水力学实验之平面静水总压力分析

水力学实验之平面静水总压力分析
水力学实验之平面静水总压力分析

平面静水总压力实验

俞小彤 1119010309 11级大禹港航

一、实验简介:

目的:掌握解析法与压力图法,测定矩形平面上的静水总压力;验证平面静水理论。 原理:作用于任意形状平面上的静水总压力P 等于该平面形心点的压强与平面面积A 的乘积,即A p P c ?=。矩形平面上的静水总压力等于压强分布图的体积,即b P ?Ω=。对于三角

形分布:

H e gH P 31,212==ρ,对于梯形分布:21212123,)(21H H H H a e ab H H g P ++?=+=ρ 由力矩平衡:10PL GL =,其中e L L -=1

。 二、数据分析:

图一:理论与实测静水压力图

图二:理论与实测压力的相对值

二、实验成果分析:

拿到了全班同学的平面静水总压力数据进行分析,分别求出理论静水点压力与实测静水总压力,以及他们的相对值y(实测压力值/理论压力值),作图一:理论与实测静水压力图,图二:理论与实测压力的相对值。

从图一共有三条线,分别是包络线1,2与理论斜率k=1,可以直观地看出,数据点均在包络线1,2内部,且在直线k=1两侧分布,包络线1,2的斜率分别是k1= 1.0518,k2=0.9535,均与k=1差别不大,可以认为在5%以内;由图二直观的看出,相对值在1处上下波动,大部分点落在0.9与1.1之间,少数的落到0.9以下。与1相差不大,可认为在误差范围内,有个数据在0.7左右,可以认为是粗心导致的读数不准确,除去这个数据点,对余下的相对值求平均值得0.954424,之所以会比1小,可能是以下的仪器与操作误差引起。

三、误差分析:

一般分为系统误差,随机误差,由实验步骤,实验仪器与实验数据可得以下的误差来源:1,实验仪器误差:

(1)支点位置,因为扇形体的圆柱形曲面上各点处的静水总压力均通过其圆心,故支点必须在圆心上。否则,圆柱形曲面上的静水总压力就会对杠杆受力发生作用,产生测量误差;(2)杠杆的力臂误差,电子杆的误差,水位测量误差以及杠杆水平度的误差都会对最终的结果的精度产生影响。

2,操作误差:(1)调整平衡杆时放水速度过快,且未等平衡杆停稳就读数,会导致实测值比理论值小,符合大部分实测值比理论值小的情况;

(2)出水阀门没有关紧,在调稳平衡杆准备开始读数时,有水流出,但平衡杆发生微小形变没有被察觉,从而导致实际读数变小;

3,随机误差:由某些偶然因素引起,这也是有些实测值比理论值大的原因。这也是试验中不可避免的

四、改进措施(主要是从实验仪器误差与操作误差两方面考虑):

1,选择制作精良的仪器,减少实验仪器误差;

2,在调整平衡杆时,进水或放水速度要慢,等平衡杆处于水平状态时再操作;

3,操作时,阀门要拧紧。

五、小结:

1,无论是解析法还是压力图法,求得的理论静水压力与实测静水压力在误差允许范围内几乎相等,平面静水理论可以被验证;

2,实验前需要仔细听老师讲解,实验操作时需要小心的遵循规范步骤,处理数据时可以采用多种方式对数据进行分析与对比,例如作图,然后进行误差分析与总结。

水力学实验-参考答案

水力学实验1-参考答案 水力学实验 参考答案 静水压强实验 1.同一静止液体内的测压管水头线是根什么线?测压管水头指z?p,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当pB?0时,试根据记录数据,确定水箱内的真空区域。 pB?0,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定?0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由

式?whw??0h0 ,从而求得?0。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 h?4?cos? d? 式中,?为表面张力系数;?为液体容量;d为测压管的内径;h 为毛细升高。常温的水, ??0.073Nm,??0.0098Nm3。水与玻璃的浸润角?很小,可以认为cos??1.0。于是有 h?29.d (h、d均以mm计) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,?减小,毛细高度亦较净水小;当采用 有机下班玻璃作测压管时,浸润角?较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水 平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5

耐静水压检测方法

耐静水压检测方法 1 目的 测试在低水压下水通过产品时的抵抗力,检测防水压力的具体数值度。 2 用语整理 2.1 水的抵抗:水通过产品时抵抗的特性; 2.2 蒸馏水:经过蒸馏过程的水; 2.3 毫米水柱:大气压的单位等同于1.02mm水。 3 安全 3.1 切断样品时要防止手被刀刃划伤; 3.2 放下固定用杠杆会崩出来。 4 测定装备 4.1 静水压测量仪(YG825型) 4.2 样品切断用框(20cm×20cm) 4.3 样品切断用刀 5 样品准备 5.1 准备干净的样品,检查样品有没有异物、折叠、起皱、开孔等现象; 5.2 样品以MD方向,准备200cm左右; 5.3 上机的样品以MD方向折叠成8等分; 5.4 折叠样品的中央部位以20cm×20cm切断,为了防止样品有损坏去除上下各2张,准备里面四张。

6 准备装备 6.1 打开机器电源 6.2 机器的设定值设定到和所做的实验相符: a. PATE (mmH2O/min):60 6.3 利用有把手的桶把蒸馏水往水池里倒满,这时水的表面不能溢出水池,水表面不得有灰尘等异物。 7 测定顺序 1)试样水平放置,且不放鼓起; 2)试样在夹紧装置中不应漏水; 3)选用速率应试验报告上注明,选用哪种速率得出结果可能不同; 4)按START键,开始实验; 5)观察样品表面能否通过水,实验中结成第三滴水时STOP实验,读那时水压值; 6)记录实验结果,开放水阀,测试孔内的不放入水箱。 7)实验结束时,按RESET键,释放锁存的显示值,仪器程序复位; 8)取下试样,可以进行下一实验; 8.注意事项 8.1在试验时,为排除测试孔内的空气,不与实验样品接触,在试验前,先将测试孔灌满水,(关放水阀,按START键,当测试孔灌满水后,按STOP键,按RESET键);然后放上实验样品进行测试。 9 相关记录 9.1 《耐静水压测试原始数据记录》

水力学实验报告思考题答案(供参考)

水力学实验报告 实验一流体静力学实验 实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 实验三不可压缩流体恒定流动量定律实验 实验四毕托管测速实验 实验五雷诺实验 实验六文丘里流量计实验 实验七沿程水头损失实验 实验八局部阻力实验 实验一流体静力学实验 实验原理 在重力作用下不可压缩流体静力学基本方程 或 (1.1) 式中:z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 据此可用仪器(不用另外尺)直接测得S0。 实验分析与讨论

1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 (h、d单位为mm)

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

水力学实验报告思考题答案(想你所要)..

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化?为什么? 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

纺织品耐静水压测试实验方法

纺织品耐静水压测试实验方法 纺织品耐静水压测试实验流程和实验报告模板:纺织品抗水性测试时诸多的检测指标中的一项,纺织品检测包含诸多的项目,而且对于每一项的测试都有着标准的要求和操作的规范。 一、范围 本标准规定了一种测定织物抗渗水性的静水压试验方法。 本标准主要适用于紧密织物,如帆布、油布、苫布、帐篷布、防雨服装布等。 二、引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 6529-86纺织品的调湿和试验用标准大气(neq ISO 139:1987) 三、原理 以织物承受的静水压来表示水透过织物所遇到的阻力。在标准大气条件下,试样的一面承受一个持续上升的水压,直到有三处渗水为止,并记录此时的压力,可以从试样的上面或下面施加水压。选用哪种方式应在报告上注明。 试验结果与织物在短时间或稍长时间受水压后呈现的性能直接有关。 四、仪器 1、试验仪器应能以下述方式夹紧试样: a)试样水平放置,且不鼓起,

b)织物上面或下面承受持续上升水压的面积为100cm2; c)试验时,夹紧装置不应漏水(见附录A中A1); d)试样在夹紧装置中不会滑移; e)尽量减少试样在夹紧装置边缘处产生渗水的可能性(见附录A中A1)。 2、与试样接触的水必须是新鲜蒸馏水或去离子水,温度保持在20℃±2℃或27℃±2℃,选用哪种度应在试验报告上注明(用较高温度的水,会得出较低的水压值,其影响的大小,因试样不同而异)。 3、水压上升的速率应为 1.00kPa/min±0.05kPa/min(10cmH2O/min±0.5cmH2O/min)或6.0kPa/min±0.3kPa/(60cmH2O/min±3cmH2O/min),由这两种不同速率得出的结果可能不同,故选用哪种速率应在试报告上注明。 4、压力计与试验头相连接,压力读数应精确到0.05kPa(0.5cmH20)(见附录A中A2)。 5、调湿处理和试验温湿度 ①、调湿和试验温湿度在内外贸易、商检、名牌产品评定仲裁和新产品考核中应按GB 6579规定进行。 ②、常规检验或另有协议可在室温或实际条件下进行。 五、试样 取样后,尽量少用手触摸,避免用力折叠。除了调湿外不作任何方式的处理(如熨烫)。在织物的不同部位至少取五块试样,尽可能使试样具有代表性。试验时也可不剪下试样,但不应在有很深折皱或折痕的部位进行试验。 六、试验步骤 每块试样均需用新鲜蒸馏水或去离子水(见附录A中A3)。 擦净夹紧装置表面的水,把调湿过的试样夹紧在试验头中,使织物试验面与水接触。夹紧时使水不会在试验开始前,因受压而透过试样。然后立刻对试样施加递增的水压,并不断观察渗水的迹象。 记录试样上第三处水珠刚出现时的水压,以kPa(cm H2O)表示。读取水压的精确度如下:--10kPa(1 m H2O)以下:0.05 kPa(0.5 cm H2O);

水力学的实验报告

水力学的实验报告 水力学的实验报告 今天为大家收集资料整理回来了关于水力学实验报告,希望能够为大家带来帮助,希望大家会喜欢。 本学期我们进行了七周的水力学实验,从这些实验中我学到了很多。 例如,所有实验都是需要耐心地去测量一组一组的数据,还需要在实验后认真处理核对每一组数据。这些实验加强了我的动手能力,并且培养了我的独立思考能力。特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的继续下去。 例如:数据处理时,遇到要进行数据获取,插入图表命令,这些就要求懂得excel软件一些基本操作。通过这几次的实验,我不仅学会了如何正确使用实验仪器,还学习到了认真严肃的科研精神,并且激发了我学习新事物的兴趣,这些我个人觉得都是极为可贵的。 在实验开始之前,我认为最为重要的就是提前预习实验内容:包括实验仪器、实验原理、实验步骤以及实验分析总结。我认为这里面需要我们花费很多心思去思考体会,想出自己对什么有疑问,以便上课时向老师提问寻求解答。 以我们的电拟实验为例:当时我们做这个实验时反复做了很多遍,也向老师提出了一些疑问。在开始时,仪器需要校准。因为上下游电势差不是10V,仅仅这一点我们就搞了很长时间。最终我们得出的误差原因是因为电笔接触不好影响实验进行,所以我们更换了其他不可使用仪器的完好的电笔,实验才得以进行。其次,实验分析阶段是培养我们自己独立思考、分析问题和解决问题的能力的阶段。

我认为培养这种能力的前题是你对每次实验的态度。如果我们每次对待实验都是随随便便的态度,抱着等老师教你怎么做,拿同学的报告去抄,必然会导致我们对待实验过程的懈怠。尽管可能也会的到好的成绩,但这对将来工作态度的养成是极为不利的。 最后,也是最为重要的就是关于实验的思考问题:哪些实验仪器能改进,哪些数据需要重新获取等都是我们要考虑的。像堰流实验,以为我们分析的实验误差很大,所以我和同组的王琦玮同学就去做了3遍才最终确定的数据,局部水头损失也是如此。关于动量方程实验仪器,做实验中砝码的固定和加载都是一项难题,同时这也对实验精确性产生了极大影响,对此,我想到是不是可以采用电磁体来代替人工加载(不知可不可行)。虽然没有对实验仪器改进产生正面意义,但是这促进了我深入思考,我想这便是让学生做实验的最终目的吧。

GB4744-1997_纺织织物_抗渗水性测定_静水压试验

GB/T 4744-1997 纺织织物抗渗水性测定静水压试验 1 范围 本标准规定了一种测定织物抗渗水性的静水压试验方法。 本标准主要适用于紧密织物,如帆布、油布、苫布、帐篷布、防雨服装布等。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 6529-86 纺织品的调湿和试验用标准大气(neq ISO 139:1987) 3 原理 以织物承受的静水压来表示水透过织物所遇到的阻力。在标准大气条件下,试样的一面承受一个持续上升的水压,直到有三处渗水为止,并记录此时的压力,可以从试样的上面或下面施加水压。选用哪种方式应在报告上注明。 试验结果与织物在短时间或稍长时间受水压后呈现的性能直接有关。 4 仪器 4.1 试验仪器应能以下述方式夹紧试样: a)试样水平放置,且不鼓起, b)织物上面或下面承受持续上升水压的面积为100cm2; c)试验时,夹紧装置不应漏水(见附录A中A1); d)试样在夹紧装置中不会滑移; e)尽量减少试样在夹紧装置边缘处产生渗水的可能性(见附录A中A1)。 4.2 与试样接触的水必须是新鲜蒸馏水或去离子水,温度保持在20℃±2℃或27℃±2℃,选用哪种度应在试验报告上注明(用较高温度的水,会得出较低的水压值,其影响的大小,因试样不同而异)。 4.3 水压上升的速率应为 1.00kPa/min±0.05kPa/min(10cmH2O/min±0.5cmH2O/min)或 6.0kPa/min±0.3kPa/(60cmH2O/min±3cmH2O/min),由这两种不同速率得出的结果可能不同,故选用哪种速率应在试报告上注明。 4.4 压力计与试验头相连接,压力读数应精确到0.05kPa(0.5cmH20)(见附录A中A2)。

水力学实验1-参考答案

水力学实验 参考答案 静水压强实验 1.同一静止液体内的测压管水头线是根什么线? 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当0?B p 时,试根据记录数据,确定水箱内的真空区域。 0?B p ,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定0γ。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 γ θσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。常温的水,

m N 073.0=σ,30098.0m N =γ。水与玻璃的浸润角θ很小,可以认为0.1cos =θ。于是有 d h 7.29= (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是水平面。 6、用该实验装置能演示变液位下的恒定水流吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由C 进入水箱。这时阀门的出流就是变液位下的恒定水流。因为由观察可知,测压管1的液面始终与C 点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称这为马利奥特容器的变液位下恒定流。

AATCC 127-2003 静水压测试方法

AATCC测试方法127-2003 耐水性:静水压试验法 1.目的及适用范围 1.1本测试方法采用静水压测定织物的抗水渗透性。可用于各种织物,包括经过耐水或疏水后整理的织物。 1.2耐水性取决于纤维和纱线的抵抗性以及织物结构。 1.3采用本方法所得的结果可能与采用防雨水或防水喷淋的AATCC方法所得的结果有所差异。 2.原理 2.1试样的一面接受不断恒速上升的静水压力,直至其另一面出现三处漏液。水可以从试样的上方或下方进行施压。 3.术语 3.1静水压,名词―水施加于某一面积上的力。 3.2耐水性,名词―织物的耐水润湿和耐水渗透性。 3.3疏水性,名词―纤维、纱线或织物的耐润湿性。 4.安全防范措施 注:这些安全防范措施只供参考。只对测试过程起辅助作用,并不包括全部内容。在测试过程中,使用者有责任采用安全的、恰当的技术来处理样品。必须向厂商咨询详尽的细节,如材料的安全数据表,以及其他厂商的建议。还必须遵照所有的OSHA标准和规则。 4.1应遵从实验室管理规范。在所有实验场所要戴上安全眼罩。 4.2在操作实验室测试设备时,应该遵从制造商的安全建议。 5.仪器和材料 5.1静水压测试仪。 5.1.1选择1,静水压试验机(见11.1)。 5.1.2选择2,静水压头试验机(见11.2)。 5.2水,蒸馏水或去离子水。 6.试样

6.1在能代表材料的织物的幅宽上斜对地裁取最少三个织物试样。为了便于夹持,试样的尺寸应不小于200×200 mm。 6.2尽量不要处理试样,避免折叠和污染测试区域。 6.3测试前,试样应在温度为21±2℃(70±5°F),相对湿度为65±2%的大气中放置至少4小时,进行调湿。 6.4因为对试样正面和反面进行测试所得的结果不同,所以必须规定接触水的织物测试面。在每个试样的一角标明测试面。 7.步骤 7.1检验与试样接触的水的温度,将其控制在21±2℃(70±5°F)范围内(见10.3)。 7.2擦干夹持面。 7.3夹持试样,使测试面朝着水面(见11.5)。 7.4进行操作。 7.4.1选择1,静水压试验机(见11.1)。 7.4.1.1启动电动机,按下控制杆,使溢流装置以10 mm/s的速度上升,当水从溢流装置流出时,迅速关闭气孔。 7.4.2选择2,静水压头试验机(见11.2)。 7.4.2.1选择60 mbar/min的梯度,按下启动按钮(见11.4)。 7.5不考虑出现在试样夹紧环边缘附近3 mm内的水滴,当水滴在试样上三个不同位置出现渗透时,记下此时的静水压。 8.计算 8.1计算每个样本的平均静水压。 9.报告 9.1每个试样的数值及每个样本的平均值 9.2测试材料和测试面 9.3水温和水的类型 9.4梯度(水压上升速率) 9.5所选用的测试仪 9.6对本方法的任何修正

平面静水总压力实验

实验二平面静水总压力实验 一、实验目的 1、测定矩形平面上的静水总压力。 2、验证静水压力理论的正确性。 二、实验原理 作用于任意形状平面上的静水总压力P等于该平面形心点的压强与平面面积A的乘积。即P=p c·A。 矩形平面上的静水总压力等于压强分布图的体积。即P=V=Ω·b。 对于三角形分布: P=(1/2)·H2b e=(1/3)·H 对于梯形分布: P=(1/2)·(H1+H2)ab e=(a/3)·(2H1+H2)/(H1+H2) 由力矩平衡: G·L=P·L1 式中 L1=y-e 图2-1 三、实验设备 实验设备及各部分名称见图(2-2、2-3)。 图2-2

图2-3 静水总压力实验仪器示意图 四、实验步骤 1、熟悉仪器,记录有关常数。 2、调整底脚螺丝,使水准泡居中。 3、调整平衡砣,使平衡杆处于水平状态(杆下缘与中刻度线齐平)。 4、打开进水阀门k,放水进入水箱,待水流上升到一定的高度,关闭k。 5、加砝码到砝码架上,使平衡杆恢复到水平状态。如有微差,则再加水或放水直至平衡为止。 6、记录砝码质量M,同时记录水位刻度数。 7、计算受力面积Ω和静水总压力作用点至支点o的垂直距离L1。 8、根据力距平衡公式,求出铅垂平面上所受的静水总压力P力;同时用静水压力理论公式求出相应铅垂平面上的静水总压力P理。 9、重复上述步骤4~8,水位读数在100 mm以上做三次,以下做三次,共做六次。 五、注意事项 1、加水或放水时,要注意观察杠杆所处的状态。 2、砝码每套专用,测读砝码要看清其所注克数。 六、思考题 1、仔细观察刀口位置,与扇形体有何关系,并说明为何要放在该位置? 2、如将扇形体换成正方体能否进行试验?为什么?

水压试验操作规程

***********有限公司作业文件 文件名称:水压试验操作规程 文件编号: 编制:日期: 审核:日期: 批准:日期: 控制状态:版本/修订状态:A/0 控制号: 发布日期:2011-1-15 实施日期:2011-1-15 ******************* 有限公司发布

一、目的: 为了有效保证和持续改进产品质量,满足API Spec 5CT要求和API Spec 5L(第44版)要求,特制定本规程。 二、适用范围: 本规程适用于公司所产直径ф76-ф219mm,壁厚范围3—19mm的钢管的静水压试验。 三、工作职责: 1 、静水压操作人员应经过专门培训并持有相应的岗位操作证书。 2 、根据钢管直径、壁厚和材质不同及API 5CT和API 5L标准规定, 逐根进行静水压试验; 3 、试验前,负责调整各部位的技术参数,包括高压泵、低压泵,溢 流阀的压力,各减压阀的压力、托管缸升降高度。 4 、负责准备密封圈和申报需求计划,密封圈回收和保管。 5 、负责调节试验压力和保压时间记录仪。 6 、负责按技术要求修磨管端和安装密封圈。 7 、正确使用维护所属设备,保证当班正常运转状态。 8 、做好交接班记录和手续。 四、操作程序: 1 、首先确认水压试验压力表已检定并在检定周期内。 2 、试验前,先将钢管两端处于密封状态。 3 、根据试压钢管的长度,移动可移动的机架,调节两试验盘之间距。 并将销轴插入横梁销孔内固定。 4 、将固定机架的试验盘退至最后,接管装置停放至适合试验钢管的位置。

5 、接管装置将钢管升起,试验盘借助于油缸向前移动,顶紧钢管。 6 、启动低压泵向试压钢管内充低压水,钢管内空气通过排气阀排尽。 7 、关闭排气阀低压水充满钢管后,关闭低压泵,增压至规定压力值。 8 、按标准要求进行稳压、稳压时间不少于5—10秒,根据需要最大 试压时间可延长至40秒,然后检查钢管是否有渗漏现象。 9 、打开减压阀,降压到零,操作试验盘放掉钢管中的水。 10 、将钢管从装置中退出,完成水压试验。 11、填制水压试验记录 五、水压试验的计算: 1、API 5CT静水压试验压力计算p=(2·f·YSmin·t)/D 其中p—静水压试验压力,单位为兆帕(每平方英寸磅)(MPa(psi)); f—系数,规格代号1为0.6(0.6),其他钢级和规格为0.8(0.8); YSmin—管体规定最小屈服强度,单位为兆帕(每平方英寸磅)(MPa(psi)); D—规定外径,单位为毫米(英寸)(mm(in)); t—规定壁厚,以(毫米英寸)(mm(in))为单位。 2、API 5L静水压试验压力计算p= 2St/D 其中S—环向应力,MPa(psi),等于钢管的最小规定屈服强度的百分比; t—规定壁厚, mm(in))为单位; D—规定外径,单位为毫米(英寸)(mm(in)); 六、记录 压力试验记录/报告

水力学实验报告思考题答案(想你所要)

水力学实验报告思考题答案(想你所要)

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 果分析及讨论 压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J恒为正,即J>水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w 失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 量增加,测压管水头线有何变化?为什么? 下二个变化: 流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头,任一 的总水头E及管道过流断面面积A为定值时,Q增大,就增大,则必减小。而且随流量的增加阻力损失亦 任一过水断面上的总水头E相应减小,故的减小更加显著。 测压管水头线(P-P)的起落变化更为显著。 对于两个不同直径的相应过水断面有 为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)化就更为显著。 点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm),表明均 上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的 几点措施有利于避免喉管(测点7)处真空的形成: 减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。 显然(1)、(2)、(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。因为若管系落差不变,单单降往往就可完全避免真空。例如可在水箱出口接一下垂90弯管,后接水平段,将喉管的高程降至基准高程0—0,比位比压能p/γ得以增大(Z),从而可能避免点7处的真空。至于措施(4)其增压效果是有条件的,现分析如下:

水力学实验报告

水力学实验报告 学院: 班级: 姓名: 学号: 第三组同学: 姓名:学号: 姓名:学号: 姓名:学号:

平面静水总压力实验 实验目的 1.掌握解析法及压力图法,测定矩形平面上的静水总压力。 2.验证平面静水压力理论。 实验原理 作用在任意形状平面上的静水总压力P 等于该平面形心处的压强p c 与平面面积 A 的乘积: A p P c =, 方向垂直指向受压面。 对于上、下边与水面平行的矩形平面上的静水总压力及其作用点的位置,可采用压力图法:静水总压力P 的大小等于压强分布图的面积Ω和以宽度b 所构成的压强分布体的体积。 b P Ω= 若压强分布图为三角形分布、如图3-2,则 H e b gH P 312 1 2== ρ 式中:e -为三角形压强分布图的形心距底部的距离。 若压强分布图为梯形分布,如图3-3,则 212121232 1 H H H H a e ab H H g P ++)+(? == ρ 式中:e -为梯形压强分布图的形心距梯形底边的距离。

图1-1 静水压强分布图(三角形) 图1-2 静水压强分布图(梯形) 本实验设备原理如图3-4,由力矩平衡原理。 图1-3 静水总压力实验设备图 10L P L G ?=? 其中:e L L -=1 求出平面静水总压力 1 L GL P = 实验设备 在自循环水箱上部安装一敞开的矩形容器,容器通过进水开关K l ,放水开关K 2 与水箱连接。容器上部放置一与扇形体相连的平衡杆,如图3-5所示。

??3-5 ?????? 图 1-4 静水总压力仪 实验步骤 1.熟悉仪器,测记有关常数。 2.用底脚螺丝调平,使水准泡居中。 3.调整平衡锤使平衡杆处于水平状态。 4.打开进水阀门K 1,待水流上升到一定高度后关闭。 5.在天平盘上放置适量砝码。若平衡杆仍无法达到水平状态,可通过进水开关进水或放水开关放水来调节进放水量直至平衡。 6.测记砝码质量及水位的刻度数。 7.重复步骤4~6,水位读数在100mm 以下做3次,以上做3次。 8.打开放水阀门K 2,将水排净,并将砝码放入盒中,实验结束。 实验数据记录及处理 1.有关常数记录: 天平臂距离L 0= cm ,扇形体垂直距离(扇形半径)L = cm , 扇形体宽b = cm ,矩形端面高a 0= cm ,33/100.1cm kg -?= ρ 2.实验数据记录

水力学实验2

工程流体力学实验指导与报告 专业___________________ 学号___________________ 姓名___________________ 西南交大峨眉校区水力学实验室 2010、5

目录 第一章结论 (1) 1.1 工程流体力学(水力学)教学实验的目的 (1) 1.2 工程流体力学(水力学)教学实验的要求……………………‥1 第二章流体基本物理量的室内量测技术 (3) 2.1 压强的量测 (3) 2.2 水位的量测 (7) 2.3 流量的量测 (8) 2.4 流速的量测 (12) 第三章流体静力学实验 (20) 3.1流体静力学实验 (20) 第四章流体动力学基础实验 (23) 4.1 流动显示实验 (23) 4.2 管路测压管水头线实验 (24) 4.3 毕托管测速实验 (27) 4.4 文丘里流量计实验 (31) 第五章流动阻力与水头损失实验 (35) 5.1 雷诺实验 (35) 5.2 管路沿程水头损失实验 (38) 5.3 管路局部阻力损失实验 (42) 5.4 管路沿程阻力实验 (46) 第六章孔口与管嘴实验 (49) 6.1 孔口与管嘴实验 (49) 第七章明渠水流实验 (53) 7.1 水跃实验 (53) 7.2 明渠恒定非均匀流水面曲线实验 (56) 第八章堰流实验 (59) 8.1 宽顶堰溢流实验 (59) 8.2 小桥过流演示实验 (62) 参考文献 (63)

第一章绪论 1.1 工程流体力学(水力学)教学实验的目的 工程流体力学(水力学)是应用性较强的专业技术基础课。从学科发展看,工程流体力学(水力学)属于技术基础学科,实验方法是促进其发展的重要研究手段。由于流体运动的复杂性,工程流体力学(水力学)的研究就更加离不开科学实验。现代工程流体力学(水力学)的蓬勃发展,更是和飞跃进步的现代实验技术分不开的。因此,工程流体力学(水力学)实验是学习理论知识、探索流体运动规律的重要教学环节。 工程流体力学(水力学)教学实验的目的为: 1、观察流动现象,扩大感性认识,提高理论分析能力。 2、根据实测资料验证工程流体力学(水力学)的基本理论或根据所观察的流动现象进行某些深入的思考,以加强和巩固理论知识的学习。 3、会使用工程流体力学(水力学)实验的基本量测仪器,掌握一定的实验技术,培养实验研究的初步能力。 4、培养分析实验数据、整理实验成果和编写实验报告的能力。 5、培养严谨踏实的科学作风和融洽合作的其事态度,为将来进行科学研究打下良好的基础。 1.2 工程流体力学(水力学)教学实验的要求 一、实验要求 1、在每次实验前,必须了解本次实验的目的、实验原理和实验所要验证的理论。为此,实验前应预习实验指示书和教科书中的有关内容。 2、进入实验室后,应注意听取指导教师对实验方法的讲授,待完全弄清楚实验方法与步骤后,方能动手实验。 3、实验时应爱护仪器设备及实验室其它公物,未经允许不得随便打开可关闭实验室的电路开关及与所做实验无关的水阀。如有损坏应立即报告指导教师,并按学校有关规定处理。在整个实验过程中,均须保持实验场所整洁安静,做到文明实验。 总之,对待实验应有严肃的态度,严格的要求,严密的方法。只有这样才能完成好实验技能的训练任务。 二、实验报告要求 1、实验报告一般应包括以下内容: (1)、班级、姓名、同组人入实验日期; (2)、实验名称; (3)、实验目的; (4)、实验装置简图及仪器; (5)、流动现象的描述及实验原始记录;

ISO 8111420 耐静水压测定方法解析

ISO 8111420 耐静水压测定方法解析 一、实验说明 衣服在穿着过程中,难免会接触到水,这就引发人们对服装防水抗水的要求。现在的防水织物主要有以下两种:一是层压复合防水织物,是采用特殊的粘合剂与普通织物通过层压工艺复合在一起,形成防水层压织物,层压可以是两层织物或多层织物;二是涂层防水织物,即织物通过直接或转移法涂层加工,使织物表面为涂层剂所封闭,因而获得防水性[1]。 静水压测试是考核面料抗水性的常用方法。选用静水压测试仪对防水面料进行抗渗水试验时发现,某些面料实际上没有出现标准所描述的试验终止现象,因此本文就实验室采用的现行测定抗渗水性标准进行探讨,从而为面料的生产工艺以及实际测试判定提供参考,并益于对现行标准的完善。 二、现状 1、标准 GB/T 4744—1997《纺织织物抗渗水性测定静水压试验》规定了一种测试织物抗渗水性的静水压试验方法。主要适用于紧密织物,例如帆布、油布、帐篷布和防雨服装布等。测试方法是在标准大气下,试样的一面承受一个持续上升的水压,直到有三处渗水为止记录此时的压力。此标准的测试原理是以织物承受的静水压来表示水透过织物所遇到的阻力,水压可以从试样的正面或背面施加[2]。 2、试验仪器 本实验室使用的耐静水压仪如图1所示。 图1 静水压测试仪 静水压测试仪器型号:Textest-Fx3000;

仪器的压力范围:0~999mbar; 水压上升的速率:(10±0.5)cmH2O/min,以及(60±0.5)cm H2O/min。 3、遇到的问题 在日常测试中,经常会遇到现行标准中未涉及的现象,使得测试结果的表示没有统一性,甚至影响对整个产品的性能评价。 ①、涂层防水织物 1) 平均值的记录 标准中规定记录所有试验样品的平均值。但有些样品出现如表1所示检测结果,使如何表示其平均值成为难题。 表1 试验数据 2) 对接缝部位的测试 遇到防雨服装等服装产品,考核静水压应该全面到服装的每个部位,特别是接缝部位(见图2),如下摆缝、腋下缝、肩部缝等。而目前我国标准主要针对面料的方法标准中找不到相关检测方法的描述,给测试带来困惑,对企业生产产品的把关以及整件服装的防水质量的评价找不到依据。 3) 样品出现单处渗透 某些产品由于涂层工艺的欠缺造成局部细小破损,在测试过程中常常会发现在某处水珠不断渗出,蔓延至整个边圈,但是仍未出现第二处﹑第三处(见图3),对于这个样品的测试结果如何记录成为难题。 ②、层压复合防水织物 1 ) 样品无水珠但有潮湿感 复合面料因为其性能优越,使用也越来越广泛。反面起绒的层压复合防水织物在做静水压测试时出现水在织物和复合层之间,但肉眼未发现有水珠渗出,而用手抚摸表面会有潮湿感(如图4)。

相关文档
最新文档