实验十二用电位差计测量电动势

实验十二用电位差计测量电动势
实验十二用电位差计测量电动势

实验4—14 电位差计测电动势

电位差计是精密测量中应用最广的仪器之一,不但用来精确测量电动势、电压、电流和电阻等,还可用来校准精密电表和直流电桥等直读式仪表,在非电参量(如温度、压力、位移和速度等)的电测法中也占有重要地位。

【实验目的】

1.掌握电位差计的工作原理和结构特点。

2.学习用线式电位差计测量电动势。

【实验原理】

若将电压表并联到电池两端,就有电流I通过电池内部。由于电池有内电阻r,在电池内部不可避免地存在电位降落I r,因而电压表的指示值只是电池端电压V E I r的大小。只有当I =0时,电池两端的电压才等于电动势。

采用补偿法,可以使电池内部没有电流通过,这时测定电池两端的电压即为电池电动势。

如图4-14-1所示,按通 K i后,有电流|通过电阻丝 AB,并在电阻丝上产生电压降I R。如果再接通K2,可能出现三种情况:

1.当E x V CD时,G中有自右向左流动的

电流(指针偏向右侧)。

2.当E x V CD时,G中有自左向右流动的

电流(指针偏向左侧)。

3.当E x V CD时,G中无电流,指针不偏

转。将这种情形称为电位差计处于补偿状态,

或者说待测电路得到了补

偿。

在补偿状态时,E x IR CD。设每单位长度

电阻丝的电阻为r0,CD段电阻丝的长度为

L x,于是

E x Ir 0 L x

将保持可变电阻R n及稳压电源E输出电压不变,即保持工作电流I不变,再用一个电动势为E s的标准电池替换图中的E x,适当地将C、D的位置调至C'、D',同样可使检流计G的指针不偏转,达到补偿状态。设这时C'D'段电阻丝的长度为L s,则

E s IR C'D' Ir0L s 将(4-14-1 )和(4-14-2)式相比得到

(4-14-2)

(4-14-1) 图 4-14-1

L x

E x E s

(4-14-3)

L s (4-14-3)式表明,待测电池的电动势 E x 可用标准电池的电动势 E s 和在同一工作电流下电 位差计处于补偿状态时测得的 L x 和L s 值来确定。可见电位差计测量的结果仅仅依赖于准确 度极高的标准电池、标准电阻(或均匀电阻丝)以及高灵敏度的检流计,测量准确度可达到 0.01%或更高。 【实验仪器】 图 4-14-2

图 4-14-3

电源接在“X 档,而测0~16.000mV 电位差时,先将工作电源接在

十一线电位差计,学生型电位差计, 标准电池,待测电池,直流稳压电源检流 计,可变电阻等。 1. 十一线式电位差计

十一线式电位差计具有结构简单、直 观、便于分析讨论等优点,其结构如图

4-14-2所示。电阻丝 AB 长5.5m,往复绕 在有机玻璃板的11个接线插柱上,每相邻 两个接线柱间电阻丝有效长度为

0.5m 。插

头C 可连接在0,1……10中任一个位置。 电阻丝BO 旁边附有带毫米刻度的米尺, 触头D 在它上面滑动。CD 间的电阻丝长 度可在0 : 5.5m 间连续变化。R n 为可变 电阻箱,用来调节工作电流。转换开关

K 2

用来选择接通标准电池 E s 或待测电池

E x o

滑线变阻器R 滑是用来保护标准电池 和检流

计的,在电位差计未处于补偿状态 时,必须调到最大,在电位差计处于补偿 状态进行读数时,应调到最小,以提高测 量的灵敏度。

2. 学生型电位差计

箱式电位差计是利用补偿法测电位差 原理做成的仪器,有多种型号,学生型电 位差计是其中的一种,其结构如图 4-14-3

所示。

1) 该电位差计可以测量 0: 1.6000V 及

0: 16.000mV 的电位差,并可用来校 准电流

表、电压表等。

2) 工作电源用2.0: 6.0V 。

3) 测0: 1.6000V 的电位差时,工作

x 档,调节工作电流

标准化,然后将工作电源接到

“X 0.0档”测定E x 。

使用任何一种电位差计,都必须先借助于标准电池来校准工作电流,然后才能用来测量 待测电动势或电位差。

【实验内容与步骤】

1. 用十一线电位差计测电池电动势

1) 按图4-14-2连接电路时应断开所有的开关,特别注意工作电源与标准电池和待测电 池的正、负极相对应。

2) 校准电位差计。调节

C 、

D 两活动接头,使 C 、D 长度为L s =2.2000m ,然后接通

K 1,将K 2合向E s ,调节可变电阻箱 R n ,同时断续按下滑动触头 D 和检流计的电计按钮,

直到G 的指针不偏转。然后将滑动变阻器调到最小,再次微调 R n 使G 的指针无偏转。此时

电阻丝上每米的电压降为

A 伏。即

3)测未知电动势。将滑动变阻器调到最大,固定R n 即保持工作电流不变。将K 2合向E x , 滑动触头D

移至尺左边O 处,按下触头D ,同时移动接头C,找出使检流计指针偏转方向改 变的两相邻接线柱,将插头C 在数字较小的接线柱上。 然后向右移动触头 D ,直到G 的指针 不偏转。然后将滑动变阻器调到最小,再次微调触头

D 使G 的指针无偏转,记下CD 间电阻

丝的长度L x 。重复这一步骤,求出 L x 的平均值L x ,于是E x = A Lx (V )。

2. 用学生型电位差计测电动势

1) 按图4-14-3连接电路时应断开所有的开关,特别注意工作电源、标准电池和待测电 池的正负极相对应。

2) 校准电位差计。若室温下标准电池的电动势 E s =1.0186V ,则将电位差计两个调节旋

钮(C s 、D s )的读数之和调到 1.0186格,接通开关 K 1, K 2合向E s ,调节可变电阻箱 R n , 直到G 的指针不偏

转。然后将滑动变阻器调到最小,

再次微调R n 使G 的指针不偏转。此时,

C s

D s 之间电阻上的电位差与标准电池的电动势相等,即可求出单位刻度的电位差等于

1伏/

格。此时已将电位差计的刻度校准成电压刻度。

3)测未知电动势。将滑动变阻器调到最大,固定R n 即保持工作电流不变。将K 2合向E x , 改变电位差计两个调节旋钮的位置,

直流G 的指针不偏转。然后将滑动变阻器调到最小,再

次微调旋钮D x 的位置使G 的指针不偏转。此时两个调节按钮( C x 、D x )的读数之和即为待 测电池的电动势

E x 。

【实验注意事项及常见故障的排除】

1. 电路中电池极性不能接错。

2. 由于电源的稳定性等原因,测量中要经常调节工作电流 I ,即反复定标。

3.

在接通电路时,要先接通工作回路,再接通补偿回路;断电时,先断补偿

E s (t) L s

1.0186

2.2000

0.46300 V/m

回路。使用检流计开关时,要用跃接法。(想一想,为什么?)

【思考题】

1.为什么用电位差计可直接测电源的电动势?能否用伏特表测电动势?若可测,写出测量方法。

2.用电位差计测电动势时,不管定标还是测量,检流计总向一个方向偏转,试分析故障的原因有哪些。

3.用电位差计测量电动势,为什么先要定标”怎样定标?

【附录】

标准电池

标准电池是一种用来作电动势标准的原电池。由于内电阻高,在充放电情况下会极化,不能用它来供电。当温度恒定时,它的电动势稳定。在不同温度( 0: 40 C)时标准电池的电动势E s(t)应按下述公式修正:

E s(t) E s(20) 39.94 10 6(t 20) 0.929 10 6(t 20)2 0.0090 10 6(t 20)3

其中E s(20)是20C时标准电池的电动势,其值应根据所用标准电池的型号确定。

使用标准电池时要注意以下几点:

1.必须在温度波动小的情况下保存,应远离热源,避免太阳光直射。

5 6

2.正负极不能接错,通入或取自标准电池的电流不能大于10 : 10 A。不允许将两电

极短路连接或用电压表去测量它的电动势。

3.标准电池内是装有化学物质溶液的玻璃容器,要防止振动和摔坏。一般不倒置(容器

内加了微孔塞片的标准电池可防止因倒置而损坏) 。

电位差计测电池的电动势和内阻

课 题 用线式电位差计测电动势 1.了解电势的补偿原理,并理解用电势差计测电动势的基本方法和特点; 教 学 目 的 2.掌握电势差计的工作原理和结构特点; 3.学会用线式电势差计测量电源电动势。 重 难 点 1.补偿法的理解; 2.电势差计的正确使用。 教 学 方 法 讲授、讨论、实验演示相结合。 学 时 3个学时 一、前言 电势差计是一种精密的电学测量仪器,在精密测量中,电势差计是应用最广的仪器之一,它主要用来测量电动势、电势差和校准电表,还可用于间接地测量电阻、电流和一些非电量(如温度、压力)等,其精度可达0.1%~0. 03%。 用电势差计测电动势,就是将未知电压与电势计上的已知电压相比较。测量中由于电势差不从被测对象中取用电流,并且应用了标准电池、标准电阻及高灵敏度检流计,因而测量精度高,测量结果可靠。 二、实验仪器 直流稳压电源,万用表,线式电势差计,指针式检流计,标准电池,待测电磁,滑线变阻器,电位器,双掷双刀开关,单掷单刀开关,带保护电阻单刀开关,导线。 三、实验原理 关键讲清两点:1、补偿法 2、补偿法的实现 (一)直接用电压表测量电动势时,得到的是电池两端的路端电压,由于电池有阻,只要有电流通过,它就会有电压降,所以电压表的示值(端电压)总是小于电源电动势。 x U E Ir =-

(二)补偿法:要消除电池阻产生的电压降,就必须使流过电池的电流为零,因此要测量未知电动势,原则上按图4.8-1所示电路进行,电势差计就是利用补偿法测电池的电动势。 (三)电势差计工作原理 实际使用中,精度高而连续可调的电动势是没有的。为了实现上述测量,通常采用分压的方法。电势差计就是根据补偿原理制成的高精度分压装置。电势差计有多种类型,本实验使用的是线式电势差计,其原理如图4.8-2所示。电势差计主要由工作回路、校准回路和待测回路三个部分组成。 1.接通 1 K后,有电流I通过电阻丝AB。 2.标准化:把 2 K拨向标准电池 s E,检流计G上有可能有电流流过,适当调整C、 D两点位置,找到合适的C、D长度,使G的指针零偏转,即 s CD E U =,此时,电路 处于平衡状态,电阻 CD R上的电压降与标准电池的电动势互为补偿。 如果单位长度电阻丝电阻为 R,CD长度为 s L,则有 CD端的电势差: s s E IR L = 3.保持电阻 n R不变,即工作电流I保持不变,把 2 K合向待测电池 x E,重新找'C、' D位置,使检流计G再次指零,达到补偿状态。 '' C D长度为 x L,则 x x E IR L = 则有:x x s s L E E L =? 当 s E, s L, x L都已知时,电源电动势 x E可求出。

原电池电动势的测定实验报告

实验九原电池电动势的测定及应用 一、实验目的 1.测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC-Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=-(9-1) 式中G ?是电池反应的吉布斯自由能增量;n为电极反应中得失电子的数目;F为法拉第常数(其数值为965001 ?);E为电池的电动势。所以测出该电池的电动势E后,进而 C mol- 又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计 测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++ - + 正极起还原反应: 22()2()C u C u a e C u s + +- + 电池总反应为: 2222()()()()C u Zn Zn s C u a Zn a C u s ++++ ++ 电池反应的吉布斯自由能变化值为: 22ln C u Zn Zn C u a a G G RT a a ++?=?- (9-2) 上述式中G ? 为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221C u Zn a a + +==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn C u a R T E E nF a ++ =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1ln 2C u C u C u RT F a ??+ ++=- (9-6) 22,1ln 2Zn Zn Zn RT F a ??+ + -=- (9-7) 式中2,Cu Cu ?+ 和2,Zn Zn ?+ 是当221C u Zn a a + +==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

用电位差计测电动势实验报告

用电位差计测电动势实验报告 篇一:十一线电位差计测电动势(实验报告) 大学物理实验报告 实验名称电位差计测量电动势实验日期实验人员 【实验目的】 1. 了解电位差计的结构,正确使用电位差计; 2. 理解电位差计的工作原理——补偿原理; 3. 掌握线式电位差计测量电池电动势的方法; 4. 熟悉指针式检流计的使用方法。 【实验仪器】 11线板式电位差计、检流计、标准电池、待测电池、稳压电源、单刀双掷开关、保护电路组 【实验原理】 电源的电动势在数值上等于电源内部没有净电流通过时两极件的电压。如果直接用电压表测量电源电动势,其实测量结果是端电压,不是电动势。因为将电压表并联到电源两端,就有电流I通过电源的内部。由于电源有内阻r0,在电源内部不可避免地存在电位降Ir0,因而电压表的指示值只是电源的端电压(U=E-Ir0)的大小,它小于电动势。

显然,为了等于其电动势E。 1. 补偿原理 ?? 如图1所示,把电动势分别为ES 、EX和检流计G 联成闭合回路。当ES EX时,检流计指针偏向另一边。只有当ES = EX时,回路中才没有电流,此时I=0 ,检流计指针不偏转,我们称这两个电动势处于补偿状态。反过来说,若I=0 ,则ES = EX。 能够准确的测量电源的电动势,必须使通过电源的电流I为零。此时,电源的端电压U才 图1 补偿电路 2. 十一线电位差计的工作原理 如图2所示,AB为一根粗细均匀的电阻丝共长11米,它与直流电源组成的回路称作工 作回路,由它提供稳定的工作电流I0;由待测电源EX、检流计G、电阻丝CD构成的回 路称为测量回路;由标准电源ES、检流计G、电阻丝CD 构成的回路称为定标(或校准) 回路。调节总电流I0的变化可以改变电阻丝AB单位长度上电位差U0的大小。C、D 为AB上的两个活动接触点,可以在电阻丝上移动,以

实验报告-温差电动势的测量

大学物理实验报告 实验3-7 温差电动势的测量 一、实验目的: 测量热电偶的温差电动势。 二、实验器材: UJ31型箱式电位差计、热电偶、光点式或数字式验流计、标准电池、直流稳压电源、温度计、电热杯、带温度显示的水浴锅、保温杯。 三、实验原理: 1、热电偶 两种不同金属组成一闭合回路时,若两个接点A、B处于不同温度T0和T,则在两接点A、B间产生电动势,称为温差电动势,这种现象称为温差现象。温差电动势ε的大小除和热电偶材料的性质有关外,另一决定的因素就是两个接触点的温度差(T-T0)。电动势与温差的关系比较复杂,当温差不大时,取其一级近似可表示为 ε =C(T-T ) 式中C为热电偶常数(或称温差系数),等于温差1℃的电动势,其大小决定于组成热电偶的材料。 热电偶可制成温度计。为此,先将T0固定用实验方法确定热电偶的ε-T关系,称为定标。定标后的热电偶与电位差计配合可用于测量温度。与水银温度计相比,温差电偶温度计具有测量范围大(-200~2000℃),灵敏度和准确度高,便于实验遥测和A/D变换等一系列优点。 2、电位差计 电位差计时准确测量电势差的仪器,其精度很高。用伏 特表测量电动势x E,伏特表读数为U=x E-IR,其中R为 伏特表内阻。由于U

如图,如果两个电动势相等,则电路中没有电流通过,I=0, N E =x E 。如果 N E 是标准电池,则利用这种互相抵消的方法就能准确地测量被测的电动势x E , 这种方法称为补偿法,电位差计就是基于这种补偿原理而设计的。 在实际的电位差中, N E 必须大小可调,且电压很稳定。电位差计的工作原 理如图所示,其中外接电源E 、制流电阻P R 和精密电阻AB R 串联成一闭合电路,称为辅助回路。当有一恒定的标准电流 o I 流过电阻AB R 时,改变AB R 上两滑动头C 、D 的位置就能改变C 、D 间的电位差 CD V 的大小。由于测量时应保证 o I 恒定不变,所 以在实际的电位差计中都根据o I 大小把电阻的数 值转换成电压值,并标在仪器上。CD V 相当于上面 的“ N E ”,测量时把滑动头C 、D 两端的电压 CD V 引出与未知电动势x E 进行比较。 (1)校准: 根据标准电池电动势N E 的大小,选定C 、D 间的电阻为N R , 使 N E =o I N R ,调节P R 改变辅助回路中的电流,当验流计指零时,AB R 上的电压 恰与补偿回路中标准电池的电动势N E 相等。由于 N E 和 N R 都准确地已知,这时 辅助回路中的电流就被精确地校准到所需要的o I 值。 (2) 测量: 把开关倒向x E 一边,只要x E ≤o I N R ,总可以滑动C 、D 到' D 'C 、使检流计再度指零。这时'D 'C 、间的电压恰和待测的电动势x E 相等。设'D 'C 、之间的电阻为 x R ,可得x E = o I x R 。因o I 已被校准,x E 也就知道了。 由于电位差计的实质是通过电阻的比较把待测电压与标准电池的电动势作比较,此时有 N N x x E R R E = 因而只要精密电阻AB R 做得很均匀准确、标准电池的电动势 N E 准确稳定、

电位差实验报告

电位差实验报告 篇一:大学物理实验报告----电位差计的使用 大学物理实验报告——电位差计的使用 篇二:电位差计校准电表实验报告(完整版) 电位差计校准电流表 1 2 3 4 5 篇三:物理实验报告9_电位差计 实验名称:电位差计 实验目的: a.了解电位差计改装的原理,掌握一般使用的方法 b.学习使用电位差计校准电流表 实验仪器: UJ33a型电位差计等。 实验原理和方法: 一、“UJ33a型电位差计”使用方法 倍率开关K1平时处于“断”位置,使用时旋转到所需位置(本实验

为“?1”位置),开关K3旋转至“测量”位置。接通电源后,旋动“调零”旋钮使检流计指零;将K2键扳向“标准”,旋动“工作电流调节”旋钮,使检流计指针指零,这时工作电流达到额定值10.0000ma,仪器准备就绪。 测量时,将调节补偿电压的三个盘或旋钮调到与待测电压差不多大小后,将K2键扳向“未知” 位置,调节读数盘(一般调最右边的大盘即可),使检流计指针返零,松开K2键,即可读数。测量完毕,K1扳回“断”位置。二、电位差计工作原理和测量线路电位差计采用比较法(补偿法)测量电压,测量时无须从待测电路取出电流,不会干扰待测电路的工作状态,因而可以进行精密的测量。由于在结构上采用了高精度的电阻元件、标准电池和灵敏的检流计,因而测量结果具有很高的精度。使用时将K2键扳向“标准”,使标准电阻两端的电压()与标准电池电动势比较,调节“工作电流调节”旋钮使检流计指零,则工作电流为10.000ma,再将待测电压与某一段电阻上的电压进行比较,从而确定待测电压。 三、校准微安表按照线路图连接好电路,并将标准电阻两旁的导线接到电位差计的“未知”接线柱,就可进行微安表校准。所谓“校准”就是在每个电表电流读数下,测定电阻两端的准确电压,从而算出准确电流,再与电表读数电流进行比较。所谓“上行”是指电流表读数由小到大逐点测定相应的电压值(读至小数点后3位);“下行”则由大到小逐点进行测定。校准电流数据填入到数据记录表中。注意:1.校准电表前必须先进行检流计调零,并校准工作电流;2.校准时要随

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。

在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++-+? 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+? 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++? 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6)

电位差计校准电表实验报告(完整版)

电位差计校准电流表

3 、电位差计的标准 要想使回路的工作电流等于设计时规定的标准值I O ,必须对电位差计进行校准。方法如图所示。E S 是已知的标准电动势,根据它的大小,取cd 间电阻为R cd ,使R cd =E S /I O ,将开关K 倒向E S ,调节R 使检流计指针无偏转,电路达到补偿,这时I O 满足关系I O = E S /R cd ,由于已知的E S 、R cd 都相当准确,所以I O 就被精确地校准到标准值,要注意测量时R 不可再调,否则工作电流不再等于I O 。 4﹑电流表的校准 校正电流表的电路如图5-20-4所示,图中毫安表为被校准电流表,R 为限流器,s R 为标准电阻,有4个接头,上面两个是电流接头,接电流表,下面两个是电压接头,接电位差计。电位差计可测出s R 上的电压s U ,则流过s R E R a b c d Es Ex K 图5-20-4 电位差计校正电流表电路

中电流的实际值为s s R U I /0= 在毫安表上读出电流指示值I ,与0I 进行比较,其差值0I I I -=?称为电流表指示值的绝对误差。找出所测值中的最大绝对误差m I ?,按式(0-0-1)确定电流表级别。 %100??= 量限 m I a (0-0-1) 电路实物图: 五、实验内容及步骤 1、校准学生式电位差计 使用电位差计之前,先要进行校准,使电流达到规定值。先放好R A 、R B 和R C ,使其电压刻度等于标准电池电动势,取掉检流计上短路线,用所附导线将K 1、K 2、K 3、G 、R 、R b 和电位差计等各相应端钮间按原理线路图进行连接,经反复检查无误后,接入工作电源E ,标准电池E S 和待测电动势E X ,R b 先取电阻箱的最大值,(使用时如果检流计不稳定,可将其值调小,直到检流计稳定为止),合上K 1、K 3,将K 2推向E S (间歇使用),并同时调节R ,使检流计无偏转(指零),为了增加检流计灵敏度,应逐步减少R b ,如此反复开、合K 2 ,确认检流计中无电流流过时,则I O 已达到规定值。

电子电工类_供电与用电安全知识

1 . 在工作环境中见到以下标志,表示 A.注意安全 B.当心触电 C.当心感染 D.小心雷击 答案:B 2 . 工人在从事电工作业时,如见到以下标志,则表示 A.注意安全 B.当心滑倒 C.当心电缆 D.当心机械伤人 答案:C 3 . 防止人身触电最根本的措施是 A.对电气工作人员或用电人员进行安全教育和管理 B.绝缘盒屏护措施 C.在容易触电的场合采用安全电压 D.对电气设备进行安全接地 答案:A 4 . 电器起火时,要先 A.打电话报警 B.切断电源 C.用灭火器灭火 D.赶紧远离电器 答案:B

5 . 人体组织中有()以上是由含有导电物质的水分组成的,因此人体是电的良导体。 A.20% B.40% C.60% D.80% 答案:D 6 . 施工现场照明设施的接电应采取的防触电措施为 A.戴绝缘手套 B.切断电源 C.站在绝缘板上 D.使用绝缘夹钳 答案:B 7 . 测量接地电阻时,应以大约()r/min 的转速转动仪表的摇把。 A.60 B.120 C.200 D.250 答案:B 8 . 调试、检测较大功率电子装置时,工作人员不应少于 A.1人 B.2人 C.3人 D.4人 答案:B 9 . 下列()两种用具是在电气操作中使用的辅助安全用具。 A.绝缘手套、验电器 B.绝缘鞋、绝缘垫 C.验电器、绝缘夹钳 D.绝缘手套、临时遮栏

10 . 关于触电,下列说法中正确的是 A.只要有电流流过人体,就会发生触电 B.只要人体不接触带电体,就一定不会发生触电 C.只要人体接触到火线,就会发生触电 D.触电是指一定强度电流流过人体,并引起了伤害 答案:D 11 . 在日常生活中符合安全用电常识的做法是 A.用湿抹布擦电灯泡 B.有金属外壳的家用电器,金属外壳不接地 C.发生火灾时,首先切断电源 D.保险丝烧断后,可用铜丝代替保险丝接上 答案:C 12 . 下列导体色标,表示接地线的颜色是 A.黄色 B.绿色 C.淡蓝 D.绿/黄双色 答案:D 13 . 漏电保护器,有( )类型。 A.电压型和电流型 B.额定电流 C.额定电压 D.额定电阻 答案:A 14 . 电流流经人体的()、中枢神经和呼吸系统是最危险的。 A.手臂

用电位差计测电动势

电位差计测量电动势及内阻电位差计是通过与标准电势源的电压进行比较来测定未知电动势的仪器,被广泛地应用在计量和其它精密测量中。由于电路设计中采用补偿法原理,使被测电路在实际测量时通过的电流强度为零,从而可以达到非常高的测量准确度。虽然随着科学技术的进步,高内阻、高灵敏度的仪表的不断出现,在许多测量场合都可以由新型仪表逐步取代电位差计的作用,但电位差计这一典型的物理实验仪器,采用的补偿法原理是一种十分可取的实验方法和手段。 实验目的 1. 学习和掌握电位差计的补偿原理。 2. 掌握电位差计进行测量未知电动势的基本方法。 3. 学习对实验电路参数的估算、校准及故障排除的方法。 实验仪器 电位差计实验仪、型新型十一线电位差计、待测电动势 实验原理 1.补偿法原理 补偿法是一种准确测量电动势(电压)的有效方法。如图所示,设为一连续可调的标准电源电动势(电压),而为待测电动势,调节的大小使检流计示零,即回路中电流,电路达到平衡补偿状态,此时待测电动势与标准电动势相等,则。这种利用补偿原理测电动势的方法称为补偿法。 2.电位差计原理 电位差计就是一种根据补偿法思想设计的测量电动势(电压)的仪器。十一线电位差计是一种教学型电位差计,如图2所示,为待测电动势,为标准电池。可调稳压电源、与长度为的电阻丝为一串联电路,工作电流在电阻丝上产生电位差。触点可在电阻丝上任意移动,因此可得到相应改变的电位差。 当合上向上合到处,调节可调工作电源,改变工作电流,改变触点

位置,可使检流计指零,此时与达到补偿状态。则: (1) 式中为单位长度电阻丝的电阻,为电阻丝段的长度,为单位长度电阻丝上的电压,称为校正系数。 保持工作电流不变,即保持电源电压不变,向下合到处,即用代替,再次调节触点的位置,使电路再次达到平衡,此时若电阻丝长度为,则: (2) 即可测出待测电源电动势。 实验内容 (1) 按原理图正确连接电路: 图为测量干电池电动势时的连接图,按原理图把与正确连接。 合上电源总开关,打开电压开关K1,K2拨到中间位置,K3先断开,即串联的保护电阻(降低灵敏度),若使用仪器内设的检流计与标准电势源,转换开关、均向下合,如果要使用外接检流计或外接标准电池,则或应向上合并接入相应外接设备。数字式检流计档位拨到断开,调节数字式检流计调零旋钮使检流计读数为零。 (2) 工作电流标准化:

电位差计的原理和使用

实验八 电位差计的原理和使用 【实验目的】 1.掌握电位差计的工作原理和正确使用方法,加深对补偿法测量原理的理解和运用。 2.训练简单测量电路的设计和测量条件的选择。 【实验仪器】 UJ31型直流电位差计、SS1791双路输出直流稳压电源、标准电池、标准电阻、AC15/5灵敏电流计、FJ31型直流分压箱、滑线变阻器、直流电阻箱、待校验电表、待测干电池、待测电阻、开关和导线等。 【实验原理】 如图5.8.1所示,电位差计的工作原理是根据电 压补偿法,先使标准电池E n 与测量电路中的精密电阻R n 的两端电势差U st 相比较,再使被测电势差(或电压)E x 与准确可变的电势差U x 相比较,通过检流计G 两次指零来获得测量结果。电压补偿原理也可从电势差计的“校准”和“测量”两个步骤中理解。 校准:将K 2打向“标准”位置,检流计和校准电路联接,R n 取一预定值,其大小由标准电池E S 的电动势确定;把K 1合上,调节R P ,使检流计G 指零,即E n = IR n ,此时测量电路的工作电流已调好为 I = E n /R n 。校准工作电流的目的:使测量电路中的R x 流过一个已知的标准电流I o ,以保证R x 电阻盘上的电压示值(刻度值)与其(精密电阻R x 上的)实际电压值相一致。 测量:将K 2打向“未知”位置,检流计和被测电路联接,保持I o 不变(即R P 不变),K 1合上,调节R x ,使检流计G 指零,即有E x = U x = I o R x 。 由此可得x n n x R R E E = 。由于箱式电位差计面板上的测量盘是根据R x 电阻值标出其对应的电压刻度值,因此只要读出R x 电阻盘刻度的电压读数,即为被测电动势E x 的测量值。 所以,电位差计使用时,一定要先“校准”,后“测量”,两者不能倒置。 【实验装置】 1. UJ31型电位差计 UJ31型箱式电位差计是一种测量低电势的电位差计,其测量范围为mV .V 1171-μ(1K 置1?档)或mV V 17110-μ(1K 置10?档)。使用V V 4.6~7.5外接工作电源,标准 图5.8.1 电位差计的工作原理 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

电位差计校准电表实验报告记录(完整版)

电位差计校准电表实验报告记录(完整版)

————————————————————————————————作者:————————————————————————————————日期:

电位差计校准电流表 一、实验目的 1.理解电位差计的工作原理,掌握电位差计的使用方法。 2.掌握使用电位差计校准电表的方法。 3.学习简单电路的设计方法,培养独立工作的能力。 三实验仪器: 学生式电位差计,标准电池,稳压电源,可变电阻器箱两台,待校准电流表(20mA),标准电阻Rs。

四、实验原理: 1、电位补偿原理 。 如图是将被测电动势的电源Ex 与一已知电动势的电源E O “+”端对“+”端,“-”端对“-”端地联成一回路,在电路中串联检流计“G ”,若两电源电动势不相等,即Ex≠E O 回路中必有电流,检流计指针偏转;如果电动势E O 可调并已知,那么改变E O 的大小,使电路满足E X =E 0,则回路中没有电流,检流计指示为零,这时待测电动势E X 得到己知电动势E O 的完全补偿。可以根据已知电动势值E O 定出E X ,这种方法叫补偿法。我们知道,用电压表测量电压时,总要从被测电路上分出一部分电流,从而改变了被测电路的状态,用补偿法测电压时,补偿电路中没有电流,所以不影响被测电路的状态。这是补偿测量法最大的优点和特点。 2、电位差计 按电压补偿原理构成的测量电动势的仪器称为电位差计。由上述补偿原理可知,采用补偿法测量电动势对E O 应有两点要求:(1)可调。能使E O 和E X 补偿。(2)精确。能方便而准确地读出补偿电压E O 大小,数值要稳定。 E E R a b c d Eo Ex Io

实验十二 用电位差计测量电动势

实验4—14 电位差计测电动势 电位差计是精密测量中应用最广的仪器之一,不但用来精确测量电动势、电压、电流和电阻等,还可用来校准精密电表和直流电桥等直读式仪表,在非电参量(如温度、压力、位移和速度等)的电测法中也占有重要地位。 【实验目的】 1. 掌握电位差计的工作原理和结构特点。 2. 学习用线式电位差计测量电动势。 【实验原理】 若将电压表并联到电池两端,就有电流I 通过电池内部。由于电池有内电阻r ,在电池内部不可避免地存在电位降落r I ,因而电压表的指示值只是电池端电压r V E I =-的大小。只有当I =0时,电池两端的电压才等于电动势。 采用补偿法,可以使电池内部没有电流通过,这时测定电池两端的电压即为电池电动势。如图4-14-1所示,按通K 1后,有电流I 通过电阻丝AB ,并在电阻丝上产生电压降R I 。如果再接通K 2,可能出现三种情况: 1. 当x CD E V >时,G 中有自右向左流动的电流(指针偏向右侧)。 2. 当x CD E V <时,G 中有自左向右流动的电流(指针偏向左侧)。 3. 当x CD E V =时,G 中无电流,指针不偏转。将这种情形称为电位差计处于补偿状态,或者说待测电路得到了补偿。 在补偿状态时,x CD E IR =。设每单位长度电阻丝的电阻为0r ,CD 段电阻丝的长度为x L ,于是 x x L Ir E 0= (4-14-1) 将保持可变电阻n R 及稳压电源E 输出电压不变,即保持工作电流I 不变,再用一个电动势为s E 的标准电池替换图中的x E ,适当地将C D 、的位置调至''C D 、,同样可使检流计G 的指针不偏转,达到补偿状态。设这时''C D 段电阻丝的长度为s L ,则 ''0s C D s E IR Ir L == (4-14-2) 将(4-14-1)和(4-14-2)式相比得到 图4-14-1

电位差计的原理及使用预习原始数据实验报告

实验预习报告 院(系)名称班 别 姓名 专业名称学号 实验课程名称普通物理实验(2) 实验项目名称电位差计的原理及使用 内容包含:实验目的、实验原理简述、实验中注意事项、实验预习中的问题探讨 【实验目的】 1.了解电位差计的结构,正确使用电位差计; 2.理解电位差计的工作原理——补偿原理; 3.掌握线式电位差计测量电池电动势的方法; 4.熟悉指针式检流计的使用方法。 【实验原理】 电源的电动势在数值上等于电源内部没有净电流通过时两极件的电压。如果直接用电压表测量电源电动势,其实测量结果是端电压不是电动势。因为将电压表并联到电源两端,就有电流I 通过电源的内部。由于电源有内阻r0,在电源内部不可避免地存在电位降Ir0,因而电压表的指示值只是电源的端电压(U=E-Ir0 )的大小,它小于电动势。显然,为了能够准确的测量电源的电动势,必须使通过电源的电流I为零。此时,电源的端电压U才等于其电动势E。 1.补偿原理 如图1所示,把电动势分别为ES 、EX和检流计G联成闭合回路。当ES < EX时,检流计指针偏向一边。当ES > EX时,检流计指针偏向另一边。只有当ES = EX时,回路中才没有电流,此时I=0 ,检流计指针不偏转,我们称这两个电动势处于补偿状态。反过来说,若I=0 ,则ES = EX 。 图1 电流计的保护: 图1电路中,当两比较电动势电压稍有变化,电流计将产生极大偏转,这将直接损坏电表。 为保护小量程电表,通常给电流表串联一大电阻R(图2),以减小流经电表的电流,调节比较电动势,使电流计示值为零,再减小串联电阻阻值,调节比较电动势,使电流计示值为零….如此反复进行,直至串联电阻为零时,电流表示值也为零。 2. 十一线电位差计的工作原理 如图3所示,AB为一根粗细均匀的电阻丝共长11米,它与直流电源组成的回路称作工作回路,由它提供稳定的工作电流Io;由待测电源Ex、检流计G、电阻丝MN构成的回路称为测量回路;由标准电源Es、检流计G、电阻丝MN构成的回路称为定标(或校准)回路。调节总 电流I0的变化可以改变电阻丝AB单位长度上电位差Uo的大小。M、N 为AB上的两个活动接触点,可以在电阻丝上移动,以便从AB上取适当的电位差来与测量支路上的电位差(或电动势补偿)。

十一线电位差计测电动势(实验报告)

大学物理实验报告 实验名称电位差计测量电动势 实验日期 实验人员

【实验目的】 1. 了解电位差计的结构,正确使用电位差计; 2. 理解电位差计的工作原理——补偿原理; 3. 掌握线式电位差计测量电池电动势的方法; 4. 熟悉指针式检流计的使用方法。 【实验仪器】 11线板式电位差计、检流计、标准电池、待测电池、稳压电源、单刀双掷开关、保护电路组 【实验原理】 电源的电动势在数值上等于电源内部没有净电流通过时两极件的电压。如果直接用电压表测量电源电动势,其实测量结果是端电压,不是电动势。因为将电压表并联到电源两端, 就有电流I通过电源的内部。由于电源有内阻r0,在电源内部不可避免地存在电位降Ir0,因而电压表的指示值只是电源的端电压(U=E-Ir0)的大小,它小于电动势。显然,为了能够准确的测量电源的电动势,必须使通过电源的电流I为零。此时,电源的端电压U才等于其电动势E。 1. 补偿原理 ?? 如图1所示,把电动势分别为E S、E X和检流计G联成闭合回路。当E S < E X时,检流计指针偏向一边。当E S > E X时,检流计指针偏向另一边。只有当E S =E X时,回路中才没有电流,此时I=0 ,检流计指针不偏转,我们称这两个电动势处于补偿状态。反过来说,若I=0 ,则E S =E X。 图1 补偿电路 2. 十一线电位差计的工作原理 如图2所示,AB为一根粗细均匀的电阻丝共长11米,它与直流电源组成的回路称作工作回路,由它提供稳定的工作电流I0;由待测电源E X、检流计G、电阻丝CD构成的回路称为测量回路;由标准电源E S、检流计G、电阻丝CD构成的回路称为定标(或校准)回路。调节总电流I0的变化可以改变电阻丝AB单位长度上电位差U0的大小。C、D 为AB上的两个活动接触点,可以在电阻丝上移动,以便从AB上取适当的电位差来与测量支路上的电位差(或电动势补偿)。

电工安全用电知识

电工安全用电知识 安全用电包括供电系统的安全、用电设备的安全及人身安全三个方面,它们之间又是紧密联系的。供电系统的故障可能导致用电设备的损坏或人身伤亡事故,而用电事故也可能导致局部或大范围停电,甚至造成严重的社会灾难。 第一节安全用电知识 在用电过程中,必须特别注意电气安全,如果稍有麻痹或疏忽,就可能造成严重的人身触电事故,或者引起火灾或爆炸,给国家和人民带来极大的损失。 一、安全电压 交流工频安全电压的上限值,在任何情况下,两导体间或任一导体与地之间 都不得超过50V。我国的安全电压的额定值为42、36、24、12、6V。如手提照明灯、危险环境的携带式电动工具,应采用36V安全电压,金属容器内、隧道内、矿井内等工作场合,狭窄、行动不便及周围有大面积接地导体的环境,应采用24或12V安全电压,以防止因触电而造成的人身伤害。 二、安全距离 为了保证电气工作人员在电气设备运行操作、维护检修时不致误碰带电体, 规定了工作人员离带电体的安全距离;为了保证电气设备在正常运行时不会出现击穿短路事故,规定了带电体离附近接地物体和不同相带电体之间的最小距离。安全距离主要有以下几方面: 1.设备带电部分到接地部分和设备不同相部分之间的距离,如表1-1所示; 2.设备带电部分到各种遮栏间的安全距离,如表1-2所示; 3.无遮栏裸导体到地面间的安全距离,如表1-3所示; 4.电气工作人员在设备维修时与设备带电部分间的安全距离,如表1-4所 示。

表1-1 各种不同电压等级的安全电压 ①中性点直接接地系统。 表1-2 设备带电部分到各种遮栏间的安全距离 ①中性点直接接地系统。 表1-3 无遮栏裸导体到地面间的安全距离 ①中性点直接接地系统。 表1-4 工作人员与带电设备间的安全距离

电位差计测电动势

实验六 电压补偿及电流补偿实验 电位差计是一种精密测量电位差(电压)的仪器,它的原理是使被测电压和一已知电压相互补偿(即达到平衡),其准确度可高达0.001%。它还常被用以间接测量电流、电阻和校正各种精密电表。在科学研究和工程技术中广泛使用电子电势差计进行自动控制和自动检测。 【实验目的】 1.掌握补偿法测电动势的基本原理。 2.用UJ-31型低电势电位差计校准电流表。 【实验原理】 1.补偿原理: 图6-1中用已知可调的电信号0E 去抵消未知被测电信号x E 。当完全抵消时(检流计G 指零),可知信号0E 的大小就是被测信号x E 的大小,此方法为补偿法,其中可知信号为补偿信号。 2.电位差计的原理: 图6-2是UJ31 型电位差计的原理简图。UJ-31型电位差计是一种测量直流低电位差的仪器,量程分为17mV (最小分度1μV ,倍率开关K 1旋至×1)和170mV (最小分度10μV ,倍率开关旋到×10)两档。该电路共有3个回路组成:①工作回路②校准回路③测量回路。 (1)校准:为了得到一个已知的“标准”工作电流mA 10I 0= 。将开关S 合向“标准”处,N E 为标准电动势1.0186v ,取N R =101.86Ω,调节“粗”“中”“细”三个电阻大小使检流计G 指零,显然 mA R E I N N 100== (6-1) (2)测量:将开关S 合向“测量”处,x E 是未知待测电动势。保持mA 10I 0=,调节x R 使检流计G 指零,则有 x x R I E 0= (6-2) 图6-1 补偿原理 图6-2 电位差计原理图

x R I 0是测量回路中一段电阻上的分压,称为“补偿电压”。 被测电压x E 与补偿电压极性相反、大小相等,因而相互补偿(平衡)。这种测量未知电压的方式叫“补偿法”。 补偿法具有以下优点: ①电位差计是一电阻分压装置,它将被测电压X U 和一标准电动势接近于直接加以并列比较。X U 的值仅取决于电阻比及标准电动势,因而能够达到较高的测量准确度。 ②上述“校准”和“测量”两步骤中,检流计两次均指零,表明测量时既不从标准回路内的标准电动势源(通常用标准电池)中也不从测量回路中吸取电流。因此,不改变被测回路的原有状态及电压等参量,同时可避免测量回路导线电阻,标准电阻的内阻及被测回路等效内阻等对测量准确度的影响,这是补偿法测量准确度较高的另一个原因。 3.电流表的校准: 所谓校准是使被校电流表与标准电流表同时测量一定的电流,看其指示值与相应的标准值(从标准电表读出)相符的程度。校准的结果得到电表各个刻度的绝对误差。选取其中最大的绝对误差除以量程,即得该电表的标称误差,即 标称误差=100?量程 最大绝对误差% (6-3) 根据标称误差的大小,将电表分为不同的等级,常记为K 。例如,若0.5%<标称误差≤1.0%,则该电表的等级为1.0级。 【实验仪器】 UJ31 型电位差计;毫安表;平衡指示仪(检流计);直流稳压电源;滑线变阻器;模拟标准电阻;导线;开关等。 【实验步骤】 1.先将检流计“AC5型检流计”电源打开预热15分钟。 2.按照图6-3所示连接好电路。图中E '是“TH-SS3022型数显直流稳压电源”;ACB 是滑线变阻器;R 是电阻箱;0R 是模拟标准电阻;mA 是被校电流表。 如图6-4,电位差计上的“标准”接线柱接“FB204型标准电势”;“检流计”接线柱接“AC5型检流计”;“5.7~6.4”接线柱接“晶体管稳压电源”;“未知1”接线柱接“模拟标准电阻”(注意各接线柱的极性不能接反)。 3.“AC5型检流计”调零。将开关打到“调零”处,调节“调零”旋钮,直到指针指图6-4 UJ31型电位差计面板示意图 标准 检流计 5.7V -6.4V 未知1 未知2 R N ×10 ×1 未知1 未知2 标准 粗 细 短路 ×1mV ×0.1mV ×0.001mV II III I P r 1 r 2 r 3 S j ′ 图6-3 电流表校正电路图

电动势的测定及其应用(实验报告)

实验报告电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m=-nFE 式中△r G m是电池反应的吉布斯自由能增量;n为电极反应中电子得失数;F为法拉第常数;E为电池的电动势。从式中可知,测得电池的电动势E后,便可求得△r G m,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计

UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同引起标准电池电动势变化时,通过调节n R ,使工作电流保持不变。x R 被分成Ⅰ(1?)、Ⅱ(1.0?)和Ⅲ(001.0?)三个电阻转盘,并在转盘上标出对应x R 的电压值,电位差计处于补偿状态时可以从这三个转盘上直接读出未知电动势或未知电压。左下方的“粗”和“细”两个按钮,其作用是:按下“粗”铵钮,保护电阻和灵敏电流计串联,此时电流计的灵敏度降低;按下“细”按钮,保护电阻被短路,此时电流计的灵敏度提高。2K 为标准电池和未知电动势的转换开关。标准电池、灵敏电流计、工作电源和未知电动势x E 由相应的接线柱外接。 UJ25型电位差计的使用方法: (1)将2K 置到“断”,1K 置于“1?”档或“10?”档(视被测量值而定),分别接上标准电池、灵敏电流计、工作电源。被测电动势(或电压)接于“未知1”(或“未知2”)。 (2)根据温度修正公式计算标准电池的电动势)(t E n 的值,调节n R 的示值与其相等。将2K 置“标准”档,按下 “粗”按钮,调节1p R 、2p R 和3p R ,使灵敏电流计指针指零,再按下 “细”按钮,用2p R 和3p R 精确调节至灵敏电流计指针指零。此操作过程称为“校准”。 (3) 将2K 置“未知1”(或“未知2”)位置,按下“粗”按钮,调节读数转盘Ⅰ、 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

相关文档
最新文档