抗风柱的计算

抗风柱的计算
抗风柱的计算

上两期栏目中我们分别介绍了STS软件工具箱中一些新增的功能,这期我们针对抗风柱的计算来看看它在工具箱中的应用。

实际工程设计中,抗风柱从受力上来说,一般有这样两种类型:

一、仅承担山墙风荷载,不承担屋面竖向力

这种类型的抗风柱通常我们在平面整体模型中按偏心方式输入,做在边榀刚架之外,与刚架梁侧面连接,当然也有的设计人员采用抗风柱不设置偏心,抗风柱顶与刚架梁底采用弹簧片连接方法。对于前一种做法,可以在STS的门式刚架“屋面、墙面设计”中设置抗风柱(如下图),

之后点取“抗风柱计算和绘图”(如下图)

……

或者直接在工具箱中完成计算与施工图。对于后一种做法,暂时只能在工具箱中完成抗风柱的计算。

二、承担山墙风荷载,同时作为边榀刚架的摇摆柱承担屋面竖向力。

对于这类兼当摇摆柱的抗风柱设计过程分如下几步来完成:

第一步,含摇摆柱的边榀刚架建模分析:

该边榀刚架的分析建模中一定要把兼当摇摆柱的抗风柱建进来,进行边榀刚架平面内受力分析。二维计算分析完成以后,从分析结果中获取恒、活荷载作用下抗风柱承担的竖向荷载。

获取方法:

……

对于活载作用,抗风柱顶承担的轴力通过如下途径获得:

窗抗风载荷计算

窗抗风载荷计算 一、计算依据 二、风荷载计算 1、基本情况:门窗计算风荷最大标高取70米;根据工程所处的地理位置,其风压高度变化系数按C类算。平开窗的受力杆件MQ25-24a最大计算长度为2400mm,杆件两边的最大受力宽度为:1375mm,;推拉窗的受力杆件QLC30-25最大计算长度为:1960mm,杆件两边的最大受力宽度为1480mm。 2、风荷载标准值的计算 风荷载标准值ωk=βzμSμZωO (资料③P24式 ωk—风荷载设计标准值 βZ—高度Z处的阵风系数, (资料③P44表 μS—风荷载体型系数,取μS =0.8 (资料③P27表 ωO—基本风压,取ωO =0.7KPa (资料③全国基本风压分布图) μz—风压高度变化系数, (资料③P25表 风荷载标准值计算: ωk=βzμSμZωO =1.66×0.8×1.45×0.7=1.35KPa 三、主要受力构件的设计及校核 1、受力构件的截面参数 根据( BH^3-bh^3 )/12 Ix=0.0491(D4 – d4 ) (资料④P112表1-63) Ix1=Ix+a2 F W=I/h (资料④P106表1-62) 则平开窗的受力构件的惯性矩I为118684m4,抗弯模量为5395 m3;推拉窗的受力构件的惯性矩I为119638.67m4,抗弯模量为7477.42m3。

2、受力构件的设计 根据挠度计算公式:μmax = 5qL^4 /(384EI) (资料②P494表5-31) 其中线荷载计算值:q = awk /2 (资料②P494) 装单层玻璃时,型材许允挠度:μmax< L /120,且绝对挠不大于15mm(资料③) 则有:5awk L^4 /(2x384EI)5×120awk L^3 /(2×384E)=263513.25mm^4> 118684mm^4 则构件的截面惯性矩不能满足挠度要求,故需在铝合金型材内加经防腐处理的冷轧槽钢。 冷轧钢衬的截面惯性矩:I钢=(263513.25-118684)/3=48276.42mm^4 钢衬的截面抗弯模量为:W=I/h=2099 mm^3 (2)推拉窗受力杆件的长度为1960mm其两边最大的受力宽度为1480mm时满足要求的型材截面惯性矩: I>5×120awk L^3 /(2×384E)=154488.43 mm^4>119638.67 mm^4 则构件的截面惯性矩不能满足挠度要求,故需在铝合金型材内加经防腐处理的冷轧槽钢。 冷轧钢衬的截面惯性矩:I钢=(153597-119638.67)/3=11616.59 mm^4 钢衬的截面抗弯模量为:W=I/h=726 mm^3 3、型材的强度校核 (1)平开窗受力杆件长度为2400mm其两边最大的受力宽度为1375mm时作用在受力构件上的荷载按均布荷载计算(偏于安全)则载荷作用下受力构件上的最大弯矩为: Mmax=ql^2/8= awkl^2/(2×8)=

抗风柱计算书

#、#抗风柱计算书 ------------------------------- | 抗风柱设计| | | | 构件:KFZ1 | | 日期:2012/11/09 | | 时间:09:09:59 | ------------------------------- ----- 设计信息----- 钢材等级:Q235 柱距(m):8.800 柱高(m):7.440 柱截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=300*250*250*6*10*10

铰接信息:两端铰接 柱平面内计算长度系数:1.000 柱平面外计算长度:7.440 强度计算净截面系数:1.000 设计规范:《门式刚架轻型房屋钢结构技术规程》容许挠度限值[υ]: l/400 = 18.600 (mm) 风载信息: 基本风压W0(kN/m2):0.400 风压力体形系数μs1:1.000 风吸力体形系数μs2:-1.000 风压高度变化系数μz:1.000 柱顶恒载(kN):0.000 柱顶活载(kN):0.000 考虑墙板荷载 风载、墙板荷载作用起始高度y0(m):0.000 ----- 设计依据----- 1、《建筑结构荷载规范》(GB 50009-2012)

2、《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002) ----- 抗风柱设计----- 1、截面特性计算 A =6.6800e-003; Xc =1.2500e-001; Yc =1.5000e-001; Ix =1.1614e-004; Iy =2.6047e-005; ix =1.3186e-001; iy =6.2444e-002; W1x=7.7428e-004; W2x=7.7428e-004; W1y=2.0837e-004; W2y=2.0837e-004; 2、风载计算 抗风柱上风压力作用均布风载标准值(kN/m): 3.520 抗风柱上风吸力作用均布风载标准值(kN/m): -3.520 3、墙板荷载计算 墙板自重(kN/m2) : 0.200 墙板中心偏柱形心距(m): 0.260 墙梁数: 6

PKPM软件关于混凝土柱计算长度系数的计算

PKPM软件关于混凝土柱计算长度系数的计算 软件关于混凝土柱计算长度系数的计算 错层结构的计算(一)错层结构的模型输入⑴错层高度不大于框架架高时的错层结构的处理;⑵对于错层高度大于框架梁高的单塔错层结构的输入⑶对于错层高度大于框架梁高的多塔错层结构的输入⑷错层洞口的输入(二)错层结构的计算⑴规范要求⑵错层结构设计中应注意的问题:SATWE软件在计算错层结构时,会在越层的柱和墙处施加水平力。由于在越层处水平力的存在,从而使越层构件上下端的配筋不一样,设计人员在出施工图时可以取二者的大值。(本章可能是讲课人员的提纲,没有具体内容。后面还有相类似的情况,只有标题)第七章PKPM软件关于混凝土柱计算长度系数的计算(一)规范要求⑴《混凝土结构设计规范》(GB 50010-2002)(以下简称《混凝土规范》)第7.3.11条第2款规定:一般多层房屋梁柱为刚接的框架结构,各层柱的计算长度系数可按表7.3.11-2取用。⑵第7.3.11条第3款规定:当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时,框架柱的计算长度l0可按下列两个公式计算,并取其中的较小值:l0=[l+0.15(u+l)]H (7.3.11-1)l0=(2十0.2min)H (7.3.11-2)式中:u、l 柱的上端、下端节点处交汇的各柱线刚度之和与交汇的各梁线刚度之和的比值;min比值u、l中的较小值;H柱的高度,按表7.3.11-2的注采用。(二)工程算例⑴工程概况:某工程为十层框架错层结构,首层层高2m,第二层层高4.5m。其第一、二层结构平面图、结构三维轴侧图如图1所示。(图略)(三)SATWE软件的计算结果⑴计算结果

抗风计算书

西南交通大学 第三届研究生结构设计竞赛(结构抗风组) 设计理论方案

目录 一设计说明书 (3) 1 设计概况 (3) 1.1基本概况 (3) 1.2加载过程 (3) 1.3 设计材料 (3) 1.4 设计要求 (3) 1.5使用工具 (4) 2方案构思 (4) 2.1 结构类型简介 (4) 2.2结构力学性能简介 (5) 2.3结构选型 (5) 3 制作流程 (5) 4特色处理 (5) 二方案设计图 (6) 三计算说明书 (7) 1模型的整体受力计算 (7) 2模型材料参数及风荷载计算 (7) 3静力计算结果分析 (8) 3.1结构变形图 (8) 3.2结构轴力图 (9) 3.3.结构弯矩图 (10) 3.4.底部剪力图 (12) 3.5结构扭转变形图 (12) 4结构动力特性 (13) 5 结构优化处理方案 (14) 参考文献 (14)

一设计说明书 1 设计概况 1.1基本概况 本次竞赛题目为“研究生结构抗风竞赛”。竞赛内容包括:结构设计、结构模型制作、作品介绍与答辩、模型风洞试验。其中模型加载项目包括4.5m/s的风速,6.5m/s的风速,9.5m/s的风速,风向垂直于广告牌,在风洞实验室进行加载。 1.2加载过程 (1)首先施加4.5m/s的风速作为预载,风向垂直于广告牌。观察模型的响应。 (2)在预载的基础上,将风速提升至6.5m/s,风向垂直作用于广告牌正面。采用激光位移计测量模型的动态位移。位移测试的时间为32s。 (3)在第一阶段6.5m/s的风速基础上,再将风速提升至9.5m/s。采用激光位移计测量模型的平均位移和动态位移。位移测试的时间为32s。 1.3 设计材料 组委会将统一提供桐木条(4×3mm)、铅发丝线和AB胶,广告牌,底板5种材料,各参赛队设计、制作模型仅限于使用以上材料,除此之外不得自行使用其他材料。 其中桐木条尺寸为:4mm×3mm×97mm,广告牌的规格尺寸为:600mm(长)×300mm (宽)×3mm(厚);木质底板规格为:250mm(长)×250mm(宽)×10mm(厚)。 1.4 设计要求 结构的类型不限,高度为1.2m(含广告牌在内),正负误差不超过1cm。底部尺寸要求在(150×150)mm 范围内,形状不限,但不可超出此范围。 如图所示;

10米路灯抗风强度校对5mm

10米太阳能路灯抗风强度校核一、计算依据

1.风速V=120km/h(十二级风) 2.基本风压W0= 3. 整基杆风振系数取 3.设计计算依据: ①、《建筑结构荷载规范》GB50009-2001 ②、《建筑地基基础设计规范》GB5007-2002 ③、《钢结构设计规范》GB50017-2003 ④、《高耸结构设计规范》GBJ135-90 二、设计条件 ⑴.基本数据:170W硅铁模块距地面高度10m,面积1.34m2 ,每块重量45kg,220W硅铁模块距地面高度7m,面积1.74m2 ,每块重量30kg,灯杆截面为圆形,灯杆上口径直径d为120mm,底部下口径直径D为260mm,厚度δ=5mm。法兰厚度为20mm,直径500mm。材料为Q235钢,屈服强度为f屈=240N/mm2,灯杆高度为10m,路灯含模块灯头总重为380kg。 二、灯柱强度计算 1.风载荷系数 W K=βz·μs·μz·u r·W0 式中:W K—风荷载标准值(KN/m2); βz—高度z处的风振系数; μs—风荷载体型系数; μz—风压高度变化系数;

μr—高耸结构重现期调整系数,对重要的高耸结构取。⑴.太阳能板:高度为10m和7m, 风压高度变化系数μz取, 风荷载体型系数μs = μr= 整基杆风振系数βz取 灯盘风载荷系数W K1=βz·μs·μz·ur·W0 =××××=m2 ⑵.灯杆:简化为均布荷载 风压高度变化系数μz取 风荷载体型系数μs = μr= 整基杆风振系数βz取 灯杆风载荷系数W K2=βz·μs·μz·ur·W0 =××××=m2 2.太阳能板及灯杆迎风面积 S太阳能板1=+×Sin22°=㎡ S太阳能板2=×Sin22°=㎡ S灯杆=+×10/2=㎡ 3.内力计算 弯矩设计值:M=M灯盘+M灯杆 M=γQ×WK1×S太阳能板×10m+γQ×WK2×S灯杆×5m

柱钢筋计算公式

抗震框架柱计算公式 一、基本参数: 1、柱净高hn Hn:柱净高=本层层高-梁高 底层柱净高=底层层高+基础顶至嵌固部位高度-梁高 2、连接长度: 机械连接: 短筋:0 长筋:35d 焊接 短筋:0 长筋:Max(35d,500) 柱纵筋中长筋和短筋各50%。 3、非链接区长度: 底部非连接区 嵌固部位高度=Hn/3 (注:首层必为嵌固部位,看标注。) 非嵌固部位高度=max(Hn/6,Hc,500) (二层及以上柱根部位) 顶部非连接区 高度=梁高+max(Hn/6,Hc,500) Hc=柱长边尺寸 非连接区箍筋加密,箍筋起步:50mm 二、基础插筋 长度=弯折长度+纵筋插入长度+底部非连接区长度+连接长度 弯折长度取值: 1、Hj>laE(la) 弯折长度=Max(150,6d) 2、Hj<=laE(la) 弯折长度=15d Hj为基础高度,LaE=38d 纵筋插入长度=基础高度Hj-基础保护层 基础内箍筋(简单的2肢箍,矩形封闭箍筋,非复合箍筋) 基础内箍筋的作用仅起一个稳固作用,也可以说是防止钢筋在浇注时受到挠动。一般是按2 根进行计算(软件中是按三根)。箍筋基础顶面下起步:100mm 三、首层柱纵筋 纵筋长度=首层层高-首层非连接区Hn/3+max(Hn/6,hc,500)+连接长度 四、中间层柱纵筋 纵筋长度=中间层层高-当前层非连接区+(当前层+1)非连接区+连接长度 非连接区=max(1/6Hn、500、Hc) Hc=柱长边尺寸 五、顶层柱纵筋 顶层KZ 因其所处位置不同,分为角柱、边柱和中柱,各种柱纵筋的顶层锚固各不相同。 1、中柱 中柱顶层纵筋的锚固长度为 弯锚(≦Lae):梁高-保护层+12d 直锚(≧Lae):梁高-保护层 中柱纵筋长度=层高-梁高-非搭接区长度+锚固长度-连接长度 2、边柱、角柱

风压计算方法

下面我们就来讨论风压的计算问题。 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度 r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 现在我们将风速代入(3), 10 级大风相当于 24.5-28.4m/s, 取风速上限 28.4m/s, 得到风压wp=0.5 [kN/m2], 相当于每平方米广告牌承受约51千克力。 级现象米/秒 1 烟能表示风向。 0.3~1.5 2 人面感觉有风,树叶微动。 1.6~3.3 3 树叶及微技摇动不息,旌旗展开。 3.4~5.4 4 能吹起地面灰尘和纸张,树的小枝摇动。 5.5~7.9 5 有叶的小树摇摆,内陆的水面有小波。 8.0一10.7

6 大树枝摇动,电线呼呼有声,举伞困难。 10.8~13.8 7 全树动摇,迎风步行感觉不便。 13.9~17.l 8 微枝折毁,人向前行感觉阻力甚大。 17.2~20.7 9 草房遭受破坏,大树枝可折断。 20.8~24.4 10 树木可被吹倒,,一般建筑物遭破坏。 24.5~28.4 11 陆上少见,大树可被吹倒,一般建筑物遭严重破坏。 28.5~32.6 12 陆上绝少,其催毁力极大。 32.7~36.9 13 37.0~41.4 14 41.5~46.1 15 46.2——50.9 16 51.0~56.0 17 56.1——61.2 基本风压(KN/m2) 相当抗风能力(级别) 观测高度距地 0.35 7 10米 0.40 8 10米 0.50 9 10米 0.60 10 10米 0.70 11 10米 0.85 12 10米

抗风柱计算结果

抗风柱计算结果 ------------------------------- | 抗风柱设计 | | | | 构件:KFZ1 | | 日期:2003/08/16 | | 时间:08:10:43 | ------------------------------- ----- 设计信息 ----- 钢材等级:Q345 柱距(m):7.000 柱高(m):12.500 柱截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=300*200*200*6*8*8 铰接信息:两端铰接 柱平面内计算长度系数:1.000 柱平面外计算长度:6.000 风载信息: 基本凤压W0(kN/m2):0.350 风压力体形系数μs1:1.000 风吸力体形系数μs2:-1.000 凤压高度变化系数μz:1.140 柱顶恒载(kN):0.000 柱顶活载(kN):0.000 墙板自承重 ----- 设计依据 ----- 1、《建筑结构荷载规范》(GB 50009-2001) 2、《钢结构设计规范》(GBJ 17-88) ----- 抗风柱设计 ----- 1、截面特性计算

A =4.9040e-003; Xc =1.0000e-001; Yc =1.5000e-001; Ix =7.9681e-005; Iy =1.0672e-005; ix =1.2747e-001; iy =4.6649e-002; W1x=5.3121e-004; W2x=5.3121e-004; W1y=1.0672e-004; W2y=1.0672e-004; 2、风载计算 抗风柱上风压力作用均布风载标准值(kN/m): 2.793 抗风柱上风吸力作用均布风载标准值(kN/m): -2.793 3、柱上各断面内力计算结果 △组合号 1:1.35恒+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 0.000 0.000 0.000 0.000 0.000 0.000 轴力(kN) : 6.455 5.917 5.379 4.841 4.303 3.765 3.227 断面号: 8 9 10 11 12 13 弯矩(kN.m): 0.000 0.000 0.000 0.000 0.000 0.000 轴力(kN) : 2.690 2.152 1.614 1.076 0.538 0.000 △组合号 2:1.2恒+1.4风压+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 -23.336 -42.428 -57.278 -67.885 -74.250 -76.371 轴力(kN) : 5.738 5.260 4.781 4.303 3.825 3.347 2.869 断面号: 8 9 10 11 12 13 弯矩(kN.m): -74.250 -67.885 -57.278 -42.428 -23.336 0.000 轴力(kN) : 2.391 1.913 1.434 0.956 0.478 0.000 △组合号 3:1.2恒+0.6*1.4风压+1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 -14.001 -25.457 -34.367 -40.731 -44.550 -45.823 轴力(kN) : 5.738 5.260 4.781 4.303 3.825 3.347 2.869 断面号: 8 9 10 11 12 13 弯矩(kN.m): -44.550 -40.731 -34.367 -25.457 -14.001 0.000 轴力(kN) : 2.391 1.913 1.434 0.956 0.478 0.000 △组合号 4:1.2恒+1.4风吸+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 23.336 42.428 57.278 67.885 74.250 76.371

钢结构框架柱计算长度系数说明

钢结构框架柱计算长度系数说明 很多用户对于STS框架柱的计算长度系数计算都存有疑问,尤其是在框架柱存在跃层柱的时候,有的时候会觉得得软件得出的计算长度系数偏大,或者不准确。下面我通过一个用户的模型,来详细的讲解一下计算长度系数的问题。 1 跃层柱计算长度系数显示的问题 首先我们需要了解一下软件对于跃层柱计算长度系数显示结果的问题 用户模型如下: 选取其中一根柱子,看一下软件(satwe)对于计算长度系数输出:

绕构件X轴的计算长度系数两层分别是和,因为分了标准层,所以输出了两个计算长度系数,但如果我么手算的话,肯定是按照一个柱子来求计算长度系数,那么现在软件输出的计算长度系数,和我们手算的到底有什么区别呢 我们可以利用二维门式钢架计算验证一下,抽取这个立面,形成PK文件,二维门刚计算的计算长度系数如下:

二维门刚是按照一整根柱子求出了一个计算长度系数 计算长度系数主要涉及到构件长细比的计算,截面是确定的,那我们来看计算长度:Satwe计算结果: 下段柱计算长度=*米(层高)=米 上段柱计算长度=*米(层高)=米 二维门刚计算结果: *(+)=米 结论:从上面的计算可以得知,satwe对于跃层柱的计算长度系数,是按照一整根柱来得到的,但是输出的时候是分层输出的,所以对于求得的计算长度系数按照层高做了处理,但是结果是一样的,这个我么在后面可以手算验证。 2 如何核对计算长度系数 Satwe对于构件的的计算长度系数的计算是按照《钢规》附录D来计算的,很多用户对软件的计算长度系数存在疑问,但是通过我们的核对,绝大多数的情况,软件还是严格按照规范来计算的,但是对于一些连接情况特别复杂的情况,规范也没有特别说明的的情况,软件也会出现一定的问题,那么我们该怎样核对构件的计算长度系数呢 第一个方法,就是我们上面用到的,抽一榀,用我们的二维门刚来验证。这样的计算结果比较简洁,直观,分别看两个方向的计算长度系数,然后和satwe的计算结果对比。

建筑门窗的抗风压计算书

一、计算依据 二、风荷载计算 1、基本情况:门窗计算风荷最大标高取70米;根据工程所处的地理位置,其风压高度变化系数按C类算。平开窗的受力杆件MQ25-24a最大计算长度为2400mm,杆件两边的最大受力宽度为:1375mm,;推拉窗的受力杆件 QLC30-25最大计算长度为:1960mm,杆件两边的最大受力宽度为1480mm。 2、风荷载标准值的计算 风荷载标准值ωk=βzμSμZωO (资料③ ωk―风荷载设计标准值 βZ―高度Z处的阵风系数,(资料③ μS―风荷载体型系数,取μS =0.8 (资料③ ωO―基本风压,取ωO =0.7KPa (资料③全国基本风压分布图) μz―风压高度变化系数, (资料③ 风荷载标准值计算: ωk=βzμSμZωO =1.66×0.8×1.45×0.7=1.35KPa

三、主要受力构件的设计及校核 1、受力构件的截面参数 根据(BH^3-bh^3 )/12 Ix=0.0491(D4 3 建筑门窗的抗风压计算 一、概况 1.1计算依据 风荷载标准按GB50009-2001《建筑结构荷载》的规定计算 任何材料制作的门窗玻璃按JGJ113-2003《建筑玻璃应用》的规定计算 玻璃幕墙按JGJ102-2003《玻璃幕墙工程技术规范》的规定计算 建筑外窗抗风强度计算方法 1.2说明 什么是围护结构呢?指建筑物及房间的围档物,包括墙壁、挡板等,按是否与室内外空气分割而言,包括内外围护结构,有透明与不透明之分。 “对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构具体规定。”提出了几个问题:一、高层建筑,二、高耸结构,三、比较敏感的其他结构,四、有关的规范。如何理解和应用的问题。 高层建筑:定义、基准,可从下列资料中找到。 JGJ37-87 《民用建筑设计通则》 GB50096-99 《住宅设计规范》 GB50045-95 《高层民用建筑设计防火规范》 GBJ 16-87 《建筑设计防火规范》 JGJ 3-2002 《高层建筑混凝土结构技术》 有一句基本雷同的说法:在通则与防火等规范中指出为: 居住建筑大于10层(约30M) 公用建筑大于24M 在JGJ3中定义为:10层及10层以上或房屋高度大于28M的建筑物。 高耸结构 在GBJ135-90中规定,如电视塔、发射塔、微波塔、拉绳桅杆、石油化工塔、大气污染检测塔、烟囱、排气塔、碾井架等。 有的塔有可能使用门窗、幕墙,例如上海、北京等地电视塔等。 有关结构设计规范 建筑风荷载标准值宜按计算值加大10%采用。 换句话讲,也就是玻璃承载能力要降低10%。风荷载标准值起点为0.75kPa;但比门窗产品抗风压检测标准

下柱的计算长度,规范

竭诚为您提供优质文档/双击可除下柱的计算长度,规范 篇一:柱的计算长度系数 柱的计算长度:程序中增加了一个选项“柱长度系数按混凝土土规范的7.3.11-3计算。以前老程序是按表7.3.11-1和表7.3.11-2采用的。7.3.11-3条是新规范新增的。“当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时,框架柱的计算长度lo可按公式7.3.11-1和公式7.3.11-2计算结果的较小者取值。 这是因为近年来对框架结构二阶效应的研究表明,竖向荷载在有侧移的框架中引起的p-△效应只增大有水平荷载 在柱端截面中引起的弯矩mh,而原则上不增大由竖向荷载引起的弯矩mv。因此,框架柱柱端考虑二阶效应后的总弯矩应是: m=mh+ηs*mv(1-1) 式中ηs为反映二阶效应增大mh幅度的弯矩增大系数。但在传统的η——lo法中,是用η同时增大mv和mh的,即:m=η(mh+mv)(1-2) 因此,如果要使所求的总弯矩相等,那么必然有:

ηs>η 与ηs相应的lo也就必然比与η相应的lo取得大一点。 对于一般工程中的多层框架结构,(在mv/mh为常见比例,即>1/3,框架节点的柱梁线刚度的比例也为常见值时)按规范表7.3.11-2的lo计算出的η再按1-2公式计算出的弯矩和按规范7.2.11-3条计算出的lo在按公式1-1算出的弯矩,两者差异不大。所以在一般多层框架,没有特殊的水平荷载和特殊的框架节点情况下,采用7.2.11-2和7.2.11-3计算的lo对计算结果没有大的影响。 但是,对于mv/mh 本来规范采用η——lo法就是不尽和理的,因此规范就在7.3.12条要求采用刚度折减法,这种方法也是国外通行的考虑二阶效应的计算方法,且也是准确的较为合理的计算方法,但遗憾的是这种方法在pkpm 程序中还没有得到实现。 篇二:柱计算长度系数 (一)规范要求 ⑴《混凝土结构设计规范》(gb50010-20xx)(以下简称《混凝土规范》)第7.3.11条 第2款规定:一般多层房屋梁柱为刚接的框架结构,各层柱的计算长度系数可按表7.3.11-2取用。 ⑵第7.3.11条第3款规定:当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时,框架柱的计算长度l0

(建筑门窗抗风压性能等级计算)

致: 华联房地产公司壹号公馆建设单位工作联系涵 建筑幕墙抗风压性能等级确定 1、工程条件 1) 工程所在省市:湖南 2) 工程所在城市:长沙 3)风压高度变化系数μz: A类地区:μZ=1.379 * (z / 10) ^ 0.24,z为安装高度; B类地区:μZ=(z / 10) ^ 0.32,z为安装高度; C类地区:μZ=0.616 * (z / 10) ^ 0.44,z为安装高度; D类地区:μZ=0.318 * (z / 10) ^ 0.6,z为安装高度; 4) 地面粗糙度类别:C类(有密集建筑群的城市市区取值) 2、风荷载标准值计算 1)基本风压 W0=0.35KN/m^2(按《建筑结构荷载规范》GB 50009-2001规定,采用50年一遇的风压,但不得小于0.3KN/m^2)。 2)阵风系数 βgz= 1.6,离地面高度按100m记(按《建筑结构荷载规范》GB 50009-2001表7.5.1规定)。

3)局部风压体型系数 μsl=0.8,(按《建筑结构荷载规范》GB 50009-2001第7.3.3条及表7.3.1规定)。 4)风荷载标准值 Wk = βgz*μsl*μZ*w0=1.6*0.8*1.7*0.35=0.76 3、抗风压性能等级 门窗的综合抗风压能力为:Qmax=11.06N/mm^2 (按《建筑门窗气密、水密、抗风压性能分级及检测方法》GB/T7106-2008) 建筑门窗抗风压性能分级表 根据《建筑门窗》GB/T21086-2008表12,P3=1,次建筑门窗抗风压性能分级为1级即可满足规范要求。 本设计检测门窗抗风压性能等级有原来的4级改为2级,符合规范及标准要求。 建设单位签章:设计单位签章: 2011年月日 2011年月日

问题讨论6:柱的计算长度问题

问题讨论6 柱的计算长度问题 柱的计算长度问题,需要分两个方面讨论。一是钢筋混凝土结构柱的计算长度,二是钢结构柱的计算长度。 1.钢筋混凝土结构柱的计算长度 1.1.单层排架结构柱的计算长度 1.1.1.无吊车房屋柱 这种情况相对简单,计算长度按照《混凝土结构设计规范》(GB 50010—2002)表7.3.11—1直接取用即可。但应注意,在SATWE程序中的隐含值是以多高层框架的规定为准,与单层房屋的规定不同。应用时应根据实际要求对柱计算长度系数进行修改。 1.1. 2.有桥式吊车的房屋柱 1.1. 2.1.考虑吊车作用计算 计算长度应按照《混凝土结构设计规范》(GB 50010—2002)表7.3.11—1取用。使用SATWE程序时,应根据有吊车的要求对柱计算长度系数进行修改。1.1.2.2.不考虑吊车作用计算 在有桥式吊车的房屋中,吊车在房屋中的位置并不固定。因此,内力计算应该包括没有吊车作用时的计算。在一般程序的内力分析中,有吊车作用时的内力可以完全涵盖无吊车作用时的内力。但是,无吊车时柱的计算长度一般要大于有吊车时的计算长度。如果吊车吨位不大,柱配筋很可能是无吊车时起控制作用。 不考虑吊车作用时,柱计算长度系数的修改原则: 在SATWE程序中,柱的计算长度实际上隐含的是现浇楼盖多层框架柱的计算规则:底层柱 1.0H,其余各层柱 1.25H。在吊车梁处如果主跨方向有横梁联系,则该方向的计算长度就是隐含值,否则应按越层柱考虑确定柱的计算长度。越层柱计算长度的计算规则见第1.3节。需注意,对于单跨的无吊车房屋柱,规范规定的计算长度是1.5H,不要误认为是1.25H。 1.1. 2. 3.有桥式吊车的房屋柱使用SATWE程序时的解决方案:宜分两次计算。先考虑有吊车的作用,注意应按有吊车的要求对柱计算长度系数进行修改后计算。再考虑无吊车的作用,注意应按无吊车的要求对柱计算长度系数进行修改后计算。两次计算中,以配筋大者作为设计的依据。 1.2.多层框架柱的计算长度 1.2.1.多层框架柱的计算长度应按照《混凝土结构设计规范》(GB 50010—2002)表7.3.11—2取用。 1.2.2.《混凝土结构设计规范》(GB 50010—2002)中7.3.11条第二项中规定,“当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时”,框架柱的计算长度另有计算公式。规范的条文说明对此已有解释,按照框架结构二阶效应规律的分析,此时直接采用表7.3.11—2中的计算长度是偏于不安全的。因此,采用SATWE程序计算时,可在设计信息中选取“混凝土柱的计算长度系数计算执行混凝土规范7.3.11—3条”选项,这样做偏于安全。当然,如果在非地震区,风荷载产生的柱弯矩不大时,没有必要用此选项。在框架剪力墙结构中,即使在地震区,由于剪力墙的作用使框架的侧向位移相对较小,此时框架柱的二阶效应介

12m路灯灯杆抗风、抗挠强度计算

12m 路灯灯杆抗风、抗挠技术 1、已知条件 1.1 最大风速 Vm=35m/s (P 风压:ω0=0.81KN/m 2) 1.2 材料 材质符合Q235(A3)/Q345 1.3 许用应力[σ]=210Mpa(《钢结构设计规范》)(Q235) 许用应力[σ]=345Mpa(《钢结构设计规范》)(Q345) 1.4 弹性模量:E= 2.06×1011N/M 2(《机械设计手册》) 1.5 灯管外形为选用Q235钢管焊接,100*200,壁厚分别为4mm. 1.6 灯体自重10kg ,杆重 500 kg 2、迎风面积 2.1 S 灯体= 0.1m 2 2.2 S 灯杆= 6m 2 3、结构自振周期 I= ?64π (0.174-0.1724)=8.5×10-6m 4 A=?4π (0.172-0.1722)=0.0022m 2 T1=3.63×)236.0(3AH m EI H ρ+ =0.56s T1>0.25s 采用风振系数来考虑,风压脉动的影响。 4、风振系数βz 4.1 基本风压 ω0T 12= 0.81×0.562 =0.254kN/ m 2 ∴脉动增大系数 ξ =2.10

4.2 风压脉动和风压高度变化的影响系数 ε1 =0.75 4.3 振型、结构外形影响系数 ε2=0.76 ∴β =1+ξ ·ε1?ε2=2.20 5、顶端灯具大风时的风荷载: (u τ 取1.3) F1=βzUsUzU τ灯体S ?0ω =2.20×0.9×1.3×1.0×0.81×0.15 =0.31KN 6、灯杆大风的风荷载: F2=βzUsUzU τ杆S ?0ω =2.20×0.7×1.0×1.1×0.81×1 =1.40KN 7、灯杆距底法兰处所受的最大弯矩: M 总=0.31×8+1.40×4=8.08KN ·m 8 、灯杆底端(危险截面即筋板上部开孔处的截面) 风压弯曲应力 σb σb = S M 总 = 3 4417.0)162.017.0(098.004.8m m KN -?? =87MPa σb <[ σb ]=210Mpa 结论:结构设计是满足国家相关设计规程的要求是安全的。

抗风设计计算

抗风设计计算 1.太阳能电池组件支架的抗风设计 依据电池组件厂家的技术参数资料,太阳能电池组件可以承受的迎风压强为2700Pa。若抗风系数选定为40m/s(相当于十级台风),依据非粘性流体力学,电池组件承受的风压只有565 Pa。所以组件本身是完全可以承受40 m/s的风速而不至于损坏的。所以,设计中关键要考虑的是电池组件支架与灯杆的连接。 在本套路灯系统的设计中电池组件支架与灯杆的连接设计使用螺栓固定连接。 2.路灯灯杆的抗风设计 路灯的参数如下: 电池板倾角A=16°,灯杆高度=4米 设计选取灯杆底部焊缝宽度δ=4mm灯杆底部外径Φ218 焊缝所在面即灯杆破坏面。灯杆破坏面抵抗矩W的计算点P到灯杆受到的电池板作用荷载F作用线的距离为 PQ=【5000+(218+6)/tan16°】*sin16°=1616mm=1.616m。所以,风载荷在灯杆破坏面上的作用矩M=F*1.616 根据40 m/s的设计最大允许风速,50W的单灯头太阳能路灯电池板的基本荷载为630N。考虑1.3的安全系数,F=1.3*630=819N。 所以,M=F*1.616=819*1.616=1323N·m。 根据数学推导,圆环形破坏面的抵抗矩W=π*(3r2δ+3rδ2+δ3) 上式中,r是圆环内径,δ是圆环宽度。 破坏面抵抗矩W=π*(3r2δ+3rδ2+δ3) =π*(3*105*105*4+3*105*16+64)=137404mm3 =137.404*10-6m3 风载荷在破坏面上作用矩引起的应力为=M/W =1323(137.404*10-6)=12.5*106Pa=12.5MPa<<215 MPa 其中,215 MPa是Q235钢的抗弯强度。 所以灯杆及太阳能组件均满足抗风技术要求。

基础抗风计算书

附件4 XX拌和站基础计算书 XX混凝土拌合站,配备HZS120k拌和机两套,每套搅拌楼设有5个储料罐,按照厂家提供图纸,3.2米储料罐自重12t.单个3.2米储料罐在装满建筑材料时按(110t=)1100kN荷载计算。 根据《建筑地基基础设计规范》第3.0.2条根据建筑物地基基础设计等级及长期荷载作用下地基变形对上不结构的影响程度,地基基础设计应符合下列规定: 1.所有建筑物的地基计算均应满足承载力计算的有关规定; 4.“对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构造物,尚应验算其稳定性”; 故需对砼拌合站配套的储料罐进行以下检算。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量kN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa

σ0—地基容许承载力MPa 通过查阅相关资料得出该处地基容许承载力σ0=0.20MPa 2.风荷载强度 W=K1*K2*K3*W0=240 Pa W0—风荷载强度Pa,查阅延安地区取W0=300Pa K1=0.8,K2=1.0,K3=1.0 3.基础抗倾覆计算 K c=M1/ M2≥1.50 即满足设计要求 M1—抗倾覆、弯距kN·m M2—倾覆弯距kN·m 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑 根据制造厂家提供的拌和站设计安装施工图知,现场基础平面尺寸如下:

地基开挖尺寸如图所示,宽度4.8m,砼基础浇注厚度为1.5m。以地基容许承载力为0.2MPa作为计算依据。 2.计算方案 已知砼拌合站储料罐基础开挖深度为2.1m,根据《建筑地基基础设计规范》,不考虑摩擦力的影响,计算时按单个储料罐受力考虑,每个储料罐满仓时集中力P1(满罐)=162t=1620kN,料罐基础平面尺寸为4.5m×4.8m,受力面积为A=21.6m2,基础为C30混凝土,砼重度取25kN/m3,基础砼自重P2=21.6m2×1.50m×25.0kN/m3=810kN,承载力计算示意见下图: P=P1+P2=2430kN 2.1m 基础 4.8m

抗压强度计算2015(DOC)

第四部分外窗的抗风压强度计算 第一节标准与方法 一、相关标准: 《建筑结构荷载规范》GB 50009-2012: ——用于计算建筑物围护结构的风荷载标准值 《建筑外窗抗风压强度、挠度计算方法》(建筑用塑料窗附录B)——用于进行门窗抗风压强度计算、受力杆件挠度校核《建筑玻璃应用技术规程》JGJ113-2009 ——用于玻璃的设计

《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7016-2008——用于门窗性能检测及性能分级 《门窗、幕墙风荷载标准值》04J906 ——用于直接查询建筑物的风荷载标准值,编制时间较早(2004年按GB50009-2001编制)。三、计算与分级 一)、计算方法有两种: 第一种是挠度校核,即在规定的风荷载标准值作用下,受力杆件的挠度不大于规定值; 第二种是抗风压值计算,即挠度达到最大值(等于L/150,且小于或等于20mm)时的风荷载值。二)、分级 抗风压强度计算与分级可分三步进行:

1、确定建筑物围护结构风荷载标准值。依据《建筑结构荷载规范》GB 50009计算,可由设计院或甲方提供,也可从相关规范、规定获取。。 2、按照《建筑外窗抗风压强度、挠度计算方法》进行门窗受力杆件挠度的校核或门窗抗风压值的计算 3、依据《建筑玻璃应用技术规程》JGJ113确定玻璃风荷载设计值,并进行玻璃强度计算。 4、按《建筑外门窗气密、水密、抗风压性能分级及检测方法》进行级别的判定。 第二节风荷载标准值 一、风荷载标准值的确定 ★甲方或设计院提供(当地有规定的按规定执行)。

★按《建筑结构荷载规范》GB 50009计算确定 按规范计算的风荷载标准值是最小值,根据建筑物的具体情况,可在计算的基础上,乘以安全系数确定。 ★风荷载标准值的直接选用 中国建筑标准设计研究院,在2004年以《建筑结构荷载规范》GB 50009-2001为依据,编制了《门窗、幕墙风荷载标准值》04J906(虽然荷载规范修订了,也许此图册会修订)。 《门窗、幕墙风荷载标准值》04J906是采用基本风压、地面粗糙度类别、建筑物高度三个参数,查表确定该建筑物的风荷载标准值。 在查表的过程中,没有用到建筑物的体形系数,是因为《门窗、幕墙风荷载标准值》04J906是取最大值计算的,即外表面是按负压区墙角边部位-1.8取值,内表面按+0.2取值的。

监控杆抗风力计算

四:地线的规格和型号 1:接地钳子的规格为40*40的国标角铁,长为2.5米。避雷线的规格为国标10平方的铜线 室外摄像机立杆监控立杆抗风设计计算公式 监控立杆使用范围大,功能性强,使用便利,在城市广场、大型立交、体育场、机场和港口码头等处广泛应用的同时,要充分考虑到监控立杆在狂风暴雨等恶劣环境中可靠使用的安全性。监控立杆的安全性包括刚度、稳定性及经济性等多方面的计算,其中强度校核是保证使用的一项重要内容。在此我将分步演算监控立杆安全性计算及强度校核: 一、监控立杆的安全性计算 1)监控立杆摄像机(包括外罩)的迎风面积: 由于摄像机采用不同形状,使摄像机的迎风面积具有不确定性。现取常见的封闭式球状摄像机为例,以摄像机外形的正投影作为迎风面参考面积 S摄像机=(d1+d2)H1/2 2)监控杆杆身的迎风面积: 监控立杆杆身往往采用(锥度约1000:5)锥形体或圆柱体。杆身的迎风面积随着杆身长度的增加而逐渐增大。 S杆身=(D1+D2)H2/2 3)监控立杆的基本风压计算 风压是垂直于气流风向的平面受到的风的压力,根据伯努利方程得出标准的风压关系公式。风的动压为: WP=0.5*r*V2/g=0.5*ro*V2(ro=r/g) WP为风压,单位KN/M2。 ro为空气密度,单位KG/M3。 V为风速,单位是M/S。 r为空气重度,单位KN/M3。 空气重度r和重力加速度g随纬度和海拔高度而变。一般来说,ro在高原要比在平原地区小,也就是说,同样风速在相同温度下,其产生的风压在高原比在平原地区小。通常的10级大风相当于24.5M/S—28.4M/S。为了使监控立杆有广泛的应用地区,暂取监控立杆所在地区的风速为30M/S,且空气密度取ro=1.255KG/M3。(密度可在物理手册或有关资料查得) 则基本风压WP计算如下: WP=ro*V2/2=1.255*302/2=551.25Pa 4)监控立杆的风载荷W0计算 风载荷标准值=基本风压*风振系数*风压高度变化系数*风载体形系数 A风振系数 实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而脉动风压使建筑物在该侧移附近左右振动。脉动风压对结构产生的动力现象就是风振。《荷载规范》对于一般悬臂结构(构架、塔架、烟囱等高耸结构)且可忽略扭转影响的高层建筑,风振系数可按规范中一个相应的公式计算。 B风压高度变化系数 《荷载规范》中把地表粗糙度分为ABCD四类,a类指近海面和海岛、海岸、湖岸及沙漠地区;b类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;c类指有密集建筑群的城市市区;d类指有密集建筑群且房屋较高的城市市区。风压高度变化系数定义为任一高度处的风压与B类地面粗糙度、标准高度l0m处的风压比值。风压高度变化系数可

柱的计算长度系数

柱的计算长度:程序中增加了一个选项“柱长度系数按混凝土土规范的7.3.11-3计算。以前老程序是按表7.3.11-1和表7.3.11-2采用的。7.3.11-3条是新规范新增的。“当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时,框架柱的计算长度 lo 可按公式7.3.11-1和公式7.3.11-2计算结果的较小者取值。 这是因为近年来对框架结构二阶效应的研究表明,竖向荷载在有侧移的框架中引起的P-△效应只增大有水平荷载在柱端截面中引起的弯矩 Mh,而原则上不增大由竖向荷载引起的弯矩 Mv。因此,框架柱柱端考虑二阶效应后的总弯矩应是: M=Mh+ηs*Mv(1-1) 式中ηs为反映二阶效应增大Mh幅度的弯矩增大系数。但在传统的η——lo法中,是用η同时增大Mv和Mh的,即: M=η(Mh+Mv)(1-2) 因此,如果要使所求的总弯矩相等,那么必然有: ηs>η 与ηs相应的lo也就必然比与η相应的lo取得大一点。 对于一般工程中的多层框架结构,(在 Mv/Mh为常见比例,即>1/3,框架节点的柱梁线刚度的比例也为常见值时)按规范表7.3.11-2的lo计算出的η再按1-2公式计算出的弯矩和按规范7.2.11-3条计算出的lo在按公式1-1算出的弯矩,两者差异不大。所以在一般多层框架,没有特殊的水平荷载和特殊的框架节点情况下,采用7.2.11-2和7.2.11-3计算的lo对计算结果没有大的影响。 但是,对于Mv/Mh<1/3或梁注线刚度相差较大的情况下,采用7.3.11-2条计算的lo对计算结果就很大的影响了,而且是偏于不安全的,所以在这种情况下就要求采用7.3.11-3计算。建议都采用7.3.11-3计算。 本来规范采用η——lo法就是不尽和理的,因此规范就在7.3.12条要求采用刚度折减法,这种方法也是国外通行的考虑二阶效应的计算方法,且也是准确的较为合理的计算方法,但遗憾的是这种方法在PKPM程序中还没有得到实现。

相关文档
最新文档