液相芯片

液相芯片
液相芯片

液相芯片技术及其临床应用

生物芯片主要包括基因芯片和蛋白芯片两大类,按寻址方式和最终检测载体又可分为固相芯片(flat microarrays)和液相芯片(1iquid chip or microsphere arrays)。近年来,液相芯片以其独特的优点及临床实用性,正受到越来越多的重视。现就液相芯片的技术原理、特点及临床应用前景作简要介绍。

【摘要】液相芯片技术是一种利用混悬在液相中的分类编码微球作为反应及信号检测载体的检测技术,它充分利用发展成熟的流式细胞术检测原理,对临床大多数生物分子(如核酸、蛋白质等)进行高通量分析。目前已在研究和临床检测中得到了广泛的应用,现就其技术原理、特点及临床应用作简要介绍。

【关键词】芯片分析技术流式细胞术

生物芯片主要包括基因芯片和蛋白芯片两大类,按寻址方式和最终检测载体又可分为固相芯片(flat microarrays)和液相芯片(1iquid chip or microsphere arrays)。近年来,液相芯片以其独特的优点及临床实用性,正受到越来越多的重视。现就液相芯片的技术原理、特点及临床应用前景作简要介绍。

液相芯片技术原理

1.微球编码与反应原理:固相芯片通过空间位置寻址来识别不同点阵元素(即区别不同的特异性反应),液相芯片则通过反应载体——微球所具有的物理、光学信号(如大小或颜色)来识别点阵元素?。液相芯片技术是一种以经过特殊编码、可识别的微球(encoded microspheres or beads)作为生物分子(抗原、抗体、蛋白质、核酸等)反应及信号检测载体的阵列分析技术。液相芯片采用的分子杂交反应类型与固相芯片类似,只是所有的反应在混悬于液相中的微球表面上进行,故也称为悬浮式点阵技术(suspension array technology,SAT)。

SAT技术主要包括点阵信号识别和检测信号识别两部分,现以临床最常用的双位点夹心法来说明液相芯片的基本技术原理。SAT主要由微球、探针分子(A)、被检测物(B)、报告分子(c)4个部分构成。

微球的主要化学成分为聚苯乙烯,其表面修饰的羧基功能基团在一定条件下可以共价结合任何含有氨基的目标分子,对其表面进行不同的化学结构修饰,可使结合的目标分子更具选择性。将微球采用物理或化学方法进行编码分类,不同编码类别的微球即可区分不同的特异性反应。微球编码方式多种多样],如微球大小、颜色、荧光金属纳米技术等,其中最常用的是荧光编码技术,即在制备过程中掺人两种或多种不同颜色分类荧光分子,根据加入比例不同将同种大小的微球进行独特编码。

探针分子是可以和微球表面的羧基等基团偶联并能与被检测物特异性结合的生物分子。报告分子的作用是为每种不同的特异性反应提供检测信号,其可以是一种能与被检测物特异性结合的荧光染料,也可以是标记有荧光的、能与被检测物结合的其他物质(如抗体、抗原、核酸等)。为了和微球分类荧光有明显区别,一般以绿色荧光作为报告分子的标记荧光,任何一种可以激发绿色荧光的荧光染料均可作为报告分子的荧光标记物。

将不同编码类别的微球分别与不同的探针分子反应结合后,混合在一起,再依次加入样品及报告分子,不同微球上的探针分子与样品中需要检测的各种目标分子进行特异性结合,报告分子与目标分子特异性结合,即构成了一个液相芯片系统。因此,可在同一混悬体系中对同一样品中的多种目标分子进行同时分析。

2.检测原理:微球编码技术不同,信号的检测方式也各不相同。流式细胞术是目前应用最广、技术最成熟的一种信号识别和检测技术。

微球单个逐一通过检测通道时受到双色激光(如红色和绿色)同时照射,第一束激光激发微球的分类荧光,根据荧光编码确定微球的类别,即微球内部的两种荧光物质受激发后可发射两种不同波长的荧光,不同类别微球内这两种荧光物质比例不同,则荧光强度比率也不同,从而将不同的特异性反应区分开来(定性、分类);第二束激光激发报告分子

上的荧光素,根据荧光强度确定微球上结合的报告分子的数量,从而确定目标分子数量(定量)[3] 系统只记录与红色荧光同时出现的绿色荧光信号,不记录未结合的报告分子荧光信号,因此检测前无需洗脱未结合的报告分子。此外,利用流式细胞术中9O。角散射光可有效地消除微球聚集对结果造成的影响[1]。各种信号经分析软件进行数字化处理,可获得检测物的种类和数量。

单核苷酸多态性检测的液相芯片技术单核苷酸多态性(SNP)是人类基因组中单个碱基的变异,属于二等位基因的标记,在人类30亿个碱基中每千个碱基出现一次,是近来被受关注的第三代多态性标记。由于SNP的研究将会极大地推动群体遗传学、药物开发、法医学、癌症、糖尿病、精神病等复杂疾病研究,故近年来不断有新的技术及方法出现并应用于SNP的检测。

单核苷酸多态性(SNP)是人类基因组中单个碱基的变异,属于二等位基因的标记,在人类30亿个碱基中每千个碱基出现一次,是近来被受关注的第三代多态性标记。由于SNP的研究将会极大地推动群体遗传学、药物开发、法医学、癌症、糖尿病、精神病等复杂疾病研究,故近年来不断有新的技术及方法出现并应用于SNP的检测。利用芯片技术进行SNP多态性位点的检测是目前发展最快、最有应用前景的技术平台。

本文所介绍的这一技术平台在2003年10月的《Scientific Computing & Instrumentation》杂志上被认为是计算机技术发展史上的20个里程碑技术之一。该技术最早是由Orchid BioSciences 公司研发,并成功应用于美国纽约“9·1 1”恐怖袭击事件中遇难者的身份鉴定工作(详见2003年12月期的《生物技术世界》杂志)。随后,贝克曼库尔特公司的科学家们发展了这一技术,在自动化程度方面及荧光检测技术方面进行了改进和提升,充分利用了芯片技术的高通量、高信息量的特性,使得SNP位点检测更加准确。

该技术运用经典的单碱基引物延伸技术,结合多重PCR技术及荧光标记技术,同时引入384孔液相芯片杂交技术,原理简单,结果可靠,准确性超过了DNA测序,且每个SNP基因型分析只需170 ng 的DNA样本。主要特点如下:1、更高、更灵活的通量

384孔杂交芯片,每孔可同时检测12个SNP位点。每日检测通量可达4,608-800,000 个SNP 位点。384孔板上的每一个孔内都预先固定了12个序列已知的独特的寡核苷酸片段及4个对照标记(Tag)。板上的每一个Tag片段都能与12个含有Tag互补序列的SNP延伸引物中的一个互补,再加上4个对照的寡核苷酸片段,以确保结果的准确性。单碱基引物延伸反应完成后,将被转移到已含有特定寡核苷酸序列的微阵列芯片板上,由于Tag芯片技术能够严格按照已知的Tag序列设定杂交条件,所有杂交反应都是动态的液相杂交,良好的均一性和引物的高度特异性使得Tag芯片拥有比其它SNP筛查技术更高的准确性、杂交效率及重现性。

2、真正的多重SNP检测

每对PCR引物及一个SNP引物都由网络版的https://www.360docs.net/doc/a216873607.html,自动引物设计软件来完成。该软件可同时完成12对PCR引物及12个SNP引物的设计以保证多重SNP检测的成功。每个完成的SNP引物都自动接有特定的Tag标签序列,此序列与预先种植在每个384孔板内的寡核苷酸探针序列互补,以便进行SNP位点的精确检测。

3、更低的成本,更高的效率

5ml的反应体系、12重的PCR反应及复合的SNP反应不仅仅降低了PCR反应的费用,还提高了效率,其最终的结果既保证了结果的一致,又可使每个SNP基因分型的成本降到最低。一个PCR反应可同时检测12个SNP位点,省时、省钱、省人力。

4、更少的DNA 用量,更精确的基因分型

2ng 的DNA可用于12个SNP 位点的检测,准确率在99%以上。由于单个延伸的碱基带有荧光标记,检测结果可由荧光芯片扫描仪上的双色荧光读出并分析。

由于SNP位点在基因组中数量多,分布稳定,且是一种双等位基因标记,易于使用高通量、自动化的技术平台检测。相信这一技术一定会在个体识别、复杂疾病研究和药物遗传学研究中发挥应有的作用。

欧洲正在研发的悬臂阵列

2000 年4月的《科学》杂志(Science,vol 288)报导了瑞士苏黎世IBM 实验室和巴塞尔大学的一项新成果:使用由硅制的微小机械可以测出DNA的缺陷,对未来医学治疗和病理诊断设备的开发具有深远意义。

如此微小的机械也可称作生物芯片(biochip)或生物传感器(biosensor)。其理论是,直接将特定的生化识别转化为纳米机械运动,机械运动将被由不同机理集成化的监控器所观测,计算机将对其观测的光信号或电信号进行比较分析,从而达到对生化分子的识别及其它特定化学反应的监控。其生物传感器中感应部分常用的一种是悬臂传感器(cantileve r sensor)。(图1)

悬臂的大小决定了其传感器的灵敏性,现有的硅纳米刻蚀技术可制造出宽度小于50纳米的悬臂,当器件尺度缩小到纳米级的时候,灵敏度将会大幅度提高。通过覆盖具有选择吸附性材料于表面,约束目标对象的悬臂就具有高度灵敏性的选择化学与生化物的传感器。当传感器被目标物质所接触,其表面应力发生改变,致使悬臂发生弯曲,并且通过检控打在器件表面的激光反射光路,从而得到监控信号,其信号将被用来进行物质识别,同时能非常精确的测出其含量,并且可以进行动态化学反应监控(图2)。

欧共体的另一个利用悬臂的传感器项目NANOMASS,由瑞典、丹麦和西班牙等多个研究所合作开发新型传感器,代替对表面应力的测量,通过检控悬臂频率来实现,不同的分子吸附表面将会改变悬梁的共振频率,恰恰共振频率的改变可用来进行物质的质量识别,其纳米机械设备将集成于CMOS的芯片上,且无须激光之类的光学检控系统,并且利用半导体芯片生产技术来提高其传感器的集成化与智能化。

悬臂传感器将传统的化学反应直接从微米至纳米的机械器件上测出无标记(lable-free)传感器,这种方法直接减少了生物分子检测的步骤和排除标记基体对样品结果的影响。此传感器的一个很大优势是可以对混合物进行检样与分析,无须花时间进行纯化分离,并且与人造智能网络连接,可以用电子鼻识别复杂混合气。并且有广阔的应用领域如医学诊断、药物研发、生命科学研究、食物分析、芳香味道分析和环境检控等。生命科学与半导体电子技术的结合将会使智能电子医生成为现实。

芯片类检测:LuminexPLEXMAPBIOPLEX液相芯片检测

【嘉美实验】嘉美生物可提供Luminex、Mllipore的FLEXMAP和Bio-Rad的BioPlex液相芯片检测实验外包服务。Luminex的代表产品 Luminex 100/200以及新推出的Mllipore的FLEXMAP 3D TM 和Bio-Rad公司的BioPlex system都是基于xMAP技术原理,整合了荧光编码微球、激光检测、应用流体学、最新的高速数字信号和计算机运算法则等多项技术,真正实现了“高通量”检测,并荣获2005年度国际临床诊断技术革新奖。是唯一得到美国FDA批准的,也是唯一被纳入美国临床实验室质控网络的高通量诊断技术。被国际业界专家评价为临床诊断的趋势性技术之一。 Luminex\PLEXMAP\BIOPLEX的技术原理 Luminex\PLEXMAP\BIOPLEX的技术优势 高通量,高速度:每个微球作为单独的检测体,可同时进行大量的生物检测,只需要10~20 μl的样本量就可以一次检测多达100个指标(FLEXMAP 3D TM可多达500个指标),最快可达10000次测试/小时,真正实现了“高通量”与“高速度”。 多功能性:xMAP技术可以运用到多种生物检测中,包括免疫分析、基因分型、基因表达、酶分析等。既能检测蛋白,又能检测核酸。除了用于临床外,也能用于科研、CDC、血站、农业、生物及制药专业实验室等。 灵活性高:微球上可连接特异性的探针、抗原或抗体等来满足不同客户的需要。 灵敏度高:检测低限可达0.01pg/ml。 重复性好:类均相反应模式,每个指标有1000-5000个反应单元,分析100次取中位均值。 准确性高:检测范围达3.5-6个数量级,与ELISA和质谱分析具有很强的一致性。 成本低:流式荧光技术联检的试剂用量少,能有效降低临床应用的成本。

液相色谱仪结构及原理

液相色谱仪结构及原理 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达 4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 一、特点: 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 二、性质及原理:高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液—液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。a. 正相液—液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液—液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。 c. 液—液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。 2 .液—固色谱法 流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子(X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下:

高效液相色谱仪(HPLC)校正方法

高效液相色谱仪(HPLC)校正方法 0.1输液系统: 0.1.1梯度误差G C不超过±3% 0.1.2泵流量设定值误差 S s<±2% 0.1.3流量稳定性误差 S R<±2% 0.2紫外检测器性能 0.2.1基线噪声不超过5×10-4AU,基线漂移不超过5×10-3AU 0.2.2定量测量重复性误差(6次进样)RSD≤1.5% 0.2.3最小检测浓度不超过1×10-7g/ml萘/甲醇溶液 0.2.4可调波长紫外可见光检测器波长示值不超过±2nm(HP1100高效液相色谱仪可由仪器自身完成) 1校正条件 1.1环境温度10-30℃,相对湿度低于65% 1.2校正设备 1.2.1秒表分度值小于0.1 s 1.2.2分析天平最大称量200g,最小分度值0.1mg 1.2.3容量瓶 1.2.4微量注射器 1.3标准物质和试剂 1.3.1HPLC用甲醇、纯水,分析纯的丙酮 1.3.21×10-4g/ml,1×10-7g/ml的萘甲醇溶液 1.3.3紫外波长标准溶液 2校正方法 2.1梯度误差G C的校正 2.1.1进行梯度洗脱程序,A溶剂为水,B溶剂为0.1%丙酮的水溶液,B经5个阶段从0变到100%, 20%—40%—60%—80%—100%,重复测量两次,取平均值,求各段梯度误差Gci,取最大作为仪器梯度误差,公式:Gci=(Li—Lm)/Lm×100% Li:第i段信号值的平均值; Lm :各段输出信号平均值的平均值 可接受标准: -3%≤Gci≤3% 2.2泵流量设定值误差Ss、流量稳定性误差S R的校正 2.2.1将仪器的输液系统、进样器、色谱柱和检测器联接好,以甲醇为流动相,按表一设定流量,待 流速稳定后,在流动相排出口用事先清洗称重过的容量瓶收集流动相,同时用秒表计时,准确的收集10-25

高效液相色谱(HPLC)

高效液相色谱(HPLC)操作规程 一操作 1.准备工作 ⑴流动相的准备 应根据实验选择合适的流动相,所有流动相原则上应选择HPLC级别,水应选择超纯水,并应保持新鲜。 所有流动相在进行实验前应经过相应的脱气处理,脱气时间应根据流动相的量相应增加,但一般超声脱气不应少于20min。 在实验过程中应保证足够的流动相,流动相的量与流速、洗脱时间等有关,应根据具体情况进行准备。 ⑵样品的准备 对于待测的样品,在进样之前应经过滤膜过滤,根据样品的不同选择不同种类、不同直径的滤膜。 2. 排气 打开purge阀,键入stop→prime,直到无气泡停止stop。 B泵同样操作。 关闭purge阀。 3. 开机 打开电脑主机和显示器,点击Galaxie,进入工作站。选择系统,点击Agilent HPLC. 点击overview,可观察仪器各部分状态。 打开泵及检测器的电源。 二 分析方法建立 1.进入工作站系统界面。 点击数据,文件→新建→方法,出现视窗,点击前进即可。 键入方法名和相应描述→点击ok后出现方法文档。 2.210的设定 点击控制→210图标→Elution。 选择流动相A和B的种类。 Compressibility、Pressure Constant以及Refill Time属于内置参数无需设定。 设置A、B流动相的比例,通过改变B的比例设定。 如需梯度洗脱,则根据方法对Equilibrium Time 和Hold Time进行设定。 点击Misscellaneous。 Start Mode选择Inject Trigger on Pump A。 End of Sequence 选择Leave Pump on。 210设定结束。 3.325的设定 点击325图标,选择Signal。 其中Detector Bunch Rate建议设置成2(10Hz),Noise Monitor Length建议设定成64,Response Time建议设定0.5。 根据方法设定相应波长。 其余三项包括Peak Sensor、Relay、Misscellaneous不需设定。 325设定结束。 此时方法已经建立,选择文件,保存方法即可。

(完整版)集成电路设计复习题及解答

集成电路设计复习题 绪论 1.画出集成电路设计与制造的主要流程框架。 2.集成电路分类情况如何? 集成电路设计 1.层次化、结构化设计概念,集成电路设计域和设计层次 2.什么是集成电路设计?集成电路设计流程。 (三个设计步骤:系统功能设计逻辑和电路设计版 图设计) 3.模拟电路和数字电路设计各自的特点和流程 4.版图验证和检查包括哪些内容?如何实现? 5.版图设计规则的概念,主要内容以及表示方法。为什么需要指定版图设计规则? 6.集成电路设计方法分类? (全定制、半定制、PLD) 7.标准单元/ 门阵列的概念,优点/缺点,设计流程 8.PLD设计方法的特点,FPGA/CPLD的概念 9.试述门阵列和标准单元设计方法的概念和它们之间的异同点。 10.标准单元库中的单元的主要描述形式有哪些?分别在IC设计的什么阶段应用? 11.集成电路的可测性设计是指什么? Soc设计复习题 1. 什么是SoC? 2. SoC设计的发展趋势及面临的挑战? 3. SoC设计的特点? 4. SoC设计与传统的ASIC设计最大的不同是什么? 5. 什么是软硬件协同设计? 6. 常用的可测性设计方法有哪些? 7. IP 的基本概念和IP分类 8. 什么是可综合RTL代码? 9. 么是同步电路,什么是异步电路,各有什么特点? 10. 逻辑综合的概念。 11. 什么是触发器的建立时间( Setup Time ),试画图进行说明。 12. 什么是触发器的保持时间( Hold Time ),试画图进行说明。 13. 什么是验证,什么是测试,两者有何区别? 14. 试画图简要说明扫描测试原理。

绪论 1、画出集成电路设计与制造的主要流程框架。 2、集成电路分类情况如何? 双极型 数字模拟混合电路按应用领域分类 集成电路设计 1.层次化、结构化设计概念,集成电路设计域和设计层次分层分级设计和模块化设计.将一个复杂的集成电路系统的设计问题分解为复杂性较低的设计级别,集成电路MSI 按规模分 LSI 类VLSI ULSI GSI 数字电 按功能分类模拟电 路组合逻辑电路 路时序逻辑电路 路线性电路 路非线性电路 单片集成 按结构分类 混合集 成 SSI PMOS 电M路OS 型NMOS CMOS B iMOS B iMOS 型 B iCMOS 电 厚路膜混合集 成 电路 薄路膜混合集 成 电路

高效液相色谱分析原理及流程

高效液相色谱分析原理及流程 高效液相色谱以经典的液相色谱为基础,是以高压下的液体为流动相的色谱过程。通常所说的柱层析、薄层层析或纸层析就是经典的液相色谱。所用的固定相为大于100um的吸附剂(硅胶、氧化铝等)。这种传统的液相色谱所用的固定相粒度大,传质扩散慢,因而柱效低,分离能力差,只能进行简单混合物的分离。而高效液相所用的固定相粒度小(5um-10um)、传质快、柱效高。高效液相色谱法(HPLC)是20世纪60年代后期发展起来的一种分析方法。近年来,在保健食品功效成分、营养强化剂、维生素类、蛋白质的分离测定等应用广泛。世界上约有80%的有机化合物可以用HPLC来分析测定。 高效液相色谱分析原理 (一)高效液相色谱分析的流程 由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。废液流入废液瓶。遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。 (二)高效液相色谱的分离过程 同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。分配系数大的组分C 在固定相上滞留时间长,较晚流出色谱柱。组分B的分配系数介于A,C之间,第二个流出色谱柱。若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。 不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

集成电路基本概念共9页

IC集成电路基本概念 1. 根据工艺和结构的不同,可将IC分为哪几类? 根据工艺和结构的不同,可将IC分为三类: ①半导体IC或称单片(Monolithic)IC,②膜IC,又可分为两种:厚膜电路,薄膜电路;③混合IC(Hybrid IC) 按器件结构类型分类:双极集成电路,金属-氧化物-半导体(MOS)集成电路。 2. 用哪些技术指标描述集成电路工艺技术水平? 描述集成电路工艺技术水平的五个技术指标:集成度,特征尺寸,芯片面积,晶片直径,封装。 3. 为什么数字IC和模拟IC划分集成电路规模的标准不同? 因为数字IC中重复单元很多,而模拟IC中基本无重复单元。 4. 集成电路是哪一年由谁发明的?哪一种获得Nobel物理奖? 1958年以德克萨斯仪器公司的科学家基尔比(Clair Kilby)为首的研究小组研制出了世界上第一块集成电路,并于1959年公布了该结果。获得2000年Nobel物理奖。 5. 为什么实现社会信息化的网络及其关键部件不管是各种计算机和/或通讯机,它们的基础都是微电子? 因为其核心部件是集成电路。几乎所有的传统产业与微电子技术结合,用集成电路芯片进行智能改造,都可以使传统产业重新焕发青春。电子装备更新换代都基于微电子技术的进步,其灵巧(Smart)的程度都依赖于集成电路芯片的“智慧”程度和使用程度。

6. 采用哪些途径来提高集成度? 提高微细加工技术;芯片面积扩大;晶圆大直径化;简化电路结构7. 21世纪硅微电子芯片将沿着哪些方向继续向前发展? 1)特征尺寸继续等比例缩小,沿着Moore定律继续高速发展; 2)片上芯片(SOC):微电子由集成电路向集成系统(IS)发展; 3)赋予微电子芯片更多的“灵气” :微机械电子系统(MEMS)和微光电机系统(MOEMS),生物芯片(biochip); 4)硅基的量子器件和纳米器件。 8. 对如下英文单词或缩写给出简要解释: IC集成电路(Integrated Circuit,IC) SSI小规模集成电路(Small Scale IC,SSI) MSI中规模集成电路(Medium Scale IC,MSI) LSI大规模集成电路(Large Scale IC,LSI) VLSI超大规模集成电路(Very Large Scale IC,VLSI) ULSI特大规模集成电路(Ultra Large Scale IC,ULSI) GSI巨大规模集成电路(Gigantic Scale IC,GSI) Wafer晶圆片,Foundry 标准工艺加工厂或称代客加工厂 IDM 集成器件制造商(IDM—Integrated Device Manufactory Co.), IP core 知识产权核,fabless co. 无生产线公司(集成电路设计公司),chipless co. 无芯片公司(开发知识产权核公司),mp 微处理机,DSP 数字信号处理,E2PROM 电可擦除可编程唯读存储器,Flash快闪存储器,A/D 模数转换,D/A 数模转换,SOI 绝缘衬底的硅薄膜(Silicon

集成电路-微电子-学习中概念解释

1:SOI(Silicon-On-Insulator,绝缘衬底上的硅)技术是在顶层硅和背衬底之间引入了一层埋氧化层。通过在绝缘体上形成半导体薄膜,SOI材料具有了体硅所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS 电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势,因此可以说SOI将有可能成为深亚微米的低压、低功耗集成电路的主流技术。通常根据在绝缘体上的硅膜厚度将SOI分成薄膜全耗尽FD(Fully Depleted)结构和厚膜部分耗尽PD(Partially Depleted)结构。由于SOI的介质隔离,制作在厚膜SOI结构上的器件正、背界面的耗尽层之间不互相影响,在它们中间存在一中性体区,这一中性体区的存在使得硅体处于电学浮空状态,产生了两个明显的寄生效应,一个是"翘曲效应"即Kink 效应,另一个是器件源漏之间形成的基极开路NPN寄生晶体管效应。如果将这一中性区经过一体接触接地,则厚膜器件工作特性便和体硅器件特性几乎完全相同。而基于薄膜SOI结构的器件由于硅膜的全部耗尽完全消除"翘曲效应",且这类器件具有低电场、高跨导、良好的短沟道特性和接近理想的亚阈值斜率等优点。因此薄膜全耗尽FDSOI应该是非常有前景的SOI结构。 目前比较广泛使用且比较有发展前途的SOI的材料主要有注氧隔离的SIMOX(Seperation by Implanted Oxygen)材料、硅片键合和反面腐蚀的BESOI(Bonding-Etchback SOI)材料和将键合与注入相结合的Smart Cut SOI材料。在这三种材料中,SIMOX适合于制作薄膜全耗尽超大规模集成电路,BESOI 材料适合于制作部分耗尽集成电路,而Smart Cut材料则是非常有发展前景的SOI 材料,它很有可能成为今后SOI材料的主流。 2:速度过冲 Velocity overshoot effect (1)基本概念: 速度过冲效应(Velocity overshoot effect)是半导体载流子在强电场作用下所产生的一种瞬态输运现象。另外一种重要的瞬态输运现象是弹道输运。速度过冲效应所表现出来的效果就是载流子的漂移速度超过正常的定态漂移速度。这种效应对于小尺寸器件以及化合物半导体器件等的性能的影响比较大,可有效地提高器件的工作频率和速度。与速度过冲相对应的一种瞬态输运现象是速度下冲,即是突然去掉强电场时所产生的漂移速度低于定态速度的一种现象。(2)产生机理: 产生速度过冲的原因就在于半导体中载流子的动量弛豫时间远小于其能量弛豫时间,这实际上也就意味着,在强电场作用下,载流子能够很快地获得很大的动量,而相应地较难于获得很高的能量。这是由于载流子在强电场作用下获得动量的机理与获得能量的机理不同所致。由于晶体中能够提供能量和动量的客体通常是声学波声子和光学波声子,而一般声学波声子的动量较大、能量较小,光学波声子的能量较大、动量较小,所以在强电场作用下,载流子所获得的动量主要是来自于声学波声子,而所获得的能量则主要是来自于光学波声子。因为载流子从声学波声子处获得动量的速度要大于从光学波声子处获得能量的速度,所以在强电场作用下,载流子即会很快地通过与声学波声子的散射而获得动量、并达到很大的漂移速度,而与此同时其能量却可能仍然将处于原来较低的状态,需要通过较长一段时间才能达到相应的较高能量的状态;于是,这时载流

液相色谱仪的工作原理

液相色谱仪的工作原理 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~ 350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液—液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography)

高效液相色谱原理

高效液相色谱法(HPLC) 一、方法原理 1、液相色谱法概述 高效液相色谱分析法

其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。

HPLC仪器的基本结构 2、高效液相色谱法的特点(HPLC) 与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分

配系数、离子交换作用或分子尺寸大小的差异来进行分离。 由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。 特点是选择性高、分离效能高、分析速度快的特点。 高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。 高效液相色谱法与气相色谱法相比,各有所长,互相补充。 如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。 3、高效液相色谱法的固定相和流动相 (1)固定相 表面多孔型和全多孔型两大类。 (2)流动相(淋洗液) 流动相的选择对改善分离效果产生重要的辅助效应。 从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求: ①与固定相互不相溶,并能保持色谱柱的稳定性。 ②高纯度,以防所含微量杂质在柱中积累,引起柱 性能的改变。 ③与所用的检测器相匹配。 ④应对样品有足够的溶解能力,以提高测定的灵敏 度。 ⑤具有低的黏度(可减少溶质的传质阻力,提高柱 效)和适当低的沸点。

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

集成电路运算放大器的定义

第四章集成运算放大电路 第一节学习要求 第二节集成运算放大器中的恒流源 第三节差分式放大电路 第四节集成电路运算放大器 第五节集成电路运算放大器的主要参数 第六节场效应管简介 第一节学习要求 1. 掌握基本镜象电流源、比例电流源、微电流源电路结构及基本特性。 2. 掌握差模信号、共模信号的定义与特点。 3. 掌握基本型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。 4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。会计算A VD、R id、 R ic、 R od、 R oc、K CMR。 5.熟悉运放的主要技术指标及集成运算放大电路的一般电路结构。 学习重点:

掌握集成运放的基本电路的分析方法 学习难点: 集成运放内部电路的分析 集成电路简介 集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。 集成电路在结构上的特点: 1. 采用直接耦合方式。 2. 为克服直接耦合方式带来的温漂现象,采用了温度补偿的手段 ----输入级是差放电路。 3. 大量采用BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。 4. 采用复合管接法以改进单管性能。 集成电路分为数字和模拟两大部分。 返回 第二节集成运算放大器中的恒流源 一、基本镜象电流源

电路如图6.1所示。T1,T2参数完全相同,即 β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2 当β>>2时, 式中I R=I REF称为基准电流,由上式可以看出,当R确定后,I R就确定,I C2也随之而定,我们把I C2看作是I R的镜像,所以称图6.1为镜像恒流源。 改进电路一:

实例解析——高效液相色谱(hplc)

实例解析——高效液相色谱(HPLC) 一、原理 利用不同物质在两相中(液液、液固、离子交换、尺寸排阻)具有不同的分配系数,当二者相对运动时候,物质在两相中反复多次分配,从而使得物质得到完全分离 二、适用范围 高沸点、热不稳定的天然产物、生物大分子、高分子化合物、离子型样品、生化样品三、特点 高压、高效、高灵敏度 四、仪器组成 流动液贮存提供脱气,输液系统、进样系统、分离系统、检测系统,控制记录系统贮液瓶、高压泵、进样器、分离柱、检测器、记录仪 五、仪器选择 由实验条件确定是选用二元高压还是四元低压、一般来说,二元高压的准确度较高。四元低压是先将样品按比例混合再泵入,而二元高压是先泵入不同比例的溶剂再混合。确定采用的脱气系统,一般采用在线脱气。确定进样方式,人工手动六通阀进样,还是进样针自动进样,一个适用于少量样品,一个适用于大量样品。 选择检测器,如果是有较强的紫外吸收的可用紫外可见检测器(二极管阵列检测器),如果是芳香族化合物,可选用荧光检测器,对于离子可采用电导检测器。 六、实验条件优化 配置待测物质的标准溶液 1、色谱柱的确定 分析样本确定是采用何种类型的色谱柱 (1)分配色谱,两项间分配系数 流动相选用极性的物质(甲醇、乙腈、水)则固定相选择非极性物质。一般用 C18 ODS柱。 (2)吸附色谱, (3)离子交换色谱 各种离子与树脂上交换集团的交换能力不同。固定相:离子交换树脂,流动相 为无机酸、无机碱。常用于分离离子或者可解离的化合物 (4)排阻色谱法 配置含待测物质的标准品溶液,采用不同C18柱分离,检测,对照不同色谱图像,可得到分离效能最高的色谱柱 2、最佳流动相梯度洗脱程序的确定 梯度洗脱:按照一定的程度,不断改变流动相中个溶剂组成的比例以改变流动相的 极性。将色谱柱上不同的组分洗脱出来。 配置不同的梯度洗脱方案,用标准溶液进行试验,并选取能达到最高分离效能的梯 度洗过方案作为最佳流动相梯度洗脱程序 3、流动相的确定 在分离效能相似条件下选择更经济、毒性小的流动相 4、流速确定 流速太大,待分离组分来不及与固定相充分作用,故其中的组分较易被洗脱下来,出峰时间变短,而且柱压比较高,会引起泵负荷的增加,进而导致色谱柱的使用命

液相芯片

液相芯片技术及其临床应用 生物芯片主要包括基因芯片和蛋白芯片两大类,按寻址方式和最终检测载体又可分为固相芯片(flat microarrays)和液相芯片(1iquid chip or microsphere arrays)。近年来,液相芯片以其独特的优点及临床实用性,正受到越来越多的重视。现就液相芯片的技术原理、特点及临床应用前景作简要介绍。 【摘要】液相芯片技术是一种利用混悬在液相中的分类编码微球作为反应及信号检测载体的检测技术,它充分利用发展成熟的流式细胞术检测原理,对临床大多数生物分子(如核酸、蛋白质等)进行高通量分析。目前已在研究和临床检测中得到了广泛的应用,现就其技术原理、特点及临床应用作简要介绍。 【关键词】芯片分析技术流式细胞术 生物芯片主要包括基因芯片和蛋白芯片两大类,按寻址方式和最终检测载体又可分为固相芯片(flat microarrays)和液相芯片(1iquid chip or microsphere arrays)。近年来,液相芯片以其独特的优点及临床实用性,正受到越来越多的重视。现就液相芯片的技术原理、特点及临床应用前景作简要介绍。 液相芯片技术原理 1.微球编码与反应原理:固相芯片通过空间位置寻址来识别不同点阵元素(即区别不同的特异性反应),液相芯片则通过反应载体——微球所具有的物理、光学信号(如大小或颜色)来识别点阵元素?。液相芯片技术是一种以经过特殊编码、可识别的微球(encoded microspheres or beads)作为生物分子(抗原、抗体、蛋白质、核酸等)反应及信号检测载体的阵列分析技术。液相芯片采用的分子杂交反应类型与固相芯片类似,只是所有的反应在混悬于液相中的微球表面上进行,故也称为悬浮式点阵技术(suspension array technology,SAT)。 SAT技术主要包括点阵信号识别和检测信号识别两部分,现以临床最常用的双位点夹心法来说明液相芯片的基本技术原理。SAT主要由微球、探针分子(A)、被检测物(B)、报告分子(c)4个部分构成。 微球的主要化学成分为聚苯乙烯,其表面修饰的羧基功能基团在一定条件下可以共价结合任何含有氨基的目标分子,对其表面进行不同的化学结构修饰,可使结合的目标分子更具选择性。将微球采用物理或化学方法进行编码分类,不同编码类别的微球即可区分不同的特异性反应。微球编码方式多种多样],如微球大小、颜色、荧光金属纳米技术等,其中最常用的是荧光编码技术,即在制备过程中掺人两种或多种不同颜色分类荧光分子,根据加入比例不同将同种大小的微球进行独特编码。 探针分子是可以和微球表面的羧基等基团偶联并能与被检测物特异性结合的生物分子。报告分子的作用是为每种不同的特异性反应提供检测信号,其可以是一种能与被检测物特异性结合的荧光染料,也可以是标记有荧光的、能与被检测物结合的其他物质(如抗体、抗原、核酸等)。为了和微球分类荧光有明显区别,一般以绿色荧光作为报告分子的标记荧光,任何一种可以激发绿色荧光的荧光染料均可作为报告分子的荧光标记物。 将不同编码类别的微球分别与不同的探针分子反应结合后,混合在一起,再依次加入样品及报告分子,不同微球上的探针分子与样品中需要检测的各种目标分子进行特异性结合,报告分子与目标分子特异性结合,即构成了一个液相芯片系统。因此,可在同一混悬体系中对同一样品中的多种目标分子进行同时分析。 2.检测原理:微球编码技术不同,信号的检测方式也各不相同。流式细胞术是目前应用最广、技术最成熟的一种信号识别和检测技术。 微球单个逐一通过检测通道时受到双色激光(如红色和绿色)同时照射,第一束激光激发微球的分类荧光,根据荧光编码确定微球的类别,即微球内部的两种荧光物质受激发后可发射两种不同波长的荧光,不同类别微球内这两种荧光物质比例不同,则荧光强度比率也不同,从而将不同的特异性反应区分开来(定性、分类);第二束激光激发报告分子

高效液相色谱法基本原理

高效液相色谱法基本原理 一、实验目的 1. 了解高效液相色谱法分离的基本原理; 2. 了解高效液相色谱仪的基本构造; 3. 了解高效液相色谱仪的基本操作。 二、基本原理 高效液相色谱(HPLC)法是以高压下的液体为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。高效液相色谱对样品的适用性广,不受分析对象挥发性和热稳定性的限制,因而弥补了气相色谱法的不足。在目前已知的有机化合物中,可用气相色谱分析的约占20%,而80%则需用高效液相色谱来分析。 高效液相色谱和气相色谱在基本理论方面没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质的差别。 高效液相色谱分析原理: (一)高效液相色谱分析的流程:由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。废液流入废液瓶。遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。 (二)高效液相色谱的分离过程:同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。 开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。分配系数大的组分C在固定相上滞留时间长,较晚流出色谱柱。组分B的分配系数介于A,C之间,第二个流出色谱柱。若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。 不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等有关。所以分离最终效果则是热力学与动力学两方面的综合效益。 三、系统构成 1.主机:Waters Allance 2695高效液相色谱仪,分为①分离单元Allance2695;②紫外-可见检测器2487;③荧光检测器2474;④示差折光检测器2414。 2.操作控制系统:DELL Dimmsen 4550微机;Waters Millunnium32 V4.0 色谱管理器软件。 3.打印机:HP LaserJet 1000激光打印机。 四、实验步骤 1. 系统开机准备

Merck Millipore-液相芯片技术在肿瘤检测和研究中的应用

Milliplex/Luminex液相芯片技术在肿瘤检测和研究的应用 前言 目前,肿瘤标志物的研究与应用已成为肿瘤防治的重点和热点。但当前肿瘤标志物检测能否达到早期诊断的效果?有无在人群中进行普查或筛查的价值?其临床意义如何解释?怎样规范与合理应用?尚存在诸多争议。为此,中华医学会检验医学分会肿瘤标志物专家委员会,在2002年至2004年分别召开3次专家研讨会,起草制订了“肿瘤标志物临床检测的基本原则(建议稿) ”对以上问题进行了解释。本文主要从以下几个方面进行介绍: ●肿瘤标志物临床检测的基本原则 ●肿瘤标志物的检测指标 ●肿瘤标志物的高危人群检测项目 ●肿瘤血管的形成 ●慢性炎症与肿瘤微环境 ●趋化因子与肿瘤微环境 ●液相芯片技术原理 ●Milliplex肿瘤微环境相关试剂盒介绍 ●肿瘤微环境与肿瘤标记应用的相关文献 一、肿瘤标志物临床检测的基本原则 肿瘤标志物( TM) 是指在恶性肿瘤发生和增殖过程中,由肿瘤细胞的基因表达而合成分泌的或是由机体对肿瘤反应而异常产生和/ 或升高的,反映肿瘤存在和生长的一类物质,包括蛋白质、激素、酶(同工酶) 、多胺及癌基因产物等。TM 存在于病人的血液、体液、细胞或组织中,可用生物化学、免疫学及分子生物学等方法测定,且对肿瘤的辅助诊断、鉴别诊断、观察疗效、监测复发以及预后评价具有一定的价值。 TM在肿瘤监测中的价值:TM的主要临床应用价值是判断治疗肿瘤治疗疗效和复发监测。临床可通过对肿瘤患者治疗前后及随访中TM浓度变化的监测,了解肿瘤治疗是否有效,并判断其预后,为进一步治疗提供参考依据。为确定何种TM适用于对肿瘤患者进行治疗监测,在患者治疗前应做相关TM检测。 TM浓度变化对肿瘤的疗效判断价值:恶性肿瘤治疗后TM浓度的变化与疗效之间有一定的相关性。治疗前TM浓度变化,常有三种类型:①TM浓度下降到参考范围,提示肿瘤治疗有效。②TM浓度下降但仍持续在参考范围以上,提示有肿瘤残留和/ 或肿瘤转移。 ③TM浓度下降到参考范围一段时间后,又重新升高,提示肿瘤复发或转移。 TM的定期随访原则:恶性肿瘤治疗结束后,应根据病情对治疗前升高的TM作定期随访监测。不同的TM半衰期不同,所以监测的时间和周期也不同。大部分国内外专家建议,治疗后6 W做首次测定,3年内每3月测定一次;3~5 年每半年一次,5~7 年每年一次。随访中如发现有明显升高,应1 月后复测一次,连续2次升高,可预示复发或转移。此预示常早于临床症状和体征,而有助于临床及时处理。 TM 的联合检测原则:同一种肿瘤或不同类型的肿瘤可有一种或几种TM异常;同一种TM可在不同的肿瘤中出现。为提高TM 的辅助诊断价值和确定何种TM可作为治疗后的随访监测指标,可进行联合检测,但联合检测的指标须经科学分析、严格筛选。在上述前提下,合理选择几项灵敏度、特异性能互补的TM 构成最佳组合,进行联合检测。经过临床应用,以循证医学的观点来评价和修改联合检测的TM 组合。 二、肿瘤标志物的检测指标 每年全球癌症死亡人数约为700万人,其中24%发生在中国。中国癌症患者的生存患者和治愈患者仅为13%,肿瘤防治水平远低于世界平均水平。世界卫生组织作出最新权威

相关文档
最新文档