12磁介质习题解答

12磁介质习题解答
12磁介质习题解答

1

第十二章 磁介质

一 选择题

1. 磁介质有三种,用相对磁导率r μ表征它们各自的特征时,( ) A .顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ。 B .顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ。 C .顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ。 D .顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >μ。

解:选(C )

2. 关于稳恒磁场的磁场强度H 的下列几种说法中哪个是正确的?( ) A . H 仅与传导电流有关。

B . 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零。

C . 由于闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为

零。

D . 以闭合曲线L 为边界的任意曲面的H 通量均相等。

解:由?∑=?L i I l H d ,H 的环流仅与闭合曲线内的传导电流I 有关,而不是H 仅与传导电流有关,所以A 不对。同样,若闭合曲线内没有包围传导电流,则H 的环流为零,而不是H 为零,B 不对。H 通量的正负与环路的积分方向有关,所以H 通量并不相同,D 不对

所以选(C )

二 填空题

1. 一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为μr 的磁介质,则管内中部附近磁感应强度B 的大小= ,磁场强度H 的大小= 。 解:B =nI r μμ0,H =nI

2. 图示为三种不同的磁介质的B-H 关系曲线,其中虚线表示的是B =μ0H 的关系,说明a 、b 、c 各代表哪一类磁介质的B-H 关系曲线:

a 代表 的B-H 关系曲线;

b 代表 的B-H 关系曲线;

填空题2图

2 c 代表 的B-H 关系曲线。 解:铁磁质、顺磁质、抗磁质

3. 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质,介质中离中心轴距为r 的某点处的磁场强度的大小 H = ,磁感应强度的大小B = 。

解:H = I /(2πr)、B = μH =μI/(2πr )

4. 绕有500匝的平均周长50cm 的细铁环,载有0.3A 电流,铁芯的相对磁导率为600。(1) 铁芯中的磁感应强度B 为 。(2) 铁芯中的磁场强度H 为 。

解:T 2260305

0500

60010π47r 0...nI B =????==-μμ A/m 300r

0===

nI B

H μμ

三 计算题

1. 一沿棒长方向均匀磁化的圆柱形介质棒,直径为

2.5cm ,长为7.5cm ,其总磁矩为1.2?104A ?m 2,求棒中的磁化强度M 和棒的圆柱表面上的磁化电流线密度 α'。

解:A/m 10253075

02

0250π102182

4

?=??=

∑=..).(.V

p M m

A /m 1025.38?=='M α

2. 一根同轴电缆线由半径为R 1的长导线和套在它外面的内半径为R 2,外半径为R 3的同轴导体圆筒组成,中间充满磁导率为μ的各同性均匀非铁磁质,如图,传导电流I 沿导线向上流去,由圆筒向下流回,在它们的载面上电流都是均匀分布的,求同轴线内外的磁感应强度大小B 的分布。

解:由安培环路定理:?∑=?L

i I l H d

10R r <<区域:2

2

2

2π ππ2R Ir R

r I rH =

=

2

12

1π2 ,π2R Ir

B R Ir H O μ=

=

21R r R <<区域:r

I

B r I H π2,π2μ=

=

计算题2图

3

32R r R <<区域:)

)

(π π2222

3

2

2

222R R R r I I rH -

--

=

)1( π22

2

232

22R R R r r I

H ---= )1( π222

232

2200R R R r r

I

H B ---

=

=μμ

3R r >区域:0,0==B H

3. 一半径为R 圆筒形的导体,筒壁很薄,可视为无限长,通以电流I ,筒外

有一层厚为d ,磁导率为μ的均匀磁性介质,介质外为真空,画出此磁场的H-r 图及B-r 图。(要求:在图上标明各曲线端点的坐标及所代表的函数值,不必写出计算过程)。

解:答案见图

H —r 曲线 B —r 曲线

4. 一铁环中心线周长为30cm ,截面积为1cm 2,环上密绕线圈300匝,当导线中通有电流32mA ,通过环的磁通量为2.0?10-6Wb 。试求:(1) 环内的B 和H 的大小;(2) 铁环的磁导率μ和磁化率χm ;(3) 铁环的磁化强度M 。

解:(1)T 02.0/=Φ=S B

A/m 0.32/==l NI H

(2)H/m 1025.6/4-?==H B μ 6496110r m ./=-=-=μμμχ

(3)A/m 1059.140

0?=-=

'=μμH

B j M 方向与I 相反

R

I

π2

第15章磁介质的磁化参考答案

第15章 磁介质的磁化 参考答案 一、选择题 1(C),2(B),3(B),4(C),5(D) 二、填空题 (1). -8.88×10-6 ,抗 . (2). 铁磁质,顺磁质,抗磁质. (3). 2.50×10-4 A/m (4). 各磁畴的磁化方向的指向各不相同,杂乱无章. 全部磁畴的磁化方向的指向都转向外磁场方向. (5). 矫顽力大,剩磁也大;例如永久磁铁. (6). 矫顽力小,容易退磁. 三 计算题 1. 半径为R 、通有电流I 的一圆柱形长直导线,外面是一同轴的介质长圆管,管的内外半径分别为R 1和R 2,相对磁导率为μr .求: (1) 圆管上长为l 的纵截面内的磁通量值; (2) 介质圆管外距轴r 处的磁感强度大小. 解: (1) r I H π= 2 r I B r π=20μμ r l r I R R r d 2210?π=μμΦ120ln 2R R Il r ?π=μμ (2) r I B π=20μ ,与有无介质筒无关 2. 一根无限长的圆柱形导线,外面紧包一层相对磁导率为μr 的圆管形磁介质.导线半径为R 1,磁介质的外半径为R 2,导线内均匀通过电流I .求∶ (1) 磁感强度大小的分布(指导线内、介质内及介质以外空间). (2) 磁介质内、外表面的磁化面电流密度的大小. 解∶(1) 由电流分布的对称,磁场分布必对称.把安培环路定理用于和导线同心的各个圆周环路.在导线中 (0R 2) r I H π23=, r I B π=203μ.

PCB失效分析技术及部分案例

PCB失效分析技术及部分案例 作为各种元器件的载体与电路信号传输的枢纽,PCB已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题。 对于这种失效问题,我们需要用到一些常用的失效分析技术,来使得PCB在制造的时候质量和可靠性水平得到一定的保证,本文总结了十大失效分析技术,供参考借鉴。 1.外观检查 外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB 的失效模式。外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。 2.X射线透视检查 对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X 射线透视系统来检查。X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。目前的工业X光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。 3.切片分析 切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB

磁介质习题解答

第十二章磁介质 一 选择题 1. 磁介质有三种,用相对磁导率r μ表征它们各自的特征时,( ) A .顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ。 B .顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ。 C .顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ。 D .顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >μ。 解:选(C ) 2. 关于稳恒磁场的磁场强度H 的下列几种说法中哪个是正确的?( ) A . H 仅与传导电流有关。 B . 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零。 C . 由于闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为 零。 D . 以闭合曲线L 为边界的任意曲面的H 通量均相等。 解:由?∑=?L i I l H d ,H 的环流仅与闭合曲线内的传导电流I 有关,而不是H 仅与传导电流有关,所以A 不对。同样,若闭合曲线内没有包围传导电流,则H 的环流为零,而不是H 为零,B 不对。H 通量的正负与环路的积分方向有关,所以H 通量并不相同,D 不对 所以选(C ) 二 填空题 1. 一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为μr 的磁介质,则管内中部附近磁感应强度B 的大小=,磁场强度H 的大小=。 解:B =nI r μμ0,H =nI 2.图示为三种不同的磁介质的B-H 关系曲线,其中虚线表示的是B =μ0H 的关系,说明a 、b 、c 各代表哪一类磁介质的B-H 关系曲线: a 代表的B-H 关系曲线; b 代表的B-H 关系曲线; c 代表的B-H 关系曲线。

习题册第十一、十二章磁介质和电磁感应

第十一章 磁介质 第十二章 电磁现象的普遍规律 1、在螺绕环的导线内通有电流I 0=20A ,螺绕环共有线圈400匝,环的平均周长是40cm ,利用冲击电流计测得环内磁感应强度1.0T ,试计算环截面中心处下列各值。 (1) 磁场强度; (2)磁化强度;(3)磁化率和相对磁导率;(4) 磁化面电流; 解:?==?NI H d H )1(l l m /A 100.240.020400NI H 4?=?==l m A 1076.7m A 100.210 40.1H B M )2(5470?=?-?π=-μ= - 8 .38100.21076.7H M )3(4 5 m =??==χ 8.391m r =χ+=μ A 1010.34.01076.7M j I )4(55s s ?=??===l l 2、无限长圆柱形的导体半径R 1,通以电流I ,(均匀 分布在其截面上),导体外是一层均匀的顺磁质,磁导率为μ,介质的外半径为R 2,求: (1) 介质内、外磁场强度H 和磁感应强度B 的分布; (2) 介质内、外表面的磁化电流密度j s 解:(1)由安培环路定理及B 和H 关系可得 2122 11R 2Ir H r R I r 2H R r π=ππ= π<, 2 100R 2Ir H H B πμ= μ=μ= r 2I H I r 2H R r R 2 1π==π<< r 2I H B πμ= μ= r 2I H I r 2H R r 2π= =π> r 2I H B 00πμ= μ= (2) 1 r 1 R s R 2I ) 1( H )1(j π-μμ =-μ=

材料失效分析

材料失效分析

关于散装无铅焊料的脆性到塑形断裂的 转变温度的研究 姓名:肖升宇专业:材料科学与工程学号:0926000333 摘要 断裂韧性的散装锡,锡铜无铅焊料,锡银和测量功能温度通过一个摆锤冲击试验(冲击试验)。韧脆断裂转变他们发现,即急剧变化,断裂韧性,相比没有转变为共晶锡铅。过渡温度高纯锡,Sn-0.5%铜和Sn-0.5%铜(镍)合金在- 125℃含有Ag的焊料显示过渡在较高温度:在范围78到45–°–°C最高转变温度45℃–°测定锡- 5%银,这是球以上的只有30–°角的增加的银内容变化的相变温度较高的值,这可能与高SnAg3颗粒体积分数的焊料的量。这些结果被认为是非常重要的选择最好的无铅焊料组合物。 简介 由2006年七月份。铅的使用电子在欧洲将被禁止,以及无铅焊料应取代锡铅焊料,常用于微电子领域超过50年。许多以Sn为基体的焊料针对于过去几年进行深入研究,如锡银,铜,Sn-Ag-Cu等等,特别是关于其可靠性,工作是远远没有完成。自从这个“软”铅被从焊料中提取出来之后,导致无铅焊料不容易变行和增长了当地积累的应力水平,这也增加了裂缝成核的概率。这显着影响着主要焊点的失效模式,即焊料疲劳。这是众所周知的一些金属松动的低温延性,并表现出脆性断裂模式。因此,韧性到脆性转变温度是一个重要参数。

至于我们的知识,只有现有无铅合金的数据,见迈耶[1],显示出锡5%银的转变温度为-25°,相比没有过渡锡,铅-1.5Ag93.5%。这其实是相当令人失望,因为许多标准热 循环试验开始温度低至-40甚至-60℃,这会影响故障模式。此外,这个温度范围也有一些应用程序,例如航天。“本文的目的是研究几大部分含铅量焊料的脆性到韧性骨折转变温度。 实验 众所周知的一个摆锤冲击试验,“摆锤试验”,用以确定在断裂消耗的能源量,这是一个断裂韧性的措施材料,如温度的功能。“实验装置如图1所示。 对7种合金材料做了测试,结果如下: ·99.99wt.%Sn ·Sn-0.7wt.%Cu, ·Sn-0.7wt.%Cu (0.1wt.%Ni) ·Sn-3wt%Ag-0.5wt%Cu, ·Sn-4wt%Ag-0.5wt%Cu ·Sn-5wt%Ag ·Sn-37wt.%Pb,作为参考 根据所进行的测试ASTM E23标准的V型缺口样品大小为 10x10x55mm。对于某些样本大小为5x5x55mm的合金被使用,由于只有有限的物质可用。锤能量为50J和冲击速度为3.8米/秒。能源锤358J被用于多次测量时吸收能量大于50J。结果是由截面样品表面正

12章 习题答案

[例题分析] 例题12-1 有一半径为r 的均匀刚性导体圆环,其总电阻为R ,处于磁感应强度为B 的匀强磁场中以匀角速度ω (方向如图12-6所示)绕通过中心并处于圆面内的轴线旋转,该轴线垂直于B 。试求当 圆环平面转至与B 平行的瞬间: (1) ε ab 和εac (其中a 点是圆环与转轴的交点,ac 是四分之一圆周,b 是ac 的中点); (2) 比较此时a 和c 两点的电势、a 和b 两点的电 势。 解 (1) 在环的a 、b 之间任意一点P 附近取元段d l ,d l 的方向沿环的切向,v ? B 的方向与转轴平行并指向下方,如图12-6中虚线箭头所示。故有 ???==??=b a b a b a ab l B l B θαεsin d cos d d )(v v l B v , 因为θωsin r =v , d d l r =θ,代入上式,得 εωθθωab r B B r ==-?224 2814 sin ()/ d 0 ππ . 用同样的方法可以得到 εωθθωac r B B r ==?2224 sin d 0/2ππ. 积分所得皆为正值,这表示积分方向就是动生电动势的方向。所以,如果把导体环的ab 段和ac 段看作电源内部,那么a 端是电源的负极,b 端和c 端是电源的正极。 从这里我们得到一个重要的启示:如果得到的电动势为负号,表示电动势的极性与积分方向相反,如果得到的电动势为正号,表示电动势的极性与积分方向相同。我们曾经对电源电动势的极性作出过这样的规定:沿电源内部、从负极到正极的方向是电源的正方向。 (2) 根据动生电动势的方向,可以判断导体环中电流是沿顺时针方向的,电流的大小为 I R B r R ac == 42 εωπ. 所以 U I R B r B r ca ac =-=-=εωω444022 ππ, 这表示a 、c 两点等电势。 U I R B r ba ab =-=- εω842, 这表示a 点的电势高于b 点的电势。 例题12-2 一无限长的同轴电缆是由两个半径分别为R 1和R 2的同轴圆筒状导体构成,其间充满磁导率为μ 的磁介质,在内、外圆筒状导体中通有方向相反的电流I 。求单位长度电缆的磁场能量和自感系数。 图12-6

《大学物理》习题册题目及答案第13单元 磁介质

o 第13单元 磁介质 第九章 电磁场理论(二) 磁介质 麦克斯韦方程组 学号 姓名 专业、班级 课程班序号 一 选择题 [ B ]1. 顺磁物质的磁导率: (A) 比真空的磁导率略小 (B) 比真空的磁导率略大 (C) 远小于真空的磁导率 (D) 远大于真空的磁导率 [ C ]2. 磁介质有三种,用相对磁导率r μ表征它们各自的特性时, (A )顺磁质0>r μ,抗磁质0>r μ (B )顺磁质1>r μ,抗磁质1=r μ,铁磁质1>>r μ (C )顺磁质1>r μ,抗磁质1>r μ (D )顺磁质0>r μ,抗磁质0r μ [ B ]3. 如图,平板电容器(忽略边缘效应)充电时,沿环路L1,L2磁场强度H 的环流中,必有: (A )???>?2 11 L L d d l H l H (B )???=?211L L d d l H l H (C )???

(完整版)磁介质中的磁场

第十二章磁介质中的磁场 一、基本要求 1.了解顺磁质、抗磁质和铁磁质磁化的特点及磁化机理。 2.掌握有磁介质时的安培环路定理,确切理解磁介质中的磁感应强度、磁场强度和磁化强度的物理意义及其关系。 二、磁介质的磁化 所谓磁介质的磁化是指在外磁场作用下,磁介质出现磁化电流的现象。对于各向同性的均匀磁介质而言,磁化电流只可能出现在它的表面上。 1)磁化的微观机制 分子电流:把分子看作一个整体,分子内各电子对外界所产生的磁效应的总和用一个等效的圆电流表示,这个圆电流称为分子电流。 分子磁矩:分子电流的磁矩称为分子磁矩,记为P→m分子 a.顺磁质 顺磁质分子的固有磁矩不为零。无外磁场时,由于热运动分子磁矩的取向杂乱无章,在每一个宏观体积元内分子磁矩的矢量和为零,因而对外界不显示磁性。 在外磁场存在时,每个分子磁矩受到一力矩的作用,此力矩总是力图使分子磁矩转到外磁场方向上去,各分子磁矩在一定程度上沿外磁场方向排列起来,这就是顺磁质的磁化。此时,顺磁质磁化后产生的附加磁场在顺磁质内与外磁场方向相同,显示了顺磁性。 b.抗磁质 抗磁质的分子磁矩为零。在无外磁场作用时不显示磁性。在外磁场存在时,在外磁场作用下,使抗磁质分子产生与外磁场方向相反的感生磁矩,这就是抗磁质的磁化。此时,抗磁质磁化后产生的附加磁场在抗磁质内与外磁场方向相反,显示了抗磁性。 应该指出:抗磁性在具有固有磁矩的顺磁质分子中同样存在,只不过它们的顺磁效应比抗磁效应强得多,抗磁性被掩盖了。 近代理论表明:铁磁质的磁性主要来源于电子自旋磁矩。无外磁场时,根据量子力学理论,电子之间存在着一种很强的交换耦合作用,使铁磁质中电子自旋磁矩在微小区域内取向一致,形成一个个自发磁化的微小区域,即磁畴。在未磁化的铁磁质中,各磁畴的自发磁化方向是杂乱无章的,所以在宏观上不显示磁性。在不断加大的外磁场作用下,磁畴具有并吞效应,即磁化方向(亦磁畴磁矩方向)与外磁场方向接近的磁畴吞并附近那些与外磁场方向大致相反的磁畴,直至全部吞并。若继续加大外磁场,则使并吞后保留下的磁畴的磁矩逐渐转向外磁场方向,直至所有磁畴的磁矩取向与外磁场方向相同,此时磁化达

15章磁介质习题答案

第15章 磁介质的磁化 一、选择题 1(C),2(B),3(B),4(C),5(D) 二、填空题 (1). -8.88×10-6 ,抗 . (2). 铁磁质,顺磁质,抗磁质. (3). 7.96×105 A/m , 2.42×102 A/m. (4). 各磁畴的磁化方向的指向各不相同,杂乱无章. 全部磁畴的磁化方向的指向都转向外磁场方向. (5). 磁导率大,矫顽力小,磁滞损耗低. 变压器,交流电机的铁芯等. 三 计算题 1. 一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布. 解:由安培环路定理: ∑∫?=i I l H v v d I 0< r R 3区域: H = 0,B = 0 2. 螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小. 解: ===l NI nI H /200 A/m ===H H B r μμμ0 1.06 T 3. 一铁环的中心线周长为0.3 m ,横截面积为1.0×10-4 m 2,在环上密绕300匝表面绝缘的 导线,当导线通有电流3.2×10-2 A 时,通过环的横截面的磁通量为2.0×10-6 Wb .求:

材料失效分析报告报告材料

上海应用技术学院 研究生课程(论文类)试卷 2 0 15 / 2 0 16 学年第二学期 课程名称:材料失效分析与寿命评估 课程代码:NX0102003 学生姓名:丁艳花 专业﹑学号:材料化学工程 156081101 学院:材料科学与工程学院

凝汽器铁管管壁减薄的失效分析报告 1.失效现象描述 秦山第三核电公司1#700M W重水堆核能发电机组2A凝汽器。该凝汽器从2002年8月起投入使用,实际运行时间8年左右。根据资料记载,1#机组第3次例行大修时,管外壁减薄程度较轻,但在第4次例行大修时发现管外壁减薄程度加深,在2010年5月第5次例行大修时发现部分钛管外壁减薄现象相当明显。各机组凝汽器缺陷管主要分布在冷凝管塔式分布的最外侧。据专业人员介绍,大修后对缺陷管抽管检查后发现,管壁减薄主要集中在支撑板处,减薄位置和减薄程度各不相同。如果让异常减薄缺陷管继续运行,有可能引起管穿孔的泄漏事件。 2.背景描述 凝汽器是大型汽轮机循环设备中的重要环节。其中的冷凝管起到将蒸汽凝结成水的作用,是凝汽器中的核心部件。冷凝管一旦发生破损将导致冷却水泄露并污染循环水,从而会对整个系统的正常运行造成严重影响。因此冷凝管的选材质量决定了凝汽器的安全可靠性与使用寿命。工业纯钛作为冷凝管最常用的材料,具有良好的力学性能与耐蚀性能。在复杂运行工况下,纯钛材料仍有可能发生磨损、腐蚀等常见的材料失效现象,引发冷凝管破损并导致冷却水泄露并污染循环水,由此对凝汽器的正常运行带来安全隐患。若不找到这一过早失效的真正起因,并采取有效的防护措施,最终必将导致钛管泄漏,不但经济损失巨大,甚至有可能引发重大安全事故。 国内关于凝汽器钛管的案例的产生原因大致可分为以下几类: 第一类,由于相关方面施工建造时就存在不当操作或不当设计导致运行中出现落物砸伤或凝汽器自身运行故障。如国华太仓发电超临界机组发生凝汽器钛管泄露导致冷凝水水质不合格,其原因在于上部低压加热器表面隔板未按规定安装,导致隔板掉落砸伤引起泄露。再如未充分考虑到钛管共振问题由于钛管本身管壁极薄(0.5mm到0.7mm),强烈的震动极易导致铁管破裂引起泄露,这点在宝钢电厂与大亚湾核电站的运行中已经得到了证实此外还存在着钛管板间焊接质量不良,

磁场中的磁介质

§13-4磁场中的磁介质 在磁场中的磁介质要和磁场发生相互作用,结果也会使磁介质和磁场发生相应的改变。 一、磁介质及其磁化机制 1.磁介质 所谓磁介质,是指在考虑物质受磁场的影响或它对磁场的影响时,我们把它们统称为磁介质(magnetic medium) 一个小圆电流所产生的磁场或它受磁场的作用都可以用它的磁偶极 矩(简称磁矩)来说明。以I表示电流,S表示圆面积,则一个圆电流的磁矩为 下面我们用一个简单的模型来估算原子内电子轨道运动的磁矩的大小。假设电子在半径为r的圆周上以恒定的速率绕原子核运动。电子轨 道运动的周期就是。由于每个周期内通过轨道上任一截面的电量为一个电子的电量e, 在一个分子中有许多电子和若干个核,一个分子的磁矩是其中所有电子的轨道磁矩和自旋磁矩以及核的自旋磁矩的矢量和。有些分子在正常情况下,其磁矩的矢量和为零,由这些分子组成的物质称为抗磁质(diamagnetic medium)。 有些分子在正常情况下其磁矩的矢量和不为零,而是具有一定的值,这个值叫做分子的固有磁矩。由这些分子组成的物质称为顺磁质

(paramagnetic medium )。 2.磁介质磁 化的微观机制 (1)进动与 附加磁矩 将物质放入 一外磁场0中, 在外磁场作用下, 电子的轨道磁矩 和自旋磁矩以及 原子核的自旋磁 矩都要受到磁力 矩的作用。 可以证明:不 论电子原来的磁 矩与磁场方向之 间的夹角是何值,在磁场0中,角动量进动的转向总是和0的方向满足右手螺旋关系。电子的进动也相当于一个圆电流,因为电子带负电,这种等效电流的磁矩的方向永远与0的方向相反(图13-16a、b)。因进动而产 生的等效电流的磁矩称为附加磁矩,用表示。对电子及原子核的自旋, 外磁场也产生相同的效果。 因此,在外磁场的力矩作用下,一个分子内的所有电子和原子核都产生与外磁场方向相反的附加磁矩,这些附加磁矩的矢量和称为该分子在外磁场中所产生的感应磁矩(induced magnetic moment)。感应磁矩的方向总是和外磁场的方向相反的。 [动画—电子进动] (2)抗磁质的磁化 在抗磁质中, 每个原子或分子 中所有电子的轨 道磁矩和自旋磁

介质中的磁场

第九章 介质中的磁场 一、 基本要求 1.了解介质的磁化现象及其微观解释。 2.了解铁磁质的特性。 3.了解各向同性介质中H 和B 之间的关系和区别。 4.了解介质中的高斯定理和安培环路定理。 二、 基本概念和规律 1.基本概念包括:磁化现象,磁介质的分类,顺磁质、抗磁质的磁化及磁化机理,磁化强度,磁畴,铁磁质的磁化机理及性质。 2.介质中的安培环路定理 ?∑=?L I l d 0 H 在介质中应该应用介质中的安培环路定理,应该注意到方程的右边是穿过以L 为边界的任意曲面的传导电流的代数和。对于均匀介质,磁感应强度 矢量B 等于磁场强度矢量的μ 倍。 三、 习题选题 9-1 一螺绕环通以电流A I 200=,若已测得环内磁介质中的磁感应强度为B ,已知环的平均周长是L ,并绕有导线总匝数为N ,先写出磁场强度、磁化强度、磁化系数、磁化面电流和相对磁导率;当A I N cm L m W b B 20400400.102===?=-匝,,,,再求出具体结果。 解: M H B +=0μ )1(0m χμμ+= (1) 磁场强度 140102-??===m A I L N nI H (2) 磁化强度 150001076.7-??=- =-=m A I L N B H B M μμ (3) 磁化系数(磁化率) 8.38==H M m χ (4) 磁化面电流(单位长度安培表面电流) 151076.7-??==m A M i s

总表面电流 A L i I s s 5101.3?== 相对磁导率 8.3910 =+==m r χμμμ 9-2 一根无限长的直圆柱铜导线,外包一层相对磁导率为r μ的圆筒形磁介质,导线半径为1R ,磁介质的外半径为2R 。导线内有电流I 通过。求: ⑴磁介质内、外的磁场强度和磁感应强度和磁感应强度的分布,用安培环路定理求并画r B r H --,曲线说明分布情况,其中r 是磁场中某点到圆柱轴线的距离。 ⑵磁介质内、外表面的磁化面电流密度的大小和方向? ⑶若在介质外再套上一层同心圆环柱金属导体就形成同轴电缆(外半径为3R ),再讨论⑴、⑵两问。 解:(1)由于磁场具有轴对称性,在铜导线内以O 为圆心,r 为半径取一圆形闭合回路10R r ≤≤根据安培环路定律有 ?∑=L I dl H 1 I R r rH 21 2 12πππ= I R r I rR r H 21 212122ππ== 21 0112R rI B r πμμ=(1r μ为铜的相对磁导率) 在磁介质内以O 为圆心,r 为半径取闭合回路 12R r R ≥≥ 由安培环路定律 ?∑=L I dl H 2 I rH =22π r I H π22= r I B r πμμ202= 同理在磁介质外与圆心相距为r 处2R r ≥ r I H π23= r I B πμ203=

试用一个典型案例说明材料失效分析与基础学科及应用学科之间的关系

中原油田全油田有100多口井套管腐蚀穿孔,30多口井报废,200多口井套管待修。油井套管的最大穿孔速度为0.48mm/年。 对现场取出损坏的套管进行解剖分析。 1.套管腐蚀形貌:套管内壁分布腐蚀坑,腐蚀沿管轴纵向延伸呈马蹄形,其横断面为上宽下窄的梯形深谷状,管壁穿孔处周边锐利,界面清晰。从总体上看,套管内壁都附着黑色粘性油污,无明显腐蚀产物堆积,主要表现为坑蚀穿孔,并有一定的流体冲刷作用。 2.腐蚀产物XRD分析 取套管内壁物质,洗去油污,再用丙酮清洗吹干,进行X射线衍射分析。套管内壁腐蚀产物中主要有FeCO3和CaCO3,夹杂有NaCl和硫酸亚铁。腐蚀产物的主要成分为碳酸物,显示出套管、油管腐蚀与CO2腐蚀有关。 3.油套管材质的金相和非金属夹杂分析 采用电子探针分析仪进行钢基、夹杂物定性、定量和 元素面分析。 分析发现,大量细小球形暗灰色颗粒为Al2O3,短条状为ZnS,材质中夹杂物以二者为主。同时经电子探针元素定量分析表明,随着向腐蚀坑底的深入,表层元素中氧、硫、氯、钙、镁含量在增大。说明生成的腐蚀产物有氧化物、硫化铁、碳酸钙、碳酸镁等,并随腐蚀深入呈增加趋势。 4.腐蚀试验 (一)用油田水样对套管钢和油管钢进行了动态和静态腐蚀试验,温度50o C密闭除氧试验时间7天。结果表明:动态腐蚀速度远远大于静态腐蚀速度。(二)在此基础上又进行了不同流速对腐蚀影响的试验,说明介质流动能较大的

增加体系的腐蚀。 (三)不同CO2分压下,Q235钢在3℅NaCl熔液中的腐蚀速度。表明CO2压力越大,腐蚀越严重。 结论: (1).复杂断块油田套管腐蚀失效主要是油井高矿化度产出水中CO2腐蚀作用的结果。 (2).套管的局部腐蚀破裂形态与钢材中夹杂物的局部分布、流体冲刷有密切关系。 (3).综合对腐蚀形态特征的观察判断,腐蚀产物的分析,材质金相非金属夹杂分析,可以找到套管腐蚀失效的主要原因。 由上面该案例的分析可以看出,材料失效分析与基础学科及应用学科之间有密不可分的关系。在进行分析的过程中会用到物理、化学、数学等基础学科。用到化学中的电镜对腐蚀形貌进行分析;会用到数学中的数学分析,对腐蚀速度等进行分析;会涉及到物理学中的结构方面的知识;还会用到地理学进行环境分析等等。在进行失效分析过程中还会用到应用学科,如计算机类,会用到计算机进行一系列的数值分析,图像分析;还会用到应用化学中的环境检测,质量检测等技术。总之,在进行腐蚀材料失效分析时,会综合运用到基础学科的知识和应用学科的技术。 2、试用两个实际的失案例说明材料实效分析的重要性。(既有文字说明,又有图片说明,不少于800字) 案例一:一起来自水管腐蚀失效的案例:广东某钢管公司铺设的自来水管使用六年后发生穿孔泄露。 1.本起穿孔失效发生的地点和环境无规律性,对穿孔管道进行仔细观察,典型的宏观外貌是穿孔部位有一直径为10mm的锈瘤,呈黄褐色,用硬器易刮除,刮除后露出的水管外壁基本平整,可见水从管内渗出。 在锈瘤的外围是一圈黄色锈迹,锈迹外是镀锌层,其上可见分散的白色粉末。现场观察到的形貌还有一个特点,就是同一根管若出现几处结瘤,这些结瘤点的连线与水管轴向平行。 2.水样检测及钢管材质检测 取该镇两个不同地点的水样,进行PH检测以及腐蚀性检测,并与实验室水进行比较。 项目取水点1 取水点2 实验室用水 PH 6.15 6.23 6.41

第12章题解

一矩形线圈放在均匀磁场中,磁场的方向垂直于纸面向内(见附图),已知通过线圈的磁通量与时间的关系为2 3 34510Wb (t t )-Φ=++?。求:(1)线圈中感应电动势与时间的 关系。(2)6t =s 时,感应电动势的大小以及此时电阻上的电流方向。 解:(1)感生电动势大小为 3(64)10d t V dt ε-Φ =- =-+? (2) 6t s =时 2 410V ε-=? 因为,垂直纸面向内的磁通量随着时间的推移逐渐增大,所以感应电流所产生的磁通量垂直纸面向外,由右手定则可知电阻的电流方向向右。 一根很长的直导线中通有交变电流0i I sin t ω=,式中0I 及ω都是常数。有一矩形线圈ABCD 与长直导线在同一平面内,其中长为l 的两对边与直导线平行(见附图)。求线圈中的感应电动势。 解:距导线r 处的磁感应强度为: 02I B r μπ= , 矩形线圈内的磁通量为磁感应强度对矩形面积的积分: 00ln 22b a I Il b BdS ldr r a μμππΦ==?=?? , 线圈中的感应电动势为: 00ln ln cos 22l w l d b dI b wt dt a dt a μμεππΦ =- =-=-? 半径分别为R 和r 的两个圆形线圈共轴放置,相距为x (见附图).已知r x (因而

大线圈在小线圈内产生的磁场可认为是均匀的)。设x 以匀速率dx v dt = 随时间变化。(1)将小线圈的磁通Φ表示为x 的函数。(2)将小线圈的感应电动势的绝对值ε表示为x 的函数。(3)若0v >,确定小线圈中感应电流的方向。 解:(1)当两线圈相聚x 时,小线圈内的磁感应强度为:2 0223/2 2()IR B R x μ= + 磁通量: 22 2 02 23/2 2() I R r BS B r R x μππΦ=== + (2)当x 变化时,小线圈内磁通量也发生变化。小线圈中感生电动势为: 2222223/200225/2 1 3()2 2() d I R r I R r vx d dx R x dt dx dt R x μπμπεΦ+=-=? ?=+ (3)当0v >时。两线圈的距离增大,小线圈面积上的磁通量减小。根据楞次定律,小线圈上应产生与大线圈相同方向的感应电流,即电流方向为逆时针方向。 导体棒AB 与金属轨道CA 和DB 接触,整个导体框放在050B .=T 的均匀磁场中,磁场的方向与图面垂直(见附图)。求:(1)若导体棒以4.0m/s 的速度向右运动,导体棒内的感应电动势的大小和方向。(2)若导体棒运动到某一位置时,电路的电阻为Ω,在此时导体棒受到的安培力。(3)比较外力做功的功率和电路中消耗的热功率。 解:(1)由法拉第电磁感应定律,可知当导体棒向右做切割磁感线运动时,在导体棒内产生的感应电动势大小为(取回路绕行正方向为顺时针方向): 0.500.5 4.01Blv V V ε=-=-??=- 0ε<表明感应电动势的方向与回路绕行方向相反,即逆时针方向。 (2)电阻0.02R =Ω,此时电流为: 1 50.2 I A A R ε = = = 导体棒所受安培力为:0.0550.50.125F BIl N N ==??= (3)外力做功功率 2 2 50.25P I R W W ==?=

第15章磁介质

第15章磁介质 一、物质的磁化 1、磁介质中的磁场 设真空中的磁感应强度为的磁场中,放进了某种磁介质,在磁场和磁介质的相互作用下,磁介质产生了附加磁场,这时磁场中任意一点处的磁感应强度 2、磁导率 由于磁介质产生了附加磁场磁介质中的磁场不再等于原来真空中的磁场,定义和的比值为相对磁导率: 介质中的磁导率: 式中为真空中的磁导率 3、三种磁介质 (1)顺磁质:顺磁质产生的与方向相同,且。 略大于1 (2)抗磁质:抗磁质产生的与方向相反,且。 略小于1 (3)铁磁质:铁磁质产生的与方向相同,且。 远大于1 二、磁化强度 1、磁化强度定义为单位体积中分子磁矩的矢量和即:

2、磁化强度与分子面电流密度的关系: 式中为磁介质外法线方向上的单位矢量。 3、磁化强度的环流 即磁化强度对闭合回路的线积分等于通过回路所包围面积内的总分子电流 三、磁介质中的安培环路定律 1、安培环流定律在有磁介质条件下的应用 即: 2、磁场强度定义为: 3、磁介质中的安培环路定律: 4、应用磁介质中的安培环路定律的注意点: (1)的环流只与传导电流有关,与介质(或分子电流)无关。 (2)的本身()既有传导电流也与分子电流有关。既描写了传导电流磁场的性质也描写了介质对磁场的影响。 (3)要应用磁介质中的安培环路定律来计算磁场强度时,传导电流和磁介质的分布都必须具有特殊的对称性。

5、磁介质中的几个参量间的关系: (1)磁化率 (2)与的关系 (3)与等之间的关系 四、磁场的边界条件(界面上无传导电流) ?、壁介蔨分界面伤边磁感应强度的法向分量连廭,即? 2、磁介谨分界面两?的磁场强嚦纄切向分量连续,即: ? 3 磃感应线的折射定律 ā*怎义如图15-1所示) 五、铁磁物贩

第15章磁介质

一、物质的磁化 1、磁介质中的磁场 设真空中的磁感应强度为的磁场中,放进了某种磁介质,在磁场和磁介质的相互作用下,磁介质产生了附加磁场 ,这时磁场中任意一点处的磁感应强度 2、磁导率 由于磁介质产生了附加磁场磁介质中的磁场不再等于原来真空中的磁场,定义和的比值为相对磁导率: 介质中的磁导率: 式中为真空中的磁导率 3、三种磁介质 (1)顺磁质:顺磁质产生的与方向相同,且。 略大于1 (2)抗磁质:抗磁质产生的与方向相反,且。 略小于1 (3)铁磁质:铁磁质产生的与方向相同,且。 远大于1 二、磁化强度 1、磁化强度定义为单位体积中分子磁矩的矢量和即:

2、磁化强度与分子面电流密度的关系: 式中为磁介质外法线方向上的单位矢量。 3、磁化强度的环流 即磁化强度对闭合回路的线积分等于通过回路所包围面积内的总分子电流 三、磁介质中的安培环路定律 1、安培环流定律在有磁介质条件下的应用 即: 2、磁场强度定义为: 3、磁介质中的安培环路定律: 4、应用磁介质中的安培环路定律的注意点: (1)的环流只与传导电流有关,与介质(或分子电流)无关。 (2)的本身()既有传导电流也与分子电流有关。既描写了传导电流磁场的性质也描写了介质对磁场的影响。 (3)要应用磁介质中的安培环路定律来计算磁场强度时,传导电流和磁介质的分布都必须具有特殊的对称性。

5、磁介质中的几个参量间的关系: (1)磁化率 (2)与的关系 (3)与等之间的关系 四、磁场的边界条件(界面上无传导电流) 1、磁介质分界面两边磁感应强度的法向分量连续,即: 2、磁介质分界面两边的磁场强度的切向分量连续,即: 3、磁感应线的折射定律 (意义如图15-1所示) 五、铁磁物质

第12章题解

12.1 一矩形线圈放在均匀磁场中,磁场的方向垂直于纸面向内(见附图),已知通过线圈的磁通量与时间的关系为2334510Wb (t t )-Φ=++?。求:(1)线圈中感应电动势与时间的关系。(2)6t =s 时,感应电动势的大小以及此时电阻上的电流方向。 解:(1)感生电动势大小为 3(64)10d t V dt ε-Φ=- =-+? (2) 6t s =时 2410V ε-=? 因为,垂直纸面向内的磁通量随着时间的推移逐渐增大,所以感应电流所产生的磁通量垂直纸面向外,由右手定则可知电阻的电流方向向右。 12.2 一根很长的直导线中通有交变电流0i I sin t ω=,式中0I 及ω都是常数。有一矩形线圈ABCD 与长直导线在同一平面内,其中长为l 的两对边与直导线平行(见附图)。求线圈中的感应电动势。 解:距导线r 处的磁感应强度为: 02I B r μπ=, 矩形线圈内的磁通量为磁感应强度对矩形面积的积分: 00ln 22b a I Il b BdS ldr r a μμππΦ==?=?? , 线圈中的感应电动势为: 00ln ln cos 22l w l d b dI b wt dt a dt a μμεππΦ=-=-=-? 12.3 半径分别为R 和r 的两个圆形线圈共轴放置,相距为x (见附图).已知r x = (因而大线圈在小线圈内产生的磁场可认为是均匀的)。设x 以匀速率dx v dt =随时间变化。(1)将小线圈的磁通Φ表示为x 的函数。(2)将小线圈的感应电动势的绝对值ε表示为x 的函数。(3)若0v >,确定小线圈中感应电流的方向。 解:(1)当两线圈相聚x 时,小线圈内的磁感应强度为:2 0223/22()IR B R x μ=+

12磁介质习题解答

1 第十二章 磁介质 一 选择题 1. 磁介质有三种,用相对磁导率r μ表征它们各自的特征时,( ) A .顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ。 B .顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ。 C .顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ。 D .顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >μ。 解:选(C ) 2. 关于稳恒磁场的磁场强度H 的下列几种说法中哪个是正确的?( ) A . H 仅与传导电流有关。 B . 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零。 C . 由于闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为 零。 D . 以闭合曲线L 为边界的任意曲面的H 通量均相等。 解:由?∑=?L i I l H d ,H 的环流仅与闭合曲线内的传导电流I 有关,而不是H 仅与传导电流有关,所以A 不对。同样,若闭合曲线内没有包围传导电流,则H 的环流为零,而不是H 为零,B 不对。H 通量的正负与环路的积分方向有关,所以H 通量并不相同,D 不对 所以选(C ) 二 填空题 1. 一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为μr 的磁介质,则管内中部附近磁感应强度B 的大小= ,磁场强度H 的大小= 。 解:B =nI r μμ0,H =nI 2. 图示为三种不同的磁介质的B-H 关系曲线,其中虚线表示的是B =μ0H 的关系,说明a 、b 、c 各代表哪一类磁介质的B-H 关系曲线: a 代表 的B-H 关系曲线; b 代表 的B-H 关系曲线; 填空题2图

失效分析案例举例

失效分析案例举例

案例1 油井套管腐蚀 0、背景介绍: 1、套管腐蚀形貌 2、腐蚀产物XRD分析 3、油套管材质的金相和非金属夹杂分析 4、管壁SRB分析检测 5、腐蚀试验 6、结论

背景介绍:中原油田全油田有100多口井套管 腐蚀穿孔,30多口井报废,200多口井套管待修。油井套管的最大穿孔速度为0.48mm年。 1套管腐蚀形貌 对现场取出损坏的套管进行解剖分析。套管内壁分布腐蚀坑,管内壁腐蚀面平稳,腐蚀沿管轴纵向延伸呈马蹄形,其横断面为上宽下窄的梯形深谷状,管壁穿孔处周边锐利,界面清晰。从总体上看,套管内壁都附着黑色粘性油污,无明显腐蚀产物堆积,主要表现为坑蚀穿孔,并有一定的流体冲刷作用。

2腐蚀产物XRD分析 取套管内壁物质,洗去油污,再用丙酮清洗吹干,进行X—射线 衍射分析。套管内壁腐蚀产物中主要有FeCO 3和CaCO 夹杂有NaCl和硫酸亚铁等。腐蚀产物的主要成份为碳酸盐,显示出套管、油管腐蚀与CO 2 腐蚀有关。 3油套管材质的金相和非金属夹杂分析 采用电子探针分析仪进行钢基、夹杂物定性、定量和元素面分析。套管钢的纵截面夹杂物形貌及面分析发现, 大量细小球形 暗灰色颗粒为Al 2O 3 , 短条状为MnS。材质中夹杂物以Al 2O 3 和MnS为主, 少量Al 2 O 3 、TiO2存在。整个材料裂口 面上夹杂物多且分散较均匀,夹杂物以Al 2O 3 、MnS为主 散均匀,加速了钢材的腐蚀。同时经电子探针元素定量分析表明随着向腐蚀坑底的深入,表层元素中氧、硫、氯、钙、镁含量在逐步增大。说明生成的腐蚀产物有铁氧化物、硫化铁、碳酸钙、碳酸镁等,并随腐蚀深入呈增加趋势。

磁介质中的恒定磁场.(DOC)

第5章 磁介质中的恒定磁场 ● 静止电荷之间存在相互作用,它是通过电场完成的。静止电荷在它周围将激发电场,该电场对另外的静止电荷产生作用力,叫电场力。 ● 运动电荷之间存在运动产生的相互作用,它是通过磁场完成的。运动电荷在它周围将激发磁场,该磁场对另外的静止电荷不产生作用力,而对另外的运动电荷将产生作用力,叫磁场力。 ● 磁场用磁感应强度和磁场强度描写,它们也都是空间位置的函数。 ● 电荷在导体中作恒定流动(恒定电流)时在它周围所激发的磁场不随时间而变化,是一个恒定场,叫恒定磁场。 5-1 磁介质的磁化 1. 磁介质 ● 磁介质:能够改变外加磁感应强度0B 分布的介质叫磁介质; ● 磁介质的磁化:在外加磁感应强度0B 的作用下,磁介质内部状 态发生改变叫磁介质的磁化; ● 磁介质的附加磁感应强度:磁化的磁介质能够激发磁感应强度 B ,这个磁感应强度叫磁介质的附加磁感应强度; ● 磁介质中的磁感应强度:磁介质中的磁感应强度是外加磁感应强度

0B 与磁介质的附加磁感应强度B ' 之和 B B B '+= 0 ● 顺磁质:使0B B >的磁介质叫顺磁质,顺磁质激发的附加磁感 应强度B ' 与加磁感应强度0B 的方向基本一致:锰、铬、铂、氮 等。 ● 抗磁质:使0B B <的磁介质叫抗磁质,抗磁质激发的附加磁感 应强度B ' 与加磁感应强度0B 的方向基本相反:水银、铜、铋、 氯、氢、银、金、锌、铅等。 ● 铁磁质:使0B B >>的磁介质叫铁磁质,铁磁质激发的附加磁感应强度B ' 与加磁感应强度0B 的方向基本一致且大于0B :铁、镍、钴等 ● 磁介质磁性的测试方法:

最新企业内部控制失效案例分析名师资料合集

企业内部控制失效案例分析 -万福生科 一、公司介绍 万福生科(湖南)农业开发股份有限公司的前身是成立于2003年的湖南省桃源县湘鲁万福有限责任公司,2006年3月更名为湖南湘鲁万福农业开发有限公司。2009年10月,经股东会审议通过,整体变更设立万福生科(湖南)农业开发股份有限公司,法定代表人人为龚永福。经中国证监会许可,面向社会公开募股集资,两年后也就是2011年9月27日在创业板上市。发行上市后注册资本由原来的5000万元变更为6700万元。 万福生科自成立以来,致力于稻米精深加工系列产品的研发、生产与销售。公司以稻米、碎米为主要原材料,采用公司自主设计的工艺体系和配套的设备系统,运用先进的物理、化学和生物工程技术,对稻米进行综合开发,制作出大米淀粉、大米蛋白粉、米糠油等产品。此外,万福生科在全国创造了第一个以大米淀粉糖和大米蛋白为核心产品的稻米精深加工以及副产物高效综合利用的循环经济生产模式、,并且发展迅速,逐步实现了工艺技术、产品结构和管理水平的动态升级,已成为我国南方循环经济和副产品综合

利用效率最高、产业链条最长的企业之一。 万福生科是农业产业化经营的为主体的现代化企业,经营范围涉猎广泛主要包括粮食收购及农产品深加工,注重科研,改善销售模式,逐渐成长为省级龙头企业及高新技术企业,与此同时,积极推进节能减排工作,倡导绿色环保产业链进行生产,广受好评。 二、案例基本情况 2012年8月,湖南证监局不定期对上市公司进行现场检查,在检查万福生科得时候,发现有三套账本,财务舞弊问题自此浮出水面。在2012年9月对万福生科的例行巡查中发现,刚上市不久的万福生科预付账款和在建工程款都存在异常:万福生科2012年半年报显示预付账款增加了约2632万,期末余额达到14500万之多;在建工程科目的账面余额从8675万激增至18000万。无论是参照同行业还是对比其以往的经营活动,这组数据均显得不太符合常理。调查一步步深入进行,万福生科的财务造假也逐渐清晰起来,在2012年半年度报告中,万福生科虚增营业收入187, 590, 816. 61元,虚增营业成本145, 558, 495. 31元,虚增利润40, 231, 595. 41元,金额之巨大足以使上半年财务报告盈亏向发生颠覆性地变化。事件到此远没有结束,万福生科随后被查出在2008年至2011年累计虚增收入约7. 4亿元,

相关文档
最新文档