后,要尽快进行组织分离,已取得纯种。 (三)测定菌株生理特性分离后,观察菌丝生长的速度,长势,对温度,湿度,光线等条件的反应,初步了解其生物特性。 (四)实验对照采用不同的栽培方法,比较各菌种的生产性能,产量,品质,菇期,温性等各方面进行记录。 (五)规模试验对比试验后,选择相对优质的菌种再进行规模化试验,以便进一步选择优良菌种 (六)菌种推广试验经过规模化试验后,进一步确定了菌种的性能,从而可大面积生产,对广大菇农进行示范推广 2 诱变育种 微生物的诱变育种是以人工诱变手段诱发微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异体中筛选出产量高和性状优良的突变株,并

相关文档
最新文档