1、液相芯片的概念

1、液相芯片的概念
1、液相芯片的概念

1、液相芯片的概念

液相芯片,又称悬浮阵列、流式荧光技术,是基于美国Luminex 公司研制的多功能流式点阵仪(Luminex 100TM)开发的多功能生物芯片平台,通常用于免疫分析、核酸研究、酶学分析、受体和配体识别分析等研究。也是目前唯一得到权威机构和医学界共同认可用于临床诊断的生物芯片平台。液态芯片是一种全新概念的生物芯片。该技术的核心是把微小的聚苯乙烯小球(5.6um)用荧光染色的方法进行编码,然后将每种颜色的微球(或称为荧光编码微球)共价交联上针对特定检测物的探针、抗原或抗体。应用时,先把针对不同检测物的编码微球混合,再加入微量待检样本,在悬液中靶分子与微球表面交联的分子进行特异性地结合,在一个反应孔内可以同时完成多达100种不同的生物学反应。最后用LuminexTM分析软件进行分析,仪器通过两束激光分别识别编码微球和检测微球上报告分子的荧光强度。因为分子杂交或免疫反应是在悬浮溶液中进行,检测速度极快,而且可以在一个微量液态反应体系中同时检测多达100个指标。

2、液相芯片的优势

(1)一次检测,100个指标;

(2)既能检测蛋白,又能检测核酸;

(3)既能用于临床,又能用于科研。

3、液相芯片的应用

(1)DNA杂交分析

SNP检测

基因表达谱分析

(2)免疫学分析

免疫分析

受体-配体分析

酶分析

蛋白质-蛋白质相互作用分析

蛋白质-DNA相互作用分析

4、应用实例

Liquichip液相系统是一个高度灵活的多元分析平台,可以适用于学研究,临床研究和药物研究中的各种蛋白质分析。

美国圣祖德儿童研究医院的Dr. Richard等人,使用液相对100μL样本中的15种不同的细胞因子同时进行了精确的定量测定。结果说明在T辅助细胞1型与2型中,某些细胞因子的表达量有显著差异。在测定过程中,Dr. Richard将15种不同的细胞因子的抗体分别标记在15种不同的球形基质上,混合后加入到一个反应体系中,对同一样本中的15种细胞因子进行测定。同时用ELISA的方法,分别对15种细胞因子进行检测。将两组结果进行对比后发现,趋势基本上一致,但是液相可同时对多个分子进行检测,同时灵敏度和可靠性更好,操作更为简单。这样只需要使用微量的样品,在较短的时间内,就可以得到所需的数据。

Luminex 是多功能的液相芯片分析平台,适用于免疫分析、核酸研究、酶学分析、受体和配体识别分析等研究。Luminex有机地整合了有色微球(color-coded microphere or beads)、激光技术、应用流体学、最新的高速数字信号处理器和计算机运算法则,造就了Luminex液相芯片系统无与伦比的检测特异性和灵敏度。Luminex液相芯片分析平台其卓越的产品性能与广阔的应用前景使得它成为众多生命科学研究单位的首选!

Luminex?200TM是在己有的数千台Luminex?100TM的基础之上,为满足临床与科研工作中的多种高通量检测而开发的新一代系统。和以往的Luminex?100TM相比, Luminex?200TM操作更简单方便,检测运行更稳定可靠。做出的改进包括更为方便的样品针调节旋钮,更精密的XYP机械校准功能以及高性能的空气压缩机等等。

整个系统包括:

1、Luminex?200TM主机

2、XYP平台

3、鞘液系统

4、操作分析软件

5、相关耗材

基于Luminex公司专利的xMAP技术,它能够在微孔板的一个孔内同时检测多达100个不同成分,而且与市场上所有Luminex相关试剂完全兼容。

Luminex?200TM System优势

新的样品针垂直校正旋钮——用户可以自由校正样品针高度以适应不同类型微孔板直

接调整,无需专门工具或者专业工程师。

更精确——精密的机械校准功能使微孔板与XYP平台的相对位置更为精确,提高了仪

器的自动化性能与检测速度。

可拆卸的前面板——方便了仪器内部校正,同时关键的核心工作区还是完全隔离开。

防腐蚀涂层保护的流体工作仓及改进的加固仪器底座——避免可能发生的部件腐蚀,

而且提高了系统本身的稳定性。

新型空气压缩器——提供工作高压,使仪器运行更稳定更安静,尤为重要的是检测数

据重复性更高。

其它改进——仪器运行检测的稳定性更好,使用维护更简单方便。

XYP平台:

尺寸规格:44cmW×61cmD×8cmH

重量:14.5kg

温度控制范围:35℃to55℃

SD鞘液系统:

尺寸规格:20cmW×30cmD×24.75cmH

重量:9kg

Luminex采用特殊的微球,它们的颜色是通过两种荧光染料染色得到的,调节两种荧光染料的比例可以获得100种不同颜色的微球,每种颜色的微球可以携带一种生物探针。探针通过羟基结合到微球表面,因此一个反应孔内的可以完成100种不同的生物学反应。Luminex 通过鉴定微球的颜色来确定反应类型,而对反应的定量分析是通过靶物质上的报告分子完成的。

实验流程

1、将探针包被的beads、报告分子以及样本混合,静置一段时间;

2、将混合物上样到Luminex,采用微流技术将beads分为单个细胞流;

3、激光检测beads,获得光信号、处理数据就可完成对生物反应的实时、定量分析;

优点

1、多元分析,可节约试剂、时间和精力;

2、操作简单,减少实验误差,具有更好的稳定性、更好的重复性与更小的批间差;

3、对样本量的要求少,非常适合分析稀有样本;

4、开放性的实验平台,同一个仪器可以用于免疫分析、核酸研究、酶学分析、受体和配体识别分析等多种研究工作,增加实验的灵活性;

5、液相反应体系,更快地达到平衡点,缩短实验时间;

6、Millipore旗下的Upstate及Linco公司可提供最多选择的试剂盒供实验者选择,试剂盒涉及细胞因子,细胞信号传导,内分泌/糖尿病研究,自身免疫性疾病研究,激酶活性分析以及转录因子活性检测等诸多领域,为Luminex平台上研究提供了极大的方便。

7、提供最新分析软件xPONENT,充分发挥Luminex?200TM系统的高通量性能,软件特点:

a、模块化操作:开机/校准/关机/维护;

b、试剂设置方便,可下载商业化KLT;

c、预设磁珠校准程序,与磁珠应用兼容;

d、实时数据分析;

e、触摸屏操作,图形化界面,设置好PROTOCOL/STD,操作人员仅需通过触摸屏即可完成实

验操作;

f、用户界面友好的数据分析报告;

g、CFR Part 11 Compliant;

液相芯片检测系统介绍

液相芯片技术是20世纪90年代后期发展起来的被喻为后基因组时代的芯片技术。

液相芯片技术将流式检测技术与芯片技术有机地结合在一起,一方面大大延伸了流式检测平台,以微球体代替细胞作为反应载体,这个相当开放的反应体系可进行蛋白、核酸等等生物大分子的检测,不仅从细胞水平深入到分子水平,其检测范围也得到了前所未有的扩展;另一方面也使芯片技术取得重大的突破:在保持高通量检测的同时,将反应体系由液相-固相反应改变为接近生物系统内部环境的完全液相反应体系,对于确保建立在正确的高级结构之上的真实的蛋白质相互作用尤为关键。

迄今为止不到十年的时间,全球已有数百套基于此项技术(xMAP:flexible Multi-Analyte Profiling)的检测平台,用于蛋白质,免疫学等等领域的研究,临床诊断试剂的开发方面也发展迅速,自身免疫鉴别诊断试剂等已通过了FDA认证。

系统特点

珀金埃尔默公司CS 1000 Autoplex型液相芯片分析系统为目前最新升级的液相芯片分析系统,相当于Luminex 200,该系统也是目前液相芯片在100个分析指标体系仪器中的最新和顶级型号。CS 1000 Autoplex 整合微球双荧光标记和液流分散激光自动检测技术,自动实现核酸、酶、受体、抗体、抗原、小分子有机物等多通道高通量分析,是既能保证信息质量,又能提供相对高通量的新一代分子诊断技术平台。

该系统由CS 1000 Autoplex分析器、XY平台、CS 1000 SD鞘液传输系统、IS2.3软件以及电脑组成。该系统具备条形码阅读器,便于大量样品信息录入和实现实验室LIMS。珀金埃尔默公司自主开发的多维数据分析软件及其三套3加密钥匙,完全满足液相芯片上所有类型的数据分析要求,并且实验所得数据完全加密,具有不可更改的特征,由本仪器产生的数据具有法律效应。96孔金属加热板,不仅方便核酸操作时特异性杂交的要求,而且方便相关抗原抗体反应的进行。

CS 1000 Autoplex型液相芯片分析系统具备精密的机械校准功能,能使微孔板与XY平台的相对位置更为精确,且具有高度的自动化性能与检测速度。同时该系统具备新的样品针垂直校正旋钮保证用户可以自由校正样品针高度以适应不同类型微孔板–直接调整,无需专门工具或者专业工程师。新型空气压缩器提供工作高压,使仪器运行更稳定,噪音更小,检测数据重复性更高。

CS 1000 Autoplex型液相芯片分析系统具备的激光系统、液道和气道系统,利用微球双荧光标记和液流分散激光自动检测技术,自动实现核酸、酶、受体、抗体、抗原、小分子有机物的多通道高通量分析。样品约半分钟同时检测100 种目标分子,35 分钟读完一块96 孔板。主要特点:

?多功能性。xMAP 技术不仅能够检测核酸(DNA和RNA),还能够检测蛋白(抗体和抗原,受体和配体)。多任务性的能力使xMAP 技术特别适合在各种水平做鉴别诊断。

?高敏感性。每一个微球体偶联了成千上万的探针,因而它能捕获更多的扩增的病原靶产物。它最少能够检测到0.2μL的PCR产物,而采用常规的典型胶分析的方法需要超过10μl的PCR产物。所以xMAP方法的检测灵敏度可以比凝胶电泳法高50倍。

?特异性。两束激光分别分析杂交信号(敏感性)和乳胶微球上荧光颜色(特异性),而且激光只分析微球一定半径内的信息,所以检测特异性强,背景低。

?高通量。xMAP技术能够检测多达100个不同的分析物。

?小样本。只需要很少量的样本:如一般只需要几滴血就足够进行蛋白和核酸分析,对别的样本的需要量也很小。

?快速。一个采用xMAP 技术的典型检测反应不超过15分钟。

?准确。对于每一个待分析检测靶点,为了作统计学评估,系统读100个相同的颜色编码的微球体。

?成熟技术。在乳胶微球上共价结合蛋白和核酸的技术已经经过十多年的开发。xMAP 技术只是在原有技术基础上增加了荧光编码的技术。所以,与有待完善的固相芯片法相比,xMAP更成熟,更稳定。

?试剂开放。CS 1000 Autoplex型液相芯片分析系统无需任何仪器调整或者辅助试剂盒,直接与来自不同供应商的所有相关试剂(已有的或正在开发的)完全兼容,是原版的、完全开放的分析系统。

主要应用

CS 1000 Autoplex液相芯片系统是基于xMAPTM技术的微球分析平台,在此平台中可进行快速、灵敏可对单个样品进行多达100种不同指标的分析。可靠的自动化仪器,通用的试剂耗材以及顶尖级的技术支持为用户进行多重分析提供有力的保障。可以广泛应用于:

1. 微生物高通量检测;

2. 动植物病害检测,如禽流感、口蹄疫等;

3. 临床,如SARS、肿瘤标志物、HLA分型;

4. 基因表达分析;

以蛋白分析为例。液相芯片系统可用于多种基于结合反应的分析,如免疫分析,蛋白与蛋白分子相互作用分析(相互作用图谱),酶分析(如激酶分析),蛋白—DNA相互作用分析以及DNA杂交反应分析。

在单个样品中可同时进行多达100种的分析检测,从复杂的生物系统中提炼出清晰的分子相互作用图谱和过程控制。同时,样品体积数量可减少,而分析数据输出通量却大大提高。

芯片类检测:LuminexPLEXMAPBIOPLEX液相芯片检测

【嘉美实验】嘉美生物可提供Luminex、Mllipore的FLEXMAP和Bio-Rad的BioPlex液相芯片检测实验外包服务。Luminex的代表产品 Luminex 100/200以及新推出的Mllipore的FLEXMAP 3D TM 和Bio-Rad公司的BioPlex system都是基于xMAP技术原理,整合了荧光编码微球、激光检测、应用流体学、最新的高速数字信号和计算机运算法则等多项技术,真正实现了“高通量”检测,并荣获2005年度国际临床诊断技术革新奖。是唯一得到美国FDA批准的,也是唯一被纳入美国临床实验室质控网络的高通量诊断技术。被国际业界专家评价为临床诊断的趋势性技术之一。 Luminex\PLEXMAP\BIOPLEX的技术原理 Luminex\PLEXMAP\BIOPLEX的技术优势 高通量,高速度:每个微球作为单独的检测体,可同时进行大量的生物检测,只需要10~20 μl的样本量就可以一次检测多达100个指标(FLEXMAP 3D TM可多达500个指标),最快可达10000次测试/小时,真正实现了“高通量”与“高速度”。 多功能性:xMAP技术可以运用到多种生物检测中,包括免疫分析、基因分型、基因表达、酶分析等。既能检测蛋白,又能检测核酸。除了用于临床外,也能用于科研、CDC、血站、农业、生物及制药专业实验室等。 灵活性高:微球上可连接特异性的探针、抗原或抗体等来满足不同客户的需要。 灵敏度高:检测低限可达0.01pg/ml。 重复性好:类均相反应模式,每个指标有1000-5000个反应单元,分析100次取中位均值。 准确性高:检测范围达3.5-6个数量级,与ELISA和质谱分析具有很强的一致性。 成本低:流式荧光技术联检的试剂用量少,能有效降低临床应用的成本。

高效液相色谱仪(HPLC)校正方法

高效液相色谱仪(HPLC)校正方法 0.1输液系统: 0.1.1梯度误差G C不超过±3% 0.1.2泵流量设定值误差 S s<±2% 0.1.3流量稳定性误差 S R<±2% 0.2紫外检测器性能 0.2.1基线噪声不超过5×10-4AU,基线漂移不超过5×10-3AU 0.2.2定量测量重复性误差(6次进样)RSD≤1.5% 0.2.3最小检测浓度不超过1×10-7g/ml萘/甲醇溶液 0.2.4可调波长紫外可见光检测器波长示值不超过±2nm(HP1100高效液相色谱仪可由仪器自身完成) 1校正条件 1.1环境温度10-30℃,相对湿度低于65% 1.2校正设备 1.2.1秒表分度值小于0.1 s 1.2.2分析天平最大称量200g,最小分度值0.1mg 1.2.3容量瓶 1.2.4微量注射器 1.3标准物质和试剂 1.3.1HPLC用甲醇、纯水,分析纯的丙酮 1.3.21×10-4g/ml,1×10-7g/ml的萘甲醇溶液 1.3.3紫外波长标准溶液 2校正方法 2.1梯度误差G C的校正 2.1.1进行梯度洗脱程序,A溶剂为水,B溶剂为0.1%丙酮的水溶液,B经5个阶段从0变到100%, 20%—40%—60%—80%—100%,重复测量两次,取平均值,求各段梯度误差Gci,取最大作为仪器梯度误差,公式:Gci=(Li—Lm)/Lm×100% Li:第i段信号值的平均值; Lm :各段输出信号平均值的平均值 可接受标准: -3%≤Gci≤3% 2.2泵流量设定值误差Ss、流量稳定性误差S R的校正 2.2.1将仪器的输液系统、进样器、色谱柱和检测器联接好,以甲醇为流动相,按表一设定流量,待 流速稳定后,在流动相排出口用事先清洗称重过的容量瓶收集流动相,同时用秒表计时,准确的收集10-25

(完整版)集成电路设计复习题及解答

集成电路设计复习题 绪论 1.画出集成电路设计与制造的主要流程框架。 2.集成电路分类情况如何? 集成电路设计 1.层次化、结构化设计概念,集成电路设计域和设计层次 2.什么是集成电路设计?集成电路设计流程。 (三个设计步骤:系统功能设计逻辑和电路设计版 图设计) 3.模拟电路和数字电路设计各自的特点和流程 4.版图验证和检查包括哪些内容?如何实现? 5.版图设计规则的概念,主要内容以及表示方法。为什么需要指定版图设计规则? 6.集成电路设计方法分类? (全定制、半定制、PLD) 7.标准单元/ 门阵列的概念,优点/缺点,设计流程 8.PLD设计方法的特点,FPGA/CPLD的概念 9.试述门阵列和标准单元设计方法的概念和它们之间的异同点。 10.标准单元库中的单元的主要描述形式有哪些?分别在IC设计的什么阶段应用? 11.集成电路的可测性设计是指什么? Soc设计复习题 1. 什么是SoC? 2. SoC设计的发展趋势及面临的挑战? 3. SoC设计的特点? 4. SoC设计与传统的ASIC设计最大的不同是什么? 5. 什么是软硬件协同设计? 6. 常用的可测性设计方法有哪些? 7. IP 的基本概念和IP分类 8. 什么是可综合RTL代码? 9. 么是同步电路,什么是异步电路,各有什么特点? 10. 逻辑综合的概念。 11. 什么是触发器的建立时间( Setup Time ),试画图进行说明。 12. 什么是触发器的保持时间( Hold Time ),试画图进行说明。 13. 什么是验证,什么是测试,两者有何区别? 14. 试画图简要说明扫描测试原理。

绪论 1、画出集成电路设计与制造的主要流程框架。 2、集成电路分类情况如何? 双极型 数字模拟混合电路按应用领域分类 集成电路设计 1.层次化、结构化设计概念,集成电路设计域和设计层次分层分级设计和模块化设计.将一个复杂的集成电路系统的设计问题分解为复杂性较低的设计级别,集成电路MSI 按规模分 LSI 类VLSI ULSI GSI 数字电 按功能分类模拟电 路组合逻辑电路 路时序逻辑电路 路线性电路 路非线性电路 单片集成 按结构分类 混合集 成 SSI PMOS 电M路OS 型NMOS CMOS B iMOS B iMOS 型 B iCMOS 电 厚路膜混合集 成 电路 薄路膜混合集 成 电路

CFDA-20130104 生物芯片类检测试剂注册技术审查指导原则(食药监办械函[2013]3号附件)

附件5 生物芯片类检测试剂注册技术审查指导原则 一、前言 本指导原则主要针对生物芯片类检测试剂的主要原材料、生产工艺及反应体系、产品质量控制等环节提出指导性技术要求。 本指导原则系对生物芯片类检测试剂的一般要求,申请人应依据产品特性确定其中的具体内容是否适用,若不适用,需详细阐述其理由及相应的科学依据。 本指导原则是对申请人和审查人员的指导性文件,但不包括注册审批所涉及的行政事项,亦不作为法规强制执行,如果有能够满足相关法规要求的其他方法,也可以采用,但是需要提供详细的研究资料和验证资料。应在遵循相关法规的前提下使用本指导原则。 本指导原则是在现行法规和标准体系以及当前认知水平下制订的,随着法规和标准的不断完善、科学技术的不断发展,其相关内容也将进行适时的调整。 二、适用范围 根据芯片制作的主要原料和方法,生物芯片可分为核酸芯片、蛋白芯片、细胞芯片、组织芯片等。本指导原则是针对核酸和蛋白为检测靶分子生物芯片的注册技术审查指导原则,其他类型靶分子检测的芯片诊断试剂可参考本指导原则。 三、基本要求 (一)基本原则 1.试剂研制、生产用各种原料、辅料等应制定相应的质量标准,并符合有关法规的要求。

2.试剂生产企业应具备相应的专业技术人员、仪器设备以及适宜的生产环境,获得《医疗器械生产许可证》;同时,应按照《体外诊断试剂生产实施细则(试行)》的要求建立相应的质量管理体系,形成文件和记录,加以实施并保持有效运行;还应通过《体外诊断试剂生产企业质量管理体系考核评定标准(试行)》的考核。 3.生物芯片类试剂在研制时,应当按照科学、规范的原则组织研发,各反应条件的选择和确定应符合基本的科学原理。 4.试剂研制、生产过程中所用的物料及工艺,应充分考虑可能涉及的安全性方面的事宜。 5.生产和质量控制的总体目标:保证试剂使用安全、质量稳定、工艺可控、检测有效。 (二)原材料质量控制 1.核酸检测芯片 核酸芯片检测时,从生物样本中提取的核酸可用荧光标记、金标记和酶标记;检测方法包括光谱学方法和化学显色。下面为荧光标记芯片技术指导原则,采用金标记和酶联显色等的生物芯片诊断试剂可参照核酸芯片和蛋白芯片相关部分。 (1)主要生物原料 核酸检测芯片的主要生物原料包括模板DNA、dNTPs、引物、探针、标记物等。主要生物原料若为企业自己生产,其工艺必须相对稳定,企业应按照工艺要求对这类生物原料进行质量检验,以保证其达到规定的质量标准;若购买,其供应商要求相对固定,不能随意变更供应商,同时,供应商应提供相应的质量保证证明和相应的质检报告,达到生产规定的质量标准。如果主要原料(包括工艺)或其供应商有变更,应依据国家相关法规的要求进行变更申请。

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

集成电路基本概念共9页

IC集成电路基本概念 1. 根据工艺和结构的不同,可将IC分为哪几类? 根据工艺和结构的不同,可将IC分为三类: ①半导体IC或称单片(Monolithic)IC,②膜IC,又可分为两种:厚膜电路,薄膜电路;③混合IC(Hybrid IC) 按器件结构类型分类:双极集成电路,金属-氧化物-半导体(MOS)集成电路。 2. 用哪些技术指标描述集成电路工艺技术水平? 描述集成电路工艺技术水平的五个技术指标:集成度,特征尺寸,芯片面积,晶片直径,封装。 3. 为什么数字IC和模拟IC划分集成电路规模的标准不同? 因为数字IC中重复单元很多,而模拟IC中基本无重复单元。 4. 集成电路是哪一年由谁发明的?哪一种获得Nobel物理奖? 1958年以德克萨斯仪器公司的科学家基尔比(Clair Kilby)为首的研究小组研制出了世界上第一块集成电路,并于1959年公布了该结果。获得2000年Nobel物理奖。 5. 为什么实现社会信息化的网络及其关键部件不管是各种计算机和/或通讯机,它们的基础都是微电子? 因为其核心部件是集成电路。几乎所有的传统产业与微电子技术结合,用集成电路芯片进行智能改造,都可以使传统产业重新焕发青春。电子装备更新换代都基于微电子技术的进步,其灵巧(Smart)的程度都依赖于集成电路芯片的“智慧”程度和使用程度。

6. 采用哪些途径来提高集成度? 提高微细加工技术;芯片面积扩大;晶圆大直径化;简化电路结构7. 21世纪硅微电子芯片将沿着哪些方向继续向前发展? 1)特征尺寸继续等比例缩小,沿着Moore定律继续高速发展; 2)片上芯片(SOC):微电子由集成电路向集成系统(IS)发展; 3)赋予微电子芯片更多的“灵气” :微机械电子系统(MEMS)和微光电机系统(MOEMS),生物芯片(biochip); 4)硅基的量子器件和纳米器件。 8. 对如下英文单词或缩写给出简要解释: IC集成电路(Integrated Circuit,IC) SSI小规模集成电路(Small Scale IC,SSI) MSI中规模集成电路(Medium Scale IC,MSI) LSI大规模集成电路(Large Scale IC,LSI) VLSI超大规模集成电路(Very Large Scale IC,VLSI) ULSI特大规模集成电路(Ultra Large Scale IC,ULSI) GSI巨大规模集成电路(Gigantic Scale IC,GSI) Wafer晶圆片,Foundry 标准工艺加工厂或称代客加工厂 IDM 集成器件制造商(IDM—Integrated Device Manufactory Co.), IP core 知识产权核,fabless co. 无生产线公司(集成电路设计公司),chipless co. 无芯片公司(开发知识产权核公司),mp 微处理机,DSP 数字信号处理,E2PROM 电可擦除可编程唯读存储器,Flash快闪存储器,A/D 模数转换,D/A 数模转换,SOI 绝缘衬底的硅薄膜(Silicon

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关; 蒸发光散射检测器和示差折光检测器为通用型检测器, 对所有物质均有响应,结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一 定范围内呈线性关系, 但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。 紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求; 采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。 蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 (3)流动相

集成电路-微电子-学习中概念解释

1:SOI(Silicon-On-Insulator,绝缘衬底上的硅)技术是在顶层硅和背衬底之间引入了一层埋氧化层。通过在绝缘体上形成半导体薄膜,SOI材料具有了体硅所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS 电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势,因此可以说SOI将有可能成为深亚微米的低压、低功耗集成电路的主流技术。通常根据在绝缘体上的硅膜厚度将SOI分成薄膜全耗尽FD(Fully Depleted)结构和厚膜部分耗尽PD(Partially Depleted)结构。由于SOI的介质隔离,制作在厚膜SOI结构上的器件正、背界面的耗尽层之间不互相影响,在它们中间存在一中性体区,这一中性体区的存在使得硅体处于电学浮空状态,产生了两个明显的寄生效应,一个是"翘曲效应"即Kink 效应,另一个是器件源漏之间形成的基极开路NPN寄生晶体管效应。如果将这一中性区经过一体接触接地,则厚膜器件工作特性便和体硅器件特性几乎完全相同。而基于薄膜SOI结构的器件由于硅膜的全部耗尽完全消除"翘曲效应",且这类器件具有低电场、高跨导、良好的短沟道特性和接近理想的亚阈值斜率等优点。因此薄膜全耗尽FDSOI应该是非常有前景的SOI结构。 目前比较广泛使用且比较有发展前途的SOI的材料主要有注氧隔离的SIMOX(Seperation by Implanted Oxygen)材料、硅片键合和反面腐蚀的BESOI(Bonding-Etchback SOI)材料和将键合与注入相结合的Smart Cut SOI材料。在这三种材料中,SIMOX适合于制作薄膜全耗尽超大规模集成电路,BESOI 材料适合于制作部分耗尽集成电路,而Smart Cut材料则是非常有发展前景的SOI 材料,它很有可能成为今后SOI材料的主流。 2:速度过冲 Velocity overshoot effect (1)基本概念: 速度过冲效应(Velocity overshoot effect)是半导体载流子在强电场作用下所产生的一种瞬态输运现象。另外一种重要的瞬态输运现象是弹道输运。速度过冲效应所表现出来的效果就是载流子的漂移速度超过正常的定态漂移速度。这种效应对于小尺寸器件以及化合物半导体器件等的性能的影响比较大,可有效地提高器件的工作频率和速度。与速度过冲相对应的一种瞬态输运现象是速度下冲,即是突然去掉强电场时所产生的漂移速度低于定态速度的一种现象。(2)产生机理: 产生速度过冲的原因就在于半导体中载流子的动量弛豫时间远小于其能量弛豫时间,这实际上也就意味着,在强电场作用下,载流子能够很快地获得很大的动量,而相应地较难于获得很高的能量。这是由于载流子在强电场作用下获得动量的机理与获得能量的机理不同所致。由于晶体中能够提供能量和动量的客体通常是声学波声子和光学波声子,而一般声学波声子的动量较大、能量较小,光学波声子的能量较大、动量较小,所以在强电场作用下,载流子所获得的动量主要是来自于声学波声子,而所获得的能量则主要是来自于光学波声子。因为载流子从声学波声子处获得动量的速度要大于从光学波声子处获得能量的速度,所以在强电场作用下,载流子即会很快地通过与声学波声子的散射而获得动量、并达到很大的漂移速度,而与此同时其能量却可能仍然将处于原来较低的状态,需要通过较长一段时间才能达到相应的较高能量的状态;于是,这时载流

集成电路运算放大器的定义

第四章集成运算放大电路 第一节学习要求 第二节集成运算放大器中的恒流源 第三节差分式放大电路 第四节集成电路运算放大器 第五节集成电路运算放大器的主要参数 第六节场效应管简介 第一节学习要求 1. 掌握基本镜象电流源、比例电流源、微电流源电路结构及基本特性。 2. 掌握差模信号、共模信号的定义与特点。 3. 掌握基本型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。 4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。会计算A VD、R id、 R ic、 R od、 R oc、K CMR。 5.熟悉运放的主要技术指标及集成运算放大电路的一般电路结构。 学习重点:

掌握集成运放的基本电路的分析方法 学习难点: 集成运放内部电路的分析 集成电路简介 集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。 集成电路在结构上的特点: 1. 采用直接耦合方式。 2. 为克服直接耦合方式带来的温漂现象,采用了温度补偿的手段 ----输入级是差放电路。 3. 大量采用BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。 4. 采用复合管接法以改进单管性能。 集成电路分为数字和模拟两大部分。 返回 第二节集成运算放大器中的恒流源 一、基本镜象电流源

电路如图6.1所示。T1,T2参数完全相同,即 β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2 当β>>2时, 式中I R=I REF称为基准电流,由上式可以看出,当R确定后,I R就确定,I C2也随之而定,我们把I C2看作是I R的镜像,所以称图6.1为镜像恒流源。 改进电路一:

液相芯片

液相芯片技术及其临床应用 生物芯片主要包括基因芯片和蛋白芯片两大类,按寻址方式和最终检测载体又可分为固相芯片(flat microarrays)和液相芯片(1iquid chip or microsphere arrays)。近年来,液相芯片以其独特的优点及临床实用性,正受到越来越多的重视。现就液相芯片的技术原理、特点及临床应用前景作简要介绍。 【摘要】液相芯片技术是一种利用混悬在液相中的分类编码微球作为反应及信号检测载体的检测技术,它充分利用发展成熟的流式细胞术检测原理,对临床大多数生物分子(如核酸、蛋白质等)进行高通量分析。目前已在研究和临床检测中得到了广泛的应用,现就其技术原理、特点及临床应用作简要介绍。 【关键词】芯片分析技术流式细胞术 生物芯片主要包括基因芯片和蛋白芯片两大类,按寻址方式和最终检测载体又可分为固相芯片(flat microarrays)和液相芯片(1iquid chip or microsphere arrays)。近年来,液相芯片以其独特的优点及临床实用性,正受到越来越多的重视。现就液相芯片的技术原理、特点及临床应用前景作简要介绍。 液相芯片技术原理 1.微球编码与反应原理:固相芯片通过空间位置寻址来识别不同点阵元素(即区别不同的特异性反应),液相芯片则通过反应载体——微球所具有的物理、光学信号(如大小或颜色)来识别点阵元素?。液相芯片技术是一种以经过特殊编码、可识别的微球(encoded microspheres or beads)作为生物分子(抗原、抗体、蛋白质、核酸等)反应及信号检测载体的阵列分析技术。液相芯片采用的分子杂交反应类型与固相芯片类似,只是所有的反应在混悬于液相中的微球表面上进行,故也称为悬浮式点阵技术(suspension array technology,SAT)。 SAT技术主要包括点阵信号识别和检测信号识别两部分,现以临床最常用的双位点夹心法来说明液相芯片的基本技术原理。SAT主要由微球、探针分子(A)、被检测物(B)、报告分子(c)4个部分构成。 微球的主要化学成分为聚苯乙烯,其表面修饰的羧基功能基团在一定条件下可以共价结合任何含有氨基的目标分子,对其表面进行不同的化学结构修饰,可使结合的目标分子更具选择性。将微球采用物理或化学方法进行编码分类,不同编码类别的微球即可区分不同的特异性反应。微球编码方式多种多样],如微球大小、颜色、荧光金属纳米技术等,其中最常用的是荧光编码技术,即在制备过程中掺人两种或多种不同颜色分类荧光分子,根据加入比例不同将同种大小的微球进行独特编码。 探针分子是可以和微球表面的羧基等基团偶联并能与被检测物特异性结合的生物分子。报告分子的作用是为每种不同的特异性反应提供检测信号,其可以是一种能与被检测物特异性结合的荧光染料,也可以是标记有荧光的、能与被检测物结合的其他物质(如抗体、抗原、核酸等)。为了和微球分类荧光有明显区别,一般以绿色荧光作为报告分子的标记荧光,任何一种可以激发绿色荧光的荧光染料均可作为报告分子的荧光标记物。 将不同编码类别的微球分别与不同的探针分子反应结合后,混合在一起,再依次加入样品及报告分子,不同微球上的探针分子与样品中需要检测的各种目标分子进行特异性结合,报告分子与目标分子特异性结合,即构成了一个液相芯片系统。因此,可在同一混悬体系中对同一样品中的多种目标分子进行同时分析。 2.检测原理:微球编码技术不同,信号的检测方式也各不相同。流式细胞术是目前应用最广、技术最成熟的一种信号识别和检测技术。 微球单个逐一通过检测通道时受到双色激光(如红色和绿色)同时照射,第一束激光激发微球的分类荧光,根据荧光编码确定微球的类别,即微球内部的两种荧光物质受激发后可发射两种不同波长的荧光,不同类别微球内这两种荧光物质比例不同,则荧光强度比率也不同,从而将不同的特异性反应区分开来(定性、分类);第二束激光激发报告分子

生物芯片类试剂生产及质量控制技术

附件6: 体外诊断试剂生产及质量控制技术指导原则——生物芯片类试剂生产及质量控制技术指导原则 (征求意见稿) 前言 本指导原则所定义的生物芯片诊断试剂是指将多个生物探针(包括DNA片段,寡核苷酸、抗原、抗体,组织,细胞等)按预先设计的排列方式固定在特制的基质(包括玻璃片,尼龙膜,硝酸纤维素膜等)上,用特定的方法提取生物靶分子并进行标记,然后与固定在基质上的生物探针特异性的结合,再用相应的检测设备(如激光扫描仪、CCD检测仪等)和分析方法(包括软件)进行检测、记录、分析,实现对生物靶分子的定性或定量检测的试剂。 根据芯片制作的主要原料和方法,生物芯片可分为核酸芯片、蛋白芯片、细胞芯片、组织芯片、芯片实验室等。本指导原则是针对核酸和蛋白为检测靶分子生物芯片的生产及质量控制技术指导原则,其它类型靶分子检测的芯片诊断试剂可参考本指导原则。 由于生物芯片技术还在不断发展,国家食品药品监督管理部门可依据科学技术发展的需要,适时组织对本指导原则进行修订。 一、基本原则 (一)生物芯片诊断试剂生产用的物料包括:原料,辅料和包装材料。各种物料应当制定相应的质量指标,并应符合有关法规的要求。 (二)生物芯片诊断试剂的生产企业应具备相应的专业技术人员,相适应的仪器设备和生产环境,获得《医疗器械生产许可证》;应当按照《体外诊断试剂生产实施细则(试行)》的要求建立相应的质量管理体系,形成文件和记录,加以实施并保持有效运行;应当通过《体外诊断试剂生产企业质量管理体系考核评定标准(试行)》的考核。

(三)生物芯片诊断试剂的研制应当按照科学、规范的原则组织研发,各反应条件的选择和确定应符合基本的科学原理。 (四)生物芯片诊断试剂生产过程中所用的物料及工艺,应充分考虑可能涉及的安全性方面的事宜。 二、物料质量控制 (一)核酸检测芯片 核酸芯片检测时,从生物样本中提取的核酸可用荧光标记、金标记和酶标记。检测方法包括光谱学方法和化学显色。下面为荧光标记芯片技术指导原则,采用金标记和酶联显色等的生物芯片诊断试剂可参照核酸芯片和蛋白芯片相关部分。 1、主要生物原料 核酸检测芯片的主要生物原料包括模板DNA、dNTPs、引物、探针、标记物等。应按照工艺要求对这类生物原料进行质量检验,以保证其达到规定的质量标准。主要生物原料的供应商要求相对固定,不得随意变更供应商。 (1)模板DNA 重组DNA:经测序验证,关键位置没有错误。1×TE溶解,浓度为1μg/μl以上,-20℃保存。 (2)dNTPs(dATP/dUTP/dGTP/dCTP/dTTP) HPLC纯,PCR级,无DNase、RNase污染。-20℃以下保存。外购者,由生产厂家提供质量保证证明,达到生产要求。 (3)引物 序列确证;进行PCR扩增后,克隆测序鉴定验证,建立引物标准品。生产中的引物原材料为冻干粉,PAGE纯或HPLC纯,外购者,供应商应提供该产品的质检证明,如PAGE电泳结果或HPLC分析图谱;自己合成的引物,需有PAGE

0512高效液相色谱法

0512 高效液相色谱法 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 1. 对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基硅烷键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2~8之间。烷基硅烷带有立体侧链保护、或残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。

Merck Millipore-液相芯片技术在肿瘤检测和研究中的应用

Milliplex/Luminex液相芯片技术在肿瘤检测和研究的应用 前言 目前,肿瘤标志物的研究与应用已成为肿瘤防治的重点和热点。但当前肿瘤标志物检测能否达到早期诊断的效果?有无在人群中进行普查或筛查的价值?其临床意义如何解释?怎样规范与合理应用?尚存在诸多争议。为此,中华医学会检验医学分会肿瘤标志物专家委员会,在2002年至2004年分别召开3次专家研讨会,起草制订了“肿瘤标志物临床检测的基本原则(建议稿) ”对以上问题进行了解释。本文主要从以下几个方面进行介绍: ●肿瘤标志物临床检测的基本原则 ●肿瘤标志物的检测指标 ●肿瘤标志物的高危人群检测项目 ●肿瘤血管的形成 ●慢性炎症与肿瘤微环境 ●趋化因子与肿瘤微环境 ●液相芯片技术原理 ●Milliplex肿瘤微环境相关试剂盒介绍 ●肿瘤微环境与肿瘤标记应用的相关文献 一、肿瘤标志物临床检测的基本原则 肿瘤标志物( TM) 是指在恶性肿瘤发生和增殖过程中,由肿瘤细胞的基因表达而合成分泌的或是由机体对肿瘤反应而异常产生和/ 或升高的,反映肿瘤存在和生长的一类物质,包括蛋白质、激素、酶(同工酶) 、多胺及癌基因产物等。TM 存在于病人的血液、体液、细胞或组织中,可用生物化学、免疫学及分子生物学等方法测定,且对肿瘤的辅助诊断、鉴别诊断、观察疗效、监测复发以及预后评价具有一定的价值。 TM在肿瘤监测中的价值:TM的主要临床应用价值是判断治疗肿瘤治疗疗效和复发监测。临床可通过对肿瘤患者治疗前后及随访中TM浓度变化的监测,了解肿瘤治疗是否有效,并判断其预后,为进一步治疗提供参考依据。为确定何种TM适用于对肿瘤患者进行治疗监测,在患者治疗前应做相关TM检测。 TM浓度变化对肿瘤的疗效判断价值:恶性肿瘤治疗后TM浓度的变化与疗效之间有一定的相关性。治疗前TM浓度变化,常有三种类型:①TM浓度下降到参考范围,提示肿瘤治疗有效。②TM浓度下降但仍持续在参考范围以上,提示有肿瘤残留和/ 或肿瘤转移。 ③TM浓度下降到参考范围一段时间后,又重新升高,提示肿瘤复发或转移。 TM的定期随访原则:恶性肿瘤治疗结束后,应根据病情对治疗前升高的TM作定期随访监测。不同的TM半衰期不同,所以监测的时间和周期也不同。大部分国内外专家建议,治疗后6 W做首次测定,3年内每3月测定一次;3~5 年每半年一次,5~7 年每年一次。随访中如发现有明显升高,应1 月后复测一次,连续2次升高,可预示复发或转移。此预示常早于临床症状和体征,而有助于临床及时处理。 TM 的联合检测原则:同一种肿瘤或不同类型的肿瘤可有一种或几种TM异常;同一种TM可在不同的肿瘤中出现。为提高TM 的辅助诊断价值和确定何种TM可作为治疗后的随访监测指标,可进行联合检测,但联合检测的指标须经科学分析、严格筛选。在上述前提下,合理选择几项灵敏度、特异性能互补的TM 构成最佳组合,进行联合检测。经过临床应用,以循证医学的观点来评价和修改联合检测的TM 组合。 二、肿瘤标志物的检测指标 每年全球癌症死亡人数约为700万人,其中24%发生在中国。中国癌症患者的生存患者和治愈患者仅为13%,肿瘤防治水平远低于世界平均水平。世界卫生组织作出最新权威

高效液相色谱法概述

高效液相色谱法概述 摘要:本文概述了高效液相色谱的产生、发展,分类、应用、存在问题及发展前景。 关键词:高翔液相色谱、分类、应用 高效液相色谱(high performance liquid chromatography,HPLC) 是利用高压输液泵驱使流动相通过装填固定相的色谱柱,按照固液相之间的分配机制对混合物进行分离的方法。 一、高效液相色谱的产生及发展 在过去三十多年里, HPLC 已经成为一项在化学科学中最有优势的仪器分析方法之一, 1994年, HPLC 的市场销售量是14亿美元, 就是一个较好的证据。现在, HPLC 几乎能够分析所有的有机、高分子及生物试样。、 1941年, 马丁( Matin) 和辛格( Synge) 用一根装满硅胶微粒的色谱柱, 成功地完成了乙酰化氨基酸混合物的分离, 建立了液液分配色谱方法, 他们也因此获得了1952年诺贝尔化学奖。从此开启了色谱技术的发展,紧接其后的塔板理论、速率理论的建立,使得色谱技术和理论得到了迅速的发展。 HPLC 的第一个雏形是由斯坦因( Stein) 和莫尔( Moo re) 于1958年发展起来的氨基酸分析仪( AAA) , 这种仪器能够进行自动分离和蛋白质水解产物的分析, 由于这种研究的重要性, 别的研究者也被吸引来进行这一方面的重要课题的研究, 最终直接促成了HPLC 方法的建立。在此期间, 哈密顿( Hamiton) 在柱效率和选择性方面的成就而使得他的工作特别有价值。在六十年代早期的相关进展是莫尔( Moo re) 发展起来的凝胶渗透色谱( GPC) 。不久以后, 华特斯(Waters) 有限公司制造了商业GPC 仪, 这种仪器经过微小的改进之后可用于HPLC 分离。在1968~1971年间, 推出了第一台普遍适用的HPLC 商用系统。1971年以后, 对映体( 手性异构体) 和大生物分子如蛋白质的HPLC 分离逐步建立起

1、液相芯片的概念

1、液相芯片的概念 液相芯片,又称悬浮阵列、流式荧光技术,是基于美国Luminex 公司研制的多功能流式点阵仪(Luminex 100TM)开发的多功能生物芯片平台,通常用于免疫分析、核酸研究、酶学分析、受体和配体识别分析等研究。也是目前唯一得到权威机构和医学界共同认可用于临床诊断的生物芯片平台。液态芯片是一种全新概念的生物芯片。该技术的核心是把微小的聚苯乙烯小球(5.6um)用荧光染色的方法进行编码,然后将每种颜色的微球(或称为荧光编码微球)共价交联上针对特定检测物的探针、抗原或抗体。应用时,先把针对不同检测物的编码微球混合,再加入微量待检样本,在悬液中靶分子与微球表面交联的分子进行特异性地结合,在一个反应孔内可以同时完成多达100种不同的生物学反应。最后用LuminexTM分析软件进行分析,仪器通过两束激光分别识别编码微球和检测微球上报告分子的荧光强度。因为分子杂交或免疫反应是在悬浮溶液中进行,检测速度极快,而且可以在一个微量液态反应体系中同时检测多达100个指标。 2、液相芯片的优势 (1)一次检测,100个指标; (2)既能检测蛋白,又能检测核酸; (3)既能用于临床,又能用于科研。 3、液相芯片的应用 (1)DNA杂交分析 SNP检测 基因表达谱分析 (2)免疫学分析 免疫分析 受体-配体分析

酶分析 蛋白质-蛋白质相互作用分析 蛋白质-DNA相互作用分析 4、应用实例 Liquichip液相系统是一个高度灵活的多元分析平台,可以适用于学研究,临床研究和药物研究中的各种蛋白质分析。 美国圣祖德儿童研究医院的Dr. Richard等人,使用液相对100μL样本中的15种不同的细胞因子同时进行了精确的定量测定。结果说明在T辅助细胞1型与2型中,某些细胞因子的表达量有显著差异。在测定过程中,Dr. Richard将15种不同的细胞因子的抗体分别标记在15种不同的球形基质上,混合后加入到一个反应体系中,对同一样本中的15种细胞因子进行测定。同时用ELISA的方法,分别对15种细胞因子进行检测。将两组结果进行对比后发现,趋势基本上一致,但是液相可同时对多个分子进行检测,同时灵敏度和可靠性更好,操作更为简单。这样只需要使用微量的样品,在较短的时间内,就可以得到所需的数据。 Luminex 是多功能的液相芯片分析平台,适用于免疫分析、核酸研究、酶学分析、受体和配体识别分析等研究。Luminex有机地整合了有色微球(color-coded microphere or beads)、激光技术、应用流体学、最新的高速数字信号处理器和计算机运算法则,造就了Luminex液相芯片系统无与伦比的检测特异性和灵敏度。Luminex液相芯片分析平台其卓越的产品性能与广阔的应用前景使得它成为众多生命科学研究单位的首选! Luminex?200TM是在己有的数千台Luminex?100TM的基础之上,为满足临床与科研工作中的多种高通量检测而开发的新一代系统。和以往的Luminex?100TM相比, Luminex?200TM操作更简单方便,检测运行更稳定可靠。做出的改进包括更为方便的样品针调节旋钮,更精密的XYP机械校准功能以及高性能的空气压缩机等等。 整个系统包括:

高效液相色谱法的主要类型及其分离原理

高效液相色谱法的主要类型及其分离原理 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液—液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度;Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液—液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液—液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。

第十七章_集成电路的种类

第十七章集成电路的种类 概述 集成电路是由晶体管器件连线构成的。在电子工具和机器中,集成电路可以完成各种不同的功能。本章将对通用的电路类型及其功能做出解释。 目的 完成本章后您将能够: 1.解释二进制数字的概念。 2.列出三种主要集成电路的功能。 3.比较模拟电路和数字逻辑电路的基本原理。 4.逻辑栅阵列和PAL电路的使用和产品优点。 5.解释两种主要存储电路类型。 6.列出四种非易失性存储器电路。 7.比较动态随机存储器(DRAM)和静态随机存储器(SRAM)存储电路的工作状 况和价格因素。 介绍 半导体工业的主要产品是集成电路。使用本书描述的工艺过程可以制造无数数量和类型的电路。集成电路(IC)的主要生产厂家比如National半导体和摩托罗拉,他们生产的电路种类的目录就象纽约的电话号码簿一样浩如烟海。而象IBM, 估计他们内部的电路分类列表要超过50000个单独的电路。 要熟悉如此之多的集成电路并不意味着一定会是一件可怕的工作。实际上,大多数电路按其特定的设计原理和功能可以被划分为三种基本类型:逻辑电路,存储电路和微处理器(逻辑和存储)(图17.1)。电路的多样性主要来自于所需的大量特殊用途参数的转变。 本章将就主要功能的电路种类及其设计做出解释。在最后一部分,我们将从当今工业的前景展望IC电路的未来。我们仅能想象电路到2010年会是什么样子,就象在1950年,没有人能预测兆位RAM或者微处理器。 电路基础 关于集成电路实际如何工作的问题不在本文讨论。但是所有的电路都是以二进制代码的数值处理作为基础的。二进制数是由两个数-----零和一来表示所有的数值。它实际上是一个明了位置和数字组成值的计数系统。数字可以由数的和来表示。例如: 1= 1 + 0

相关文档
最新文档