提高遥感图像空间分辨率方法的研究

提高遥感图像空间分辨率方法的研究
提高遥感图像空间分辨率方法的研究

遥感影像分类精度与空间分辨率的关系验证

实验一遥感影像分类精度与空间分辨率的关系验证 实验目的: 1、掌握相同传感器多光谱影像与全色影像融合方法; 2、掌握监督分类的基本流程; 3、验证遥感影像分类精度与空间分辨率的关系。 实验要求: 1、对多光谱影像和全色影像进行融合; 2、利用马氏距离法进行监督分类; 理论基础:高分辨率影像能反映更多细节信息,但是过高的的空间分辨率也会造成地物类别内部光谱可分性下降(同物异谱和异物同谱现象更严重),通过不同分辨率遥感分类精度的比较来验证这一理论。 原始实验数据:北京市朝阳区2002年奥运公园规划区IKONOS多光谱影像4个波段与IKONOS 全色波段(两者成像时间都是2002年8月26日,即是同一传感器同时成像,植被覆盖情况一致),全色波段影像大小4000*4000。class1.roi是1m空间分辨率的参考分类ROI模板。 实验步骤: 1、将IKONOS多光谱影像4个波段与IKONOS全色波段数据进行融合,操作如下: (1)打开图像bjikonospan.img和bjikonosmultispectral.img,在Available band list对话框中,选中bjikonospan.img,点击右键,选择Edit header,查看bjikonospan.img的头文件。记 录该文件的行列数,下图1~2。

图1 图2 查看头文件

(2)在ENVI主菜单,点击Basic Tools→Resize Data,在弹出的对话框中,选择bjikonosmultispectral.img,点击OK,在接下来弹出的Resize Data Parameters对话框中,Samples后输入4001,点击回车,Lines后输入4001,点击回车,设置存储路径,OK。将重置了大小后的图像bj_resize按432的RGB模式显示,与前两个图像对比,观察其变化。 图3

高分辨率遥感卫星介绍

北京揽宇方圆信息技术有限公司 高分辨率遥感卫星有哪些 高分辨率遥感可以以米级甚至亚米级空间分辨率精细观测地球,所获取的高空间分辨率遥感影像可以清楚地表达地物目标的空间结构与表层纹理特征,分辨出地物内部更为精细的组成,地物边缘信息也更加清晰,为有效的地学解译分析提供了条件和基础。随着高分辨率遥感影像资源日益丰富,高分辨率遥感在测绘制图、城市规划、交通、水利、农业、林业、环境资源监测等领域得到了飞速发展。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A (3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades

ct空间分辨率

空间分辨率的检测方法及影响因素 1. 定义 空间分辨率(spatial resolution)又称高对比度分辨率(high contrast resolution),它是衡量CT图像质量的一个重要参数,是测试一幅图像的量化指标,是指在高对比度(密度分辨率大于 10%)的情况下鉴别细微的能力,即显示最小体积病灶或结构的能力。它的定义是在两种物质 CT 值相差 100HU 以上时,能分辨最小的圆形孔径或是黑白相间(密度差相同)的线对数,单位是 mm 或lp/cm。 其换算关系为: 5÷lp/cm=可分辨的最小物体的直径(mm)。 2. 检测方法 目前常用的检测 CT 空间分辨率的方法有以下几种: (1)调制传递函数(MTF)的截止频率法。如图2,此函数将图像中对比度描述为一个空间频率的函数,而被照物中的对比度假定为100%,所以它描述了成像过程中对比度的降低,于是截止频率决定了分辨率的极限。此种方法都内置于CT机系统中,用于自检。系统可以自动计算并画出调制传递函数(MTF)曲线,由此得出MTF在百分数多少的线对值。MTF的百分数越低,线对数越高。有的厂家技术参数表中给出的是MTF=0%时的数据,即截止频率的数据,以显示较高的空间分辨率。但是截止频率的线对数是没有实际意义的,一般应采用MTF=5%或MTF=10%来判断机器的空间分辨率。 (2) 分辨成排圆孔大小法。如图3,可分辨的一组圆孔的大小,每组圆孔按彼此间的中心距离等于该组圆孔直径的2倍的方式排列。 (3)分辨线对数法。如图4,可分辨的一组黑白相间的线对的间距尺寸。不同线对数的线对卡,对应不同的空间分辨率。共有21组,即1~21 lp/cm。 3. 检测步骤 (1) 定位 将模体置于扫描野中心,并使模体轴线垂直于扫描层面。将 CT 定位线定位于空间分辨率模块所在层的中心位置。 (2) 设置扫描条件 选取被测CT内置的标准头部条件;层厚 10mm,若被测CT最大层厚小于 10mm,则选取其最大层厚;视野(FOV)为 25cm ;扫描方式为单层轴向扫描。 (3) 按设置好的条件进行扫描 (4) 图像分析 调出扫描出的图像,将窗宽调至最小 ( 一般为0或1),再调整窗位,找出能分辨清楚的最高一级线对,要求线对中每条线不能有断缺和粘连。从而得出空间分辨率,若低于 5 lp/cm, 则判断此项为不合格。 4. CT空间分辨率的影响因素 (1) 探测器孔径的宽窄,孔径越窄,孔径转移函数越宽,空间分辨率就越高。 (2) 焦点尺寸,因焦点小的X线管产生窄的X射线,可获得较高的空间分辨率。 (3) 探测器之间的距离,它决定了采样间隔,间隔越小空间分辨率越高。 (4) 在图像重建中选用的卷积滤波器的形式不同,空间分辨率也不同。 (5) X 射线剂量、矩阵、层厚、像素大小,扫描装置噪声等对空间分辨率均有影响。层厚越薄,空间分辨率越高;但层厚越薄,噪声就越大,低对比分辨率就会降低。

几种典型高分辨率商业遥感卫星系统

几种典型高分辨率商业遥感卫星系统 1.2.1 IKONOS卫星系统 1.基本情况 IKONOS是空间成像公司(Space Imaging)为满足高解析度和高精度空间信息获取而设计制造,是全球首颗高分辨率商业遥感卫星。IKONOS-1于1999年4月27日发射失败,同年9月24日,IKONOS-2发射成功,紧接着于10月12日成功接收到第一幅影像。 IKONOS卫星由洛克希德—马丁公司(Lockheed Martin)制造,重1600lb,由Athena II 火箭于加利福尼亚州的范登堡空军基地发射成功,卫星设计寿命为7年。它采用太阳同步轨道,轨道倾角98.1o,平均飞行高度681km,轨道周期98.3min,通过赤道的当地时间为上午10:30,在地面上空平均飞行速度为6.79km/s,卫星平台自身高1.8m,直径1.6m。 IKONOS卫星的传感器系统由美国伊斯曼—柯达公司(Eastman Kodak)研制,包括一个1m分辨率的全色传感器和一个4m分辨率的多光谱传感器,其中的全色传感器由13816个CCD单元以线阵列排成,CCD单元的物理尺寸为12μm x 12μm,多光谱传感器分四个波段,每个波段由3454个CCD单元组成。传感器光学系统的等效焦距为10m,视场角(FOV)为0.931o,因此当卫星在681km的高度飞行时,其星下点的地面分辨率在全色波段最高可达0.82m,多光谱可达3.28m,扫描宽度约为11km。传感器可倾斜至26o立体成像,平均地面分辨率1m左右,此时扫描宽度约为13km。IKONOS的多光谱波段与Landsat TM的1—4波段大体相同,并且全部波段都具有11位的动态范围,从而使其影像包含更加丰富的信息。 IKONOS卫星载有高性能的GPS接收机、恒星跟踪仪和激光陀螺。GPS数据经过后处理可提供较精确的星历信息;恒星跟踪仪用以高精度确定卫星的姿态,其采样频率低;激光陀螺则可高频地测量成像期间卫星的姿态变化,短期内有很高的精度。恒星跟踪数据与激光陀螺数据通过卡尔曼滤波能提供成像期间卫星较精确的姿态信息。GPS接收机、恒星跟踪仪和激光陀螺提供的较高精度的轨道星历和姿态信息,保证了在没有地面控制的情况下,IKONOS卫星影像也能达到较高的地理定位精度。 2.成像原理 与Landsat和SPOT-4卫星相比,IKONOS卫星的成像方式更加灵活,其传感器系统采用独特的机械设计,可以十分灵活地以任意方位角成像,偏离正底点的摆动角甚至可达到60o。IKONOS卫星360o的照准能力使其既可侧摆成像以获取异轨立体或缩短重访周期,也可通过沿轨道方向的前后摆动同轨立体成像,具有推扫、横扫成像能力。 IKONOS卫星能获取同轨立体影像。当卫星接近目标时,传感器光学系统先沿着轨道向前倾斜,照准目标区域并采集第一幅影像,接着控制系统操纵传感器向后摆动,大约100s 后再次照准目标区并采集第二幅影像,如图1.1所示。由于IKONOS卫星利用单线阵CCD 传感器,通过光学系统的前后摆动实现同轨立体成像。因此,相应的立体覆盖是不连续的。

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

高空间分辨率遥感森林参数提取探讨

高空间分辨率遥感森林参数提取探讨 刘晓双,黄建文,鞠洪波 (中国林业科学研究院资源信息研究所,北京100091) 摘要:介绍了高空间分辨率遥感在森林参数提取方面的研究和应用情况,并结合国内外学者在此方面所做出的研究成果,对不同森林参数的提取分别做了阐述,包括单木树冠轮廓信息、胸径、森林生物量、树种识别和分类、叶面积指数、森林郁闭度、木材结构和性质。最后分析了高空间分辨率遥感在森林参数提取方面存在的问题,并对该领域的应用前景作了展望。 关键词:高空间分辨率;遥感;森林参数;树冠提取;生物量 中图分类号:TP79 文献标识码:A 文章编号:1002-6622(2009)02-0111-07 Study on Extraction of Forest Parameters by High Spatial R esolution R emote Sensing L IU Xiaoshuang ,HUAN G Jianwen ,J U Hongbo (Research Instit ute of Forest Resources and Inf ormation Technique ,CA F ,Beiji ng 100091,Chi na ) Abstract :Study and application of forest parameters extraction by high spatial resolution remote sens 2ing was introduced in this article ,combined with achievements in this field made by researchers all over the world 1Extraction of such different forest parameters was described respectively as single tree crown contour ,diameter at breast height ,biomass ,identification and classification of species ,LAI ,canopy den 2sity ,wood structure and property 1Finally ,the problems of forest parameters extraction by high spatial resolution remote sensing were discussed ,and the prospect of forest parameters extraction by high spa 2tial resolution remote sensing was expected. K ey w ords :high spatial resolution ,remote sensing ,forest parameters ,extraction of tree crown ,biomass 收稿日期:2009-01-04;修回日期:2009-04-03 基金项目:中央级公益性科研院所基本科研业务费专项基金(RIFRITZ J Z 2007006);国家自然科学基金“基于高分辨率 遥感的树冠信息提取技术研究”项目(40771141) 作者简介:刘晓双(1985-),女,甘肃兰州人,在读硕士生,主要从事遥感、GIS 技术应用研究。通讯作者:鞠洪波(1956-),男,黑龙江人,研究员,研究方向:林业信息技术。 现代林业的经营管理得以顺利进行主要依赖于对各种森林参数的调查,而森林限于其特殊的自然地理条件往往会给研究数据的采集造成很大的困 难。传统的森林调查方法一般是基于随机抽样和统计学,其样本的选择是否具有代表性对调查的精确性有很大的影响。这种传统的以个体来推断总体的 2009年4月第2期林业资源管理 FOREST RESOURCES MANA GEMEN T April 2009No 12

空间分辨率——字射线照相关键参数

空间分辨率——字射线照相关键参数

————————————————————————————————作者:————————————————————————————————日期:

空间分辨率——数字射线照相的关键参数 模拟图像是指由连续信号构成的图像,射线照相得到的底片图像就是模拟图像;而数字图像是指由大量的点(像素)构成,可用二进制数字描述的图像。数字图像早已进入我们的生活:数码相机已把胶卷相机逼入绝境;数字电视也已开始与模拟电视分庭抗礼;在医院里,CR、DR和CT装置用得越来越多,已逐步取得人体透视和拍片——这些技术得到的都是数字图像。但在工业上的应用,即工业CR、工业DR的应用则相对迟缓,目前仍然是胶片照相占据绝对优势。究其原因,主要是分辨率问题:工业应用数字图像比医用的数字图像的分辨率要求要高得多,人体检查一般要求的分辨率水平是厘米级或毫米级,而承压设备焊缝检测的分辨率水平要求达到0.1毫米级,甚至更小。 分辨率是描述数字图像质量的重要参数。分辨率包括空间分辨率和灰度分辨率两项指标。数字图像的空间分辨率取决于像素尺寸的大小。像素(Pixel)是构成数字图像的基本单元。如果把数字图像放大许多倍,会发现这些连续图像其实是由小点组成。把一幅图像按行与列分割成m×n个网格,就可用一个m×n的矩阵来表达该图像。每一格即为一个像素,m 与n数值越大,像素量就越大,单个像素的尺寸就越小,图像就越细腻,空间分辨率就越高。灰度分辨率取决于灰度的模数转换位数。每个像素的亮度称为灰度(对彩色图像则是颜色),可用一个有限长度的二进制数值表示。位数越长,灰度级别就越多,层次就越丰富(或颜色就越逼真),灰度分辨率就越高。如果是8位模/数转换,则灰度可分为28=256个级别;如果是16位模/数转换,则灰度可分为216=65536个级别。 提高数字图像的灰度分辨率相对比较容易,只要增加模/数转换位数就行,而提高数字图像的空间分辨率则困难的多。 应用于工业射线检测的数字技术有: 1、底片数字化扫描技术; 2、图像增强器实时成像技术; 3、计算机X射线照相技术(CR); 4、线阵列扫描成像技术(LDA); 5、非晶硅和非晶硒数字平板成像技术; 6、CMOS数字平板成像技术; 以上六种技术的空间分辨率各不相同,比较其分辨率高低大致如下:图象增强器的空间分辨率约为100-300微米,二极管阵列(LDA)的空间分辨率约为100?200微米,非晶硅/硒接收板的空间分辨率约为80-150微米,CMOS探测器的空间分辨率约为50-150微米,底片扫描约为50-100微米,CR技术的空间分辨率约为25-100微米,而胶片照相的分辨率大致相当于10-50微米。把各种检测技术分辨率从高到低排列:分辨率最高——胶片照相→CR →底片扫描→CMOS →非晶硒→非晶硅→LDA →图象增强器CCD实时成像——分辨率最低。即:到目前为止,数字图像的分辨率仍比不过胶片照相。 数字电子元器件的成本和制造难度制约了分辨率的进一步提高,无论是数字平板(CMOS、非晶硅/硒),还是二极管阵列,要想把像素元做的更小非常困难。曾经和开发二极管线阵列检测系统的两个博士讨论用于压力容器检测的线阵列设备,我建议把像素尺寸由0.2mm减小到0.1mm,这样至少可以满足厚焊缝射线照相的要求。但博士们一起摇头,说那样做成本将大大增加,以致不可行。也听美国一家公司说过,数字平板的成品率很低,因此价格很贵。想造出比目前分辨率水平更高的平板,至少近几年希望不大。 近年来分辨率提高较快的技术是CR:2003年时最好的CR是100微米,大约每2-3年,分辨率就提高一倍。2008年为完成一个航天项目做试验,我们使用了据称是目前世界上最

遥感课后习题

遥感应用的本质是通过遥感观测数据来“反演”地表有价值的信息 第一章 1.1 1. 遥感地学分析的含义是什么,对应的英文表述应该是什么样的? 2. 遥感信息的物理属性可从哪些方面来描述? 遥感信息的这种多源、多维的特性,可以通过不同的分辨率进行度量和描述: 空间分辨率 光谱分辨率 辐射分辨率 时间分辨率 3. 遥感图像的空间分辨率是指什么,有哪几种表达方式? 空间分辨率:针对图像或传感器而言,指图像上能够区分的最小单元的大小,或指传感器区分两个目标物的最小角度或线性距离的度量 空间分辨率的3种表示法: 像元:指单个像元对应的地面面积大小,常以边长表示,单位为m。如NOAA/A VHRR:1100m,Landsat/TM:28.5m,QuickBird:0.61m 线对数(LP):摄影系统的空间分辨率通常用单位宽度内可识别的线对数表示(Line pairs per millimetre),单位为LP/mm。所谓线对指一对同等大小的明暗条纹或规则间隔的明暗条对 瞬时视场(IFOV):指传感器内单个探测元件的受光角度或观测视野,单位为毫弧度(mrad)。一个瞬时视场内的信息,表示一个像元。IFOV与传感器的高度有关,高度越高,分辨率越低;还与传感器的视角有关,视角越倾斜,观测面积越大,分辨率就越差。 4. 相同时期的遥感传感器,设计的空间分辨率越高, 则光谱分辨率越低,这是为什么? 在遥感成像系统设计中,空间分辨率和光谱分辨率常常不可兼得,因为高光谱成像系统的光谱带宽很窄,必须用较大的IFOV才能收集足够多的光子以维持可接受的信噪比;同样,高空间分辨率系统的IFOV很小,因此必须以较宽的光谱通道才能捕捉足够的光能量。 计算:若IFOV为2mrad,传感器高度为10000m,则星下点像元对应的地面面积为多少? 5. 遥感图像的空间分辨率越高,识别地物目标的能力越强吗?为什么? 一般来说,遥感系统的空间分辨率越高,则识别地物目标的能力越强 但是,特定目标在图像上的可分辨程度,并不完全取决于空间分辨率的值,而是和它的形状、大小,以及它与周围物体的亮度、结构差异有关。例如,Landsat TM的空间分辨率为30m,但是10~20m宽的铁路甚至10m宽的公路通过沙漠、水域、草原、耕地等背景光谱较单调的地区时,往往清晰可辨。 可见,空间分辨率的大小仅表明图像细节的可见程度;而真正的识别效果,还要考虑环境背景复杂性等因素的影响。 扩展:经验证明,遥感系统空间分辨率的选择,一般应小于被探测目标最小直径的1/2(Jensen,1996)。例如,若要识别公园内的松树,则可以接受的最低空间分辨率应是最小松树的直径的一半。而且,若松树与环境背景之间的光谱响应差异很小,则需要更高的空间分辨率才能成功识别 6.遥感主要利用的电磁波范围是哪些?是如何划分的?

ct空间分辨率

空间分辨率的检测方法及影响因素 1.定义 空间分辨率(spatial resolution)又称高对比度分辨率(high contrast resolution),它是衡量CT图像质量的一个重要参数,是测试一幅图像的量化指标,是指在高对比度(密度分辨率大于10%)的情况下鉴别细微的能力,即显示最小体积病灶或结构的能力。它的定义是在两种物质CT 值相差100HU 以上时,能分辨最小的圆形孔径或是黑白相间(密度差相同)的线对数,单位是mm 或lp/cm。 其换算关系为:5÷lp/cm=可分辨的最小物体的直径(mm)。 2. 检测方法 目前常用的检测CT 空间分辨率的方法有以下几种: (1)调制传递函数(MTF)的截止频率法。如图2,此函数将图像中对比度描述为一个空间频率的函数,而被照物中的对比度假定为100%,所以它描述了成像过程中对比度的降低,于是截止频率决定了分辨率的极限。此种方法都内置于CT机系统中,用于自检。系统可以自动计算并画出调制传递函数(MTF)曲线,由此得出MTF在百分数多少的线对值。MTF的百分数越低,线对数越高。有的厂家技术参数表中给出的是MTF=0%时的数据,即截止频率的数据,以显示较高的空间分辨率。但是截止频率的线对数是没有实际意义的,一般应采用MTF=5%或MTF=10%来判断机器的空间分辨率。 (2)分辨成排圆孔大小法。如图3,可分辨的一组圆孔的大小,每组圆孔按彼此间的中心距离等于该组圆孔直径的2倍的方式排列。 (3)分辨线对数法。如图4,可分辨的一组黑白相间的线对的间距尺寸。不同线对数的线对卡,对应不同的空间分辨率。共有21组,即1~21 lp/cm。 3.检测步骤 (1)定位 将模体置于扫描野中心,并使模体轴线垂直于扫描层面。将CT 定位线定位于空间分辨率模块所在层的中心位置。 (2)设置扫描条件 选取被测CT内置的标准头部条件;层厚10mm,若被测CT最大层厚小于10mm,则选取其最大层厚;视野(FOV)为25cm ;扫描方式为单层轴向扫描。 (3)按设置好的条件进行扫描 (4)图像分析 调出扫描出的图像,将窗宽调至最小( 一般为0或1),再调整窗位,找出能分辨清楚的最高一级线对,要求线对中每条线不能有断缺和粘连。从而得出空间分辨率,若低于 5 lp/cm, 则判断此项为不合格。 4. CT空间分辨率的影响因素 (1) 探测器孔径的宽窄,孔径越窄,孔径转移函数越宽,空间分辨率就越高。 (2) 焦点尺寸,因焦点小的X线管产生窄的X射线,可获得较高的空间分辨率。 (3) 探测器之间的距离,它决定了采样间隔,间隔越小空间分辨率越高。 (4) 在图像重建中选用的卷积滤波器的形式不同,空间分辨率也不同。 (5) X 射线剂量、矩阵、层厚、像素大小,扫描装置噪声等对空间分辨率均有影响。层厚越薄,空间分辨率越高;但层厚越薄,噪声就越大,低对比分辨率就会降低。

遥感影像分辨率的概念及常见传感器的分辨率

遥感影像分辨率的概念 1空间分辨率 遥感影像空间分辨率是用于记录数据的最小度量单位,一般用来描述在显示设备上所能够显示的点的数量(行、列),或在影像中一个像元点所表示的面积。 空间分辨率指像素所代表的的地面范围的大小,即扫描仪的瞬间视场,或是地面物体能分辨的最小单元。当分辨率为1km时,一个像元代表地面1kmX1km的面积,即1km2;当分辨率为30m时,一个像元代表地面30m×30m的面积;当分辨率为1m时,也就是说,图像上的一个像元相当于地面1m x 1m的面积,即1m2。 因为遥感拍摄的像片是由位于不同高度,装在不同载体(如飞机、卫星等)上的不同清晰度(分辨率)照相设备,以不同的照相(采集)方式,获取的遥感像片(图像、数据、影像等),这些遥感图像是具有不同清晰度、不同分辨率的照片。类似我们在生活中用135 照相机拍摄一棵树,从汽车上拍一张,然后再从飞机上拍一张,两张135底片在放大同一棵树时,其放大效果是不一样的。肯定是高度低的135照片放大后的效果最清晰,也就是说分辨率最高。 遥感卫星的飞行高度一般在4000km~600 km之间,图像分辨率一般从1 km~1m之间。图像分辨率是什么意思呢?可以这样理解,一个像元,代表地面的面积是多少。像元是什么意思呢?像元相当于电视屏幕上的一个点(电视是由若干个点组成的图像画面),相当于计算机显示屏幕上的一个象素,相当于一群举着不同色板拼成画图的人中的一个。 光谱分辨率,指成像的波段范围,分得愈细,波段愈多,光谱分辨率就愈高,现在的技术可以达到5~6nm(纳米)量级,400多个波段。 2光谱分辨率 光谱分辨率是指传感器在接收目标辐射的光谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 光谱分辨率指成像的波段范围,分得愈细,波段愈多,光谱分辨率就愈高,现在的技术可以达到5~6nm(纳米)量级,400多个波段。

空间分辨率

空间分辨率——数字射线照相的关键参数 分类:X-Ray2010-03-17 13:28 341人阅读评论(0) 收藏举报概念:空间分辨率是指图像中可辨认的临界物体空间几何长度的最小极限,即对细微结构的分辨率。 以下: 强天鹏撰 模拟图像是指由连续信号构成的图像,射线照相得到的底片图像就是模拟图像;而数字图像是指由大量的点(像素)构成,可用二进制数字描述的图像。数字图像早已进入我们的生活:数码相机已把胶卷相机逼入绝境;数字电视也已开始与模拟电视分庭抗礼;在医院里,CR、DR和CT装置用得越来越多,已逐步取得人体透视和拍片——这些技术得到的都是数字图像。但在工业上的应用,即工业CR、工业DR的应用则相对迟缓,目前仍然是胶片照相占据绝对优势。究其原因,主要是分辨率问题:工业应用数字图像比医用的数字图像的分辨率要求要高得多,人体检查一般要求的分辨率水平是厘米级或毫米级,而承压设备焊缝检测的分辨率水平要求达到0.1毫米级,甚至更小。 分辨率是描述数字图像质量的重要参数。分辨率包括空间分辨率和灰度分辨率两项指标。数字图像的空间分辨率取决于像素尺寸的大小。像素(Pixel)是构成数字图像的基本单元。如果把数字图像放大许多倍,会发现这些连续图像其实是由小点组成。把一幅图像按行与列分割成m×n个网格,就可用一个m×n的矩阵来表达该图像。每一格即为一个像素,m与n数值越大,像素量就越大,单个像素的尺寸就越小,图像就越细腻,空间分辨率就越高。灰度分辨率取决于灰度的模数转换位数。每个像素的亮度称为灰度(对彩色图像则是颜色),可用一个有限长度的二进制数值表示。位数越长,灰度级别就越多,层次就越丰富(或颜色就越逼真),灰度分辨率就越高。如果是8位模/数转换,则灰度可分为28=256个级别;如果是16位模/数转换,则灰度可分为216=65536个级别。 提高数字图像的灰度分辨率相对比较容易,只要增加模/数转换位数就行,而提高数字图像的空间分辨率则困难的多。 应用于工业射线检测的数字技术有: 1、底片数字化扫描技术; 2、图像增强器实时成像技术; 3、计算机X射线照相技术(CR); 4、线阵列扫描成像技术(LDA); 5、非晶硅和非晶硒数字平板成像技术; 6、CMOS数字平板成像技术; 以上六种技术的空间分辨率各不相同,比较其分辨率高低大致如下:图象增强器的空间分辨率约为100-300微米,二极管阵列(LDA)的空间分辨率约为100?200微米,非晶硅/硒

遥感影像分辨率

遥感分辨率与制图比例尺关系 张益新 (淮海工学院测绘工程学院,江苏连云港 222005) 摘要:分析遥感影像分辨率与制图比例尺相关的关系,从遥感分辨率与制图比例尺的数学定律来阐述两者的关系,最后指出如何选取适当空间分辨率的卫星影像,为制图提供帮助 关键词:遥感影像分辨率比例尺关系 1.引言 当今世界随着信息技术和传感器技术的飞速发展,各种测量技术日新月异,各种测量技术为社会的进步作出了巨大的贡献。其中遥感技术作为目前测量顶端技术,已经被广泛的应用到各个领域。在科学家的努力下,遥感影像的空间分辨率有了很大提高。原来只有航空影像能够达到的精度,如今遥感影像也能够满足需要。卫星遥感影像是平面几何精度与地物类别精度的统一,影像空间分辨率是决定影像精度的一个重要指标,影像精度要满足相应比例尺地图更新对于影像识别能力和成图精度要求,同时又要考虑地图更新成本。冗余的分辨率会增加影像购买成本和加重内业处理的负担;而若分辨率达不到一定要求,细小的地物就无法判读、影像控制点精度得不到保证,满足不了成图精度。现在我们就来讨论遥感影像分辨率与制图比例尺的关系。 2.遥感影像空间分辨率与成图比例尺的数学关系 资源卫星遥感影像空间分辨率R (单位为m ) 与可制作的合理成图比例尺m (m 为比例尺分母) 以及图件要求的误差范围e (单位为mm ) 存在以下关系: e ×m × 10-3= C ×R (1) 式中 C ——影像几何校正系数, 即: 经几何校正以后,最差的像元位置均方根差(Roo t M ean Squa re, 简称RM S) , 以像元为单位, 达到多少个像元; e——人眼的分辨率, 通常采用0.2mm。式(1) 的左边是一般图件允许的实地误差(以m 为单位) , 而右边是遥感影像校正后存在的实地误差, 这两个误差在遥感制图中应当相等, 也是(1) 式成立的基础。几何校正系数C 是一个待定变量。以RTK GPS(Real T ime Kinemat ic GPS) 测量值作为真值, 求出精校正遥感影像与真值的误差, 计算得到误差的均方根差, 就可以求出精纠正遥感影像均方根差的像元个数,即C 的值。C 值确定后, 利用(1) 式可以计算出此遥感影像可以制作的合理成图比例尺。通常, 遥感影像空间分辨率越低, 几何校正系数C 就应设置越大, 这是因为空间分辨率越低, 影像边缘几何变形就越大, 几何校正的效果就越差。

高空间分辨率图像

高空间分辨率图像 卫星影像空间分辨率能够被传感器辨识的单一地物或2个相邻地物间的最小尺寸。空间分辨率越高,遥感图像包含的地物形态信息就越丰富,能识别的目标就越小。广西善图科技有限公司 高空间分辨率图像(简称“高分图像”)包含了地物丰富的纹理、形状、结构、邻域关系等信息,可主要应用于地物分类、目标提取与识别、变化检测等。 目前,已经商业化运行的光学遥感卫星的空间分辨率已经达到“亚米级”,如2016年发射的美国WorldView-4卫星能够提供0.3 m分辨率的高清晰地面图像。 近年来,随着我国空间技术的快速发展,特别是高分辨率对地观测系统重大专项的实施,我国的卫星遥感技术也迈入了亚米级时代,高分2号卫星(GF-2)全色谱段星下点空间分辨率达到0.8 m。

上海陆家嘴高分辨率图像 GF-2号卫星0.8 m全色与3.2 m多光谱融合结果 商业化高分图像的多领域应用 农业 法国SPOT-5 2.5 m融合图像已经被应用于农作物种植面积的小区域精细抽样调查,基于空间排列结构特征分析,可以实现人工种植园中冬小麦、水稻和棉花等种植区域的提取。 城市规划管理 GF-2图像可准确地识别城市街道、行道绿地、公园、建筑物、甚至车辆数量信息。 海岸带调查 应用美国WorldView-2高分数据,大幅提高了海岸线提取的精度,实现了围填海状况监测。 灾情评估 高分图像可以实现滑坡和洪水淹没区快速提取、建筑物毁坏等监测,还可利用如美国IKONOS高分影像生成立体像对地震灾害前后房屋做精准的损毁状况评估。 军事国防 高分图像可以精确识别敌方的人员与装备,包括装备的型号、数量、调动等重要信息。

作业2 高空间分辨率遥感影像分割方法实验

作业2 高空间分辨率遥感影像分割方法实验 学号: 课程代码: 姓名: 截止日期:2016.11.29 上交时间:2016.11.28 摘要:遥感影像分割是指把一幅影像划分为互不重叠的一组区域的过程,它要求得到的每个区域的内部具有某种一致性或相似性,而任意两个相邻的区域则不具有此种相似性。边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。本文使用棋盘分割算法、四叉树分割算法、多尺度分割算法三种分割算法与Canny边缘检测算法对图像进行分割和提取边缘。并简单的对ecognition软件中设置的不同参数进行探索。

1.方法 1.1.分割 遥感影像分割是指把一幅影像划分为互不重叠的一组区域的过程,它要求得到的每个区域的内部具有某种一致性或相似性,而任意两个相邻的区域则不具有此种相似性。遥感影像分割是面向对象的遥感影像数据挖掘与应用中的一项关键技术,对于影像目标信息自动化提取与智能识别尤为重要,在面向对象的遥感影像处理工程中具有重要意义[1]。 1.1.1. 棋盘分割算法 棋盘分割(Chessboard Segmentation)是易康软件中一种简单的分割算法,它将一幅影像或一个父级对象分割成许多正方形的小对象。在分割过程中,棋盘分割算法主要用到的是分割尺度参数。 1.1. 2.四叉树分割算法 四叉树分割法(Quadtree-Based Segmentation):当超过预定阀值时,将原始图像等分为4个子块,分别对应于四叉树树根的4个子节点[2]。依次考虑4个子块中的每一块,当匹配误差超过预定阀值时,这个阀值可称为剪枝判同的判决标准,可以是灰度相似性,也可以是目标均方差或其他可表示目标特征的有效信息,再将此块等分成4个子块,该过程也称之为剪枝.重复这一过程直至图像中的任意一块都能找到合适的匹配块为止[3]。下图表示一个四叉树的分割过程[4]。 图1-1 四叉树分割过程示意 1.1.3.多尺度分割算法 多尺度分割(Multiresolution Segmentation):在指定的与感兴趣的地物目标或空间结构特征相对应的尺度下,将影像分割成高同质的、互相连结的不同影像区域,与感兴趣的地物目标或空间结构特征相对应[5]。它是一种自下而上(bottom-up)的方法,通过合并相邻的像素或小的分割对象,在保证对象与对象之间平均异质性最小、对象内部像元之间同质性最大的前提下,基于区域合并技术实现影像分割。 1.2.Canny边缘检测 Canny[6]1986年提出了一个优良的边缘检测算子应满足以下准则:1.信噪比准则,即不漏检真实边缘,也不把非边缘点作为边缘点检出,使输出的信噪比最大;2.定位精度准则,即检测出的边缘点,尽可能在实际边缘的中心;3.单边缘响应准则,即单个边缘产生的多个响应的概率要低,虚假边缘响应得到最大抑制。算法方框图如图[7]

高分辨率遥感影像分类实验报告

高分辨率遥感影像分类实验报告 班级:___________________ 姓名:___________________ 学号:___________________ 指导老师:_______________ 地球科学与环境工程学院 二?一四年六月

目录 1 实验方法——面向对象方法 (1) 2 实验内容 (1) 2.1 影像预处理 (1) 2.1.1 影像数据融合 (1) 2.1.2 影像增强处理 (2) 2.2 创建工程 (2) 2.3 分割处理 (3) 2.4 分类 (4) 2.4.1 水体 (4) 2.4.2 陆地 (5) 2.4.3 植被 (6) 2.4.4 裸土 (7) 2.4.5 建筑物 (8) 2.4.6 道路 (9) 2.4.7 阴影 (10) 2.4.8 总体分类图 (12) 3 结语 (13)

1实验方法——面向对象方法 面向对象方法是一个模拟人类大脑认知的过程,将图像分割为不同均质的对 象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。 因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息, 结合各 种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。 首先 需要使用一定方法对遥感影像进行分割, 在提取分割单元(图像分割后所得到的 内部属性相对一致或均质程度较高的图像区域) 的各种特征后,在特征空间中进 行对象识别和标识,从而最终完成信息的分类与提取。 2实验内容及详细过程 2.1影像预处理 2.1.1影像数据融合 实验数据为QuickBird 影像,包括4个多光谱波段以及一个全色波段。 QuickBird 影像星下点分辨率:全色为 0.61m ,多光谱为2.44m 。对于面向对象 影像分类 来说,越高的高空间分辨率越好,但在对对象进行分类时,光谱信息同 样重要,因此,可将高分辨率的全色影像和多光谱影像进行数据融合。 使用 ERDAS 进行数据融合: Interprete u spatialenchancemen ^resolution mergeo 图1 全色影像与多光谱影像融合 Ib^pul Fh (*.网| MJitiMewl lfl img 乓 | nwin?_r?J_pM4 |i ■J Nurb-w of 4 Mai hod DiJput OpJcm: riHEWT^SBn-n r Bchnaiuar f* Fmcpai T Newwt Nd^ibor 厂 5Woh to Unsigned 6 W 厂 厂l|>Kj 沽Eti 臼? 一 Brcvay TividuirTi 件 iDi-tc T 呼 Nunt-B? Mulkip?cdi4 Inpui Lafin: 4 G 喑 Sca*e: Uns^ned 1E tt |1 Nlu ■弔 pecirot Uns^flrwd 1 百 b* U M ■ E -jiiiiH In EKH

高空间分辨率遥感影像分割方法研究综述

高空间分辨率遥感影像分割方法研究综述 高空间分辨率遥感影像分割方法研究综述 刘建华毛政元 (福州大学,空间数据挖掘与信息共享教育部重点实验室,福建省空间信息工程研究中心,福州350002) 摘要:遥感影像分割是指把一幅影像划分为互不重叠的一组区域的过程,它要求得到的每个区域的内部具有某种一致性或相似性,而任意两个相邻的区域则不具有此种相似性。遥感影像分割是面向对象的遥感影像数据挖掘与应用中的一项关键技术,对于影像目标信息自动化提取与智能识别尤为重要,在面向对象的遥感影像处理工程中具有重要意义。本文对常见的高空间分辨率遥感影像分割方法与应用策略进行了分析,比较了各种分割方法的应用范围、优缺点及目前存在的改进措施。建立了面向对象的遥感影像分割方法的分类体系,最后指出了面向对象的遥感影像分割方法目前所存在的问题及应用前景。 关键词:高空间分辨率遥感影像影像分割方法应用策略进展 A Survey on High Spatial Resolution Remotely Sensed Imagery Segmentation Techniques and Application Strategy Liu Jian hua Mao zheng yuan (Fuzhou University, Spatial Information Research center, Fuzhou, 350002) Abstract: Remotely sensed imagery segmentation is a process of dividing an image into different regions such that each region is, but the union of any two adjacent regions is not, homogeneous. It is one of key techniques in the object-oriented remotely sensed imagery data mining and its application, also quite essential in remote sensing image processing engineering. In this paper, we have a rough survey on different methods of high spatial resolution remotely sensed imagery segmentation, categorizing them into four groups according to the gray or color information they are exploiting. The disadvantage of current methods and the proper progress which can be attained in the near future are pointed out at the end of this essay. Keywords: High Spatial Resolution Imagery, Segmentation methods, application strategy, advances and prospects 1 引言 高空间分辨率遥感影像(如GeoEye、WorldView、QuickBird、IKONOS等,本文简称高分影像)在诸多领域(地形图更新、地籍调查、城市规划、交通及道路设施、环境评价、精细农业、林业测量、军事目标识别和灾害评估等)得以广泛应用[1]。目前,影像信息提取自动化程度低是高分影像应用潜力得不到充分发挥的主要限制因素,是理论和应用研究中必须突破的瓶颈。 遥感影像分割是面向对象的遥感影像分析方法[2]的基础和关键,在遥感影像工程中处于影像处理与影像理解的中间环节,是面向对象的影像分析理论研究的突破口。按照一般的影像分割定义[3],分割出的影像对象区域需同时满足相似性和不连续性两个基本特性;其中相似性指该影像对象内的所有像元点都满足基于灰度、色彩、纹理等特征的某种相似性准则,不连续性是指影像对象的特征在区域边界处的不连续性。迄今为止,将计算机视觉领域的图像分割算法应用于图像分割过程中,已开展了较多的研究[4-7],并提出了大量的算法;但针对遥感影像尤其是高分影像的分割方法较少[8],仍不成熟。这是由于与其它类型图像的分割相比,高分影像分割难度更大,也更具挑战性。具体体现在高分影像其空间分辨率高、纹理信息丰富而光 基金项目: 国家重点基础研究发展计划项目(973)子课题“高空间分辨率遥感影像自适应数据挖掘方法研[2006CB708306]”,国家自然科学基金项目“基于场模型的自适应空间聚类方法研究[40871206]”。 作者简介: 刘建华,男,博士研究生,曾从事GIS与RS教学工作。目前主要研究方向为空间数据挖掘、遥感图像处理以及GIS与RS集成等。E-mail:sirc.liujh@https://www.360docs.net/doc/a216253540.html,。

相关文档
最新文档