超几何和二项分布概率模型总结

超几何和二项分布概率模型总结
超几何和二项分布概率模型总结

高考理科数学知识归纳——概率

一.离散型随机变量的期望(均值)和方差

X

1x 2x … n x

P

1p

2p

n p

1. 其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称112

2...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ.数学期望 ()E X =1122...n n x p x p x p +++ 性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数)

2. 2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值

μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()D X 或2σ.

方差2221122()()...()n n DX x p x p x p μμμ=-+-++-

2.方差公式也可用公式22221()()n

i i i D X x p EX EX μ==-=-∑计算.

3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()D X 的算术平方根称为X 的标准差,即

()D X σ=.

1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。

X -1 0

1 P

9

5

对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,不合格品数X X 0

1

2

… l

P

0n M N M

n

N

C C C - 11n M N M

n

N

C C C -- 22n M N M

n

N

C C C -- …

l n l M N M

n

N

C C C -- 其中min(,)l n M =

一般地,若一个随机变量X 的分布列为()r n r M N M

n

N

C C P X r C --==, 其中0r =,1,2,3,…,l ,min(,)l n M =,则称X 服从超几何分布,记为(,,)X H n M N :,

并将()r n r M N M

n

N

C C P X r C --==记为(;,,)H r n M N . 1.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.现一次从中摸出5个球,

(1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率. (2)若至少摸到3个红球就中奖,求中奖的概率.

解:由2

从而

2584807585503800700425

()012345 1.66672375123751237512375123751237513

E X =?

+?+?+?+?+?=≈

答:X 的数学期望约为1.6667.

2. 在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:(I )取出

的3件产品中一等品件数X 的分布列和数学期望;

(II )取出的3件产品中一等品件数多于二等品件数的概率。

三.二项分布

1.n 次独立重复试验

一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与

A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。

(1)独立重复试验满足的条件 第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。

(2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k

n C p p --。

2.二项分布

若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==L 则称X 服从参数为

,n p 的二项分布,记作(,)X B n p :。

1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。

2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相

互独立的,并且概率都是

3

1. (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.

3.甲乙两人各进行3次射击,甲每次击中目标的概率为

21,乙每次击中目标的概率为3

2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望;

(2)求乙至多击中目标2次的概率;

(3)求甲恰好比乙多击中目标2次的概率.

【巩固练习】

1.已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取

(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ).

2.甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3

次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为1

2

,且各次投篮互不影响. (Ⅰ) 求甲获胜的概率;

(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望

3.设篮球队A 与B 进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B 在每场比赛中获胜的概率都是

1

2

,试求需要比赛场数的期望.

3.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.

下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.

(Ⅰ)根据已知条件完成下面的22 列联表,并据此资料你是否认为“体育迷”与性别 有关?

(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽

样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X .

A

B C 60?

5.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知

某选手能正确回答第一、二、三轮的问题的概率分别为54、53、5

2

,且各轮问题能否正确回答互不影响.

(Ⅰ)求该选手被淘汰的概率; (Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)

6. 一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数ξ的概率分别布. (1)每次取出的产品不再放回去; (2)每次取出的产品仍放回去;

(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.

7.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx+c=0实根的个数(重根按一个计).

(I )求方程x 2+bx+c=0有实根的概率 (II )求ξ的分布列和数学期望;

8.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一

次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

(I )若某位顾客消费128元,求返券金额不低于30元的概率; (II )若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元),求随机变量X 的分布列和数学期望.

湖北理工学院湖北师范学院

9

9 650

7 2

1 15

16

17

18

19

89

12589

34 6

0 1

9.中国?黄石第三届国际矿冶文化旅游节将于2012年8月20日在黄石铁山举行,为了搞好接待工作,组委会准备在湖北理工学院和湖北师范学院分别招募8名和12名志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm)

若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有湖北师范学院的“高个子”才能担任“兼职导游”。

(1)根据志愿者的身高编茎叶图指出湖北师范学

院志愿者身高的中位数;

(2)如果用分层抽样的方法从“高个子”和“非

高个子”中抽取5人,再从这5人中选2人,那么至少

有一人是“高个子”的概率是多少?

(3)若从所有“高个子”中选3名志愿者,用ξ表

示所选志愿者中能担任“兼职导游”的人数,试写出ξ

的分布列,并求ξ的数学期望。

10.某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准

(I)已知甲厂产品的等级系数X1的概率分布列如下所示:

1

x 5 6 7 8

P 0.4 a b 0.1

且X1的数字期望EX1=6,求a,b的值;

(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:

3 5 3 3 8 5 5 6 3 4

6 3 4

7 5 3 4

8 5 3

8 3 4 3 4 4 7 5 6 7

用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.

11. 受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,

某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:

将频率视为概率,解答下列问题:

(I )从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率; (II )若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的

利润为2X ,分别求1X ,2X 的分布列;

(III )该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经

济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由。

巩固练习答案

1.【解析】本题主要考察分布列,数学期望等知识点.

(Ⅰ) X 的可能取值有:3,4,5,6. 35395(3)42C P X C ===; 21543

920

(4)42C C P X C ===; 12543915(5)42C C P X C ===; 3

439

2

(6)42C P X C ===. 故,所求X 的分布列为

X 3

4

5

6

P

5

42

20104221

= 1554214

= 214221

= (Ⅱ) 所求X 的数学期望E (X )为: E (X )=6

4

13()3

i i P X i =?==

∑. 2.解:设,k k A B 分别表示甲、乙在第k 次投篮投中,则()13k P A =

,()1

2

k P B =, ()1,2,3k ∈ (1)记“甲获胜”为事件C,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知,()()()()

111211223P C P A P A B A P A B A B A =++

()()()()()()()()

()111211223P A P A P B P A P A P B P A P B P A =++ 2

2

1211211

3323323

????=+??+?? ? ????? 11113392727=++

= (2)ξ的所有可能为:1,2,3

由独立性知:()()()

1111212

13323

P P A P A B ξ==+=

+?= ()()()

2

2

1121122211212

2323329

P P A B A P A B A B ξ????==+=??+=

? ?????()(

)

2

2

1122211

3329

P P A B A B ξ????==== ? ????? 综上知,ξ有分布列

从而,1233999

E ξ=?+?+?=(次)

3. 解:(1)事件“4X =”表示,A 胜4场或B 胜4场(即B 负4场或A 负4场),且两两互斥.

4400

044411112(4)()()()()222216

P X C C ==??+??=;

(2)事件“5X =”表示,A 在第5场中取胜且前4场中胜3场,或B 在第5场中取胜且前4场中

胜3场(即第5场A 负且4场中A 负了3场),且这两者又是互斥的,所以

33431141441111114(5)()()()()22222216

P X C C --==+=

(3)类似地,事件“6X =”、 “7X =”的概率分别为

33532252551111115(6)()()()()22222216P X C C --==+=33633363661111115

(7)()()()()22222216

P X C C --==+=

比赛场数的分布列为

X 4

5 6 7

P 216

416 516 5

16

故比赛的期望为2455

()4567 5.812516161616

E X =?+?+?+?=(场)

这就是说,在比赛双方实力相当的情况下,平均地说,进行6场才能分出胜负.

4.(I)由频率颁布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:

由2×2列联表中数据代入公式计算,得:

因为3.030<3.841,所以,没有理由认为“体育迷”与性别有关.

(II)由频率颁布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为

1

4

,由题意, ,从而X 的分布列为:

5.(Ⅰ)解法一:记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,

,, 则14()5P A =

,23()5P A =,32

()5

P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++

142433101

555555125

=+?+??=

. (Ⅰ)解法二:记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,

,, 则14()5P A =,23()5P A =,32

()5

P A =.

∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-432101

1555125

=-??=.

(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428

(2)()()()5525P P A A P A P A ξ====?=

, 12124312

(3)()()()5525

P P A A P A P A ξ====?=.

ξ∴的分布列为

ξ 1 2 3

P

15 825 1225

1812571235252525

E ξ∴=?+?+?=

. 6.(1)X 的所有可能值为1,2,3,4。X 的分布列P(X=1)=7/10 P(X=2)=3/10×7/9=7/30, P(X=3)=3/10×2/9×7/8=7/120 P(X=4)=3/10×2/9×1/8=1/120。 (2)X 的所有可能值为1,2,3,4。X 的分布列为P(X=k)= 137

(

).1010

k - ,k=1,2,3,…… (3)X 的所有可能值为1,2,3,4。X 的分布列为P(X=1)=7/10,P(X=2)=3/10×8/10=6/25, P(X=3)=3/10×2/10×9/10=27/500,P(X=4)=3/10×2/10×1/10=3/500。

7. 解:(I )由题意知,本题是一个等可能事件的概率,试验发生包含的基本事件总数为6×6=36,

满足条件的事件是使方程有实根,则△=b 2-4c≥0,即b≥2

c

下面针对于c 的取值进行讨论当c=1时,b=2,3,4,5,6;当c=2时,b=3,4,5,6;当c=3时,b=4,5,6; 当c=4时,b=4,5,6;当c=5时,b=5,6;当c=6时,b=5,6,目标事件个数为5+4+3+3+2+2=19, 因此方程x 2+bx+c=0有实根的概率为

1936

(II )由题意知用随机变量ξ表示方程x 2+bx+c=0实根的个数得到ξ=0,1,2根据第一问做出的结果得到 则P(ξ=0)=

1736,P(ξ=1)= 236=118,P(ξ=2)= 1736

,∴ξ的分布列为 ∴ξ的数学期望Eξ=0×

1736+1×118+2×17

36

=1,

8.设指针落在A,B,C 区域分别记为事件A,B,C.则111

(),(),()632P A P B P C ===

.

………………3分

(Ⅰ)若返券金额不低于30元,则指针落在A 或B 区域.

111()()632P P A P B ∴=+=

+=

即消费128元的顾客,返券金额不低于30元的概率是1

2.

(Ⅱ)由题意得,该顾客可转动转盘2次.

随机变量X 的可能值为0,30,60,90,120.

111

(0);

224111

(30)2;

23311115

(60)2;

263318111

(90)2;

369111

(120).

6636P X P X P X P X P X ==?===??===??+?===??===?= ………所以,随机变量X 的分布列为: P

0 30 60 90 120 X

14

13 518 19 136

其数学期望

11511

030609012040

4318936EX =?+?+?+?+?=

9、解:(1)根据志愿者的身高编茎叶图知湖北师范学院志愿者身高的中位数为:5.1682

169

168=+.…2(2)由茎叶图可知,“高个子”有8人,“非高个子”有12人,

∴按照分层抽样抽取的5人中“高个子”为85220?

=人,“非高个子”为12

5320

?=人;

则至少有1人为高个子的概率P =1-23257

10

C C =……6分

(3)由题可知:湖北师范学院的高个子只有3人,则ξ的可能取值为0,1,2,3;

故353810(0)56C P C ξ===,21533830(1)56C C P C ξ===,12533815(2)56C C P C ξ===,333

81

(3)56

C P C ξ===, 即ξ的分布列为:

ξ 0 1 2 3

P

1056 30

56

15

56 156

E ζ=01056?+13056?+21556?+3156?=9

8

10. 解:(I )因为16,50.46780.16,67 3.2.EX a b a b =?+++?=+=所以即

又由X 1的概率分布列得0.40.11,0.5.a b a b +++=+=即

由67 3.2,0.3,

0.5.0.2.

a b a a b b +==???

?

+==??解得 (II )由已知得,样本的频率分布表如下:

2X

3 4 5

6 7 8 f

0.3 0.2 0.2

0.1

0.1

0.1

用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下: 2X 3 4 5 6 7 8 P 0.3 0.2 0.2 0.1 0.1 0.1

所以

22222223(3)4(4)5(5)6(6)7(7)8(8)

EX P X P X P X P X P X P X ==+=+=+=+=+=30.340.250.260.170.180.1 4.8.=?+?+?+?+?+?=即乙厂产品的等级系数的数学期望等于4.8.

(III )乙厂的产品更具可购买性,理由如下:

因为甲厂产品的等级系数的期望数学等于6,价格为6元/件,所以其性价比为6

1.6

=因为乙厂产吕的等级系数的期望等于4.8,价格为4元/件,所以其性价比为

4.8

1.2.4

=据此,乙厂的产品更具可购买性。 11. (I )首次出现故障发生在保修期内的概率为231

5010

P +==

(II )随机变量1X 的分布列为 随机变量2X 的分布列为

(III )1139

123 2.86255010EX =?

+?+?=(万元) 219

1.8

2.9 2.791010

EX =?

+?=(万元)

12EX EX >Q 所以应该生产甲品牌汽车。

索洛模型应用

网游中的索洛增长模型 摘要 网游是游戏的一种,但其仍有极其符合科学的经济学系统,或者说正是由于网游有着科学的经济体系,游戏才能毫无差错的运营下去,虽然其中参杂了运营商盈利的目的。有人说:生活是一面镜子。有了现实中的经济学这门镜子,我们才能认清网游中打怪升级的本质,才能不一昧沉迷于它。理性的看待任何问题,我想这是经济学给我们带来的启示。 关键词:网游,索洛增长模型 引言 自从2001年的“传奇”以来,网游行业迅速发展。直至如今,已经形成了可谓之百花齐放的盛况。而网游的本质,是玩家与玩家之间的互动。常言道:有人的地方就有经济学。网游作为一个人与人之间的社交平台,必定也存在着各类的经济学现象。现象虽然各不相同,但究其本质,却毫无例外。现在,我将来探讨一下网络游戏中的索洛增长模型。 网游中的索洛增长模型 首先来讨论一个较为简单的情况,假设有一个网游,名字为A。在我们的假设中,我们先将其设定为一个封闭且固定的游戏,即玩家或其他外部力量不能对其进行经济上干预(如点卡充值等)且玩家不会升级且没有新玩家加入的游戏(类似于课本中的封闭模型)。 其次,定义网络游戏中的几个行为。众所周知,网游中没有类似于工作的行为,玩家获得金币(即货币)的手段暂定为刷怪,即收入源自于刷怪。而刷怪中所获得的收益又可以分为两部分,其一,玩家刷怪时付出的肉体和精神上的劳动,与我们所学公式中的L相对应;其二,玩家刷怪所持装备和自身技能对于刷怪所付出的劳动,对应我们所学公式中的K。 当玩家刷怪完后,玩家会获得自己金币上的收入,对应我们所学公式中的Y。对于这部分收入,玩家将有两个选择,储蓄与消费,分别对应我们所学公式中的S与C。储蓄即为将所得金币购买装备或暂时不用,消费即为将金币用于购买消耗性物品或者用于其他娱乐项目,这其中,用于购买装备所花费的资金我们称之为投资,用于对应公式中的I。 在大部分网游中,对于装备都有一个耐久度的设定,即装备在用到一定次数之后就会损毁,此时只能对其进行维修或者购置新的装备,总之得花钱。而耐久度这一参数衍生出来的折损率我们对应公式中的&。 在介绍完了各个参数之后,对他们进行分析。由于我们分析的是该网游总体的经济状况,因此我们将以上参数全部转化为人均值,即y,k,s,c,i.于是依照书上的公式,我们最后可以得出结论,在 sf(k)=&k 时,玩家的k达到最大。 上面的公式得出的结论:当玩家刷怪刷到一定程度,装备发展到一个适当的阶段时,玩家将不再能进行装备更新。因为根据公式,在L不变时,这个阶段的I与&k是相等的。

几何概型案例

《几何概型》教学案例 教学目标 一、知识与技能目标 (1)通过学生对几个几何概型的实验和观察,了解几何概型的两个特点。 (2)能识别实际问题中概率模型是否为几何概型。 (3)会利用几何概型公式对简单的几何概型问题进行计算。 二、过程与方法 让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。 教学重点 几何概型的特点,几何概型的识别,几何概型的概率公式。 教学难点 建立合理的几何模型求解概率。 教学过程 一、创设情境引入新课 师:上节课我们共同学习了概率当中的古典概型,请同学们回想一下其中所包含的主要内容,并依据此举一个生活当中的古典概型的例子。 生甲:掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。 师:请同学们判断这个例子是古典概型吗?你判断的依据是什么? 生乙:是古典概型,因为此试验包含的基本事件的个数是有限个,并且每个基本事件发生的 可能性相等。 师:非常好,下面允许老师也举一个例子,请同学们作以判断。 如图:把一块木板平均分成四部分,小球随机的掉到木板上,求小球掉在阴影区 域内的概率。 生丙:此试验不是古典概型,因为此试验包含的基本事件的个数有无数多个。 师:非常好,此试验不是古典概型,由此我们可以看到,在我们的生活中确实 存在着诸如这样的不是古典概型的实际问题,因此我们有必要对这样的问题作进一步更加深入的学习和研究。今天这节课我们在学习了古典概型的基础上再来学习几何概型。那到底什

么是几何概型,它和古典概型有联系吗?在数学里又是怎样定义的呢?为此,我们接着来看刚才这个试验。 试验一 师:请同学们根据我们的生活经验回答此试验发生的概率是多少? 生丁:四分之一 师:很好,那你是怎样得到这个答案的呢? 生丁:就是用阴影的面积比上总面积。 师:非常好,下面我们再来看图中的右边这种情形,现在阴影的面积仍是总面积的四分之一,只不过阴影的形状及其位置发生了变化,那么此时小球落在阴影区域内的概率又是多少? 生丁:仍是四分之一,还是用阴影的面积比上总面积。 师:非常好,请坐。我们梳理一下我们刚才的发现。首先此试验所包含的基本事件的个数为无数多个,并且每个基本事件发生的可能性相等,而所求的概率就是用阴影的面积比上总面积,所以此概率仅与阴影的面及有关系,而与阴影的形状和位置并无关系。 试验二 在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率. 师:首先请同学们观察这个试验跟刚才那个试验有没有共同本质的东西。 生戊:此试验所包含基本事件的个数仍是无限多个,每个基本事件发生的可能行都相等。师:所求的概率是多少?

二项分布

二项分布 科技名词定义 中文名称:二项分布 英文名称:binomial distribution 定义:描述随机现象的一种常用概率分布形式,因与二项式展开式相同而得名。 所属学科:大气科学(一级学科);气候学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 二项分布 二项分布即重复n次的伯努里试验。在每次试验中只有两种可能的结果,而且是互相对立的,是独立的,与其它各次试验结果无关,结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努力试验。 目录 概念 医学定义 二项分布的应用条件 二项分布的性质 与两点分布区别 编辑本段概念 二项分布(Binomial Distribution),即重复n次的伯努力试验(Bernoulli Experiment), 用ξ表示随机试验的结果. 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重

复试验中发生K次的概率是 P(ξ=K)=Cn(k)P(k)q(n-k) 注意!:第二个等号后面的括号里的是上标,表示的是方幂。 那么就说这个属于二项分布.. 其中P称为成功概率。 记作ξ~B(n,p) 期望:Eξ=np 方差:Dξ=npq 如果 1.在每次试验中只有两种可能的结果,而且是互相对立的; 2.每次实验是独立的,与其它各次试验结果无关; 3.结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努力试验. 在这试验中,事件发生的次数为一随机事件,它服从二次分布.二项分布可 二项分布 以用于可靠性试验.可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率. 若某事件概率为p,现重复试验n次,该事件发生k次的概率 为:P=C(k,n)×p^k×(1-p)^(n-k).C(k,n)表示组合数,即从n个事物中拿出k个的方法数. 编辑本段医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。 考虑只有两种可能结果的随机试验,当成功的概率(π)是恒定的

经管类文献综述的写法及范文

文献综述的写法及范文 文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文,它是科学文献的一种。文献综述是反映当前某一领域中某分支学科或重要专题的最新进展、学术见解和建议的它往往能反映出有关问题的新动态、新趋势、新水平、新原理和新技术等等。 要求同学们学写综述,至少有以下好处: ①通过搜集文献资料过程,可进一步熟悉科学文献的查找方法和资料的积累方法;在查找的过程中同时也扩大了知识面; ②查找文献资料、写文献综述是科研选题及进行科研的第一步,因此学习文献综述的撰写也是为今后科研活动打基础的过程; ③通过综述的写作过程,能提高归纳、分析、综合能力,有利于独立工作能力和科研能力的提高; ④文献综述选题范围广,题目可大可小,可难可易。对于毕业设计的课题综述,则要结合课题的性质进行书写。 文献综述与“读书报告”、“文献复习”、“研究进展”等有相似的地方,它们都是从某一方面的专题研究论文或报告中归纳出来的。但是,文献综述既不象“读书报告”、“文献复习”那样,单纯把一级文献客观地归纳报告,也不象“研究进展”那样只讲科学进程,其特点是“综”,“综”是要求对文献资料进行综合分析、归纳整理,使材料更精练明确、更有逻辑层次;“述”就是要求对综合整理后的文献进行比较专门的、全面的、深入的、系统的论述。总之,文献综述是作者对某一方面问题的历史背景、前人工作、争论焦点、研究现状和发展前景等内容进行评论的科学性论文。 写文献综述一般经过以下几个阶段:即选题,搜集阅读文献资料、拟定提纲(包括归纳、整理、分析)和成文。 一、选题和搜集阅读文献 撰写文献综述通常出于某种需要,如为某学术会议的专题、从事某项科研、为某方面积累文献资料等等,所以,文献综述的选题,作者一般是明确的,不象科研课题选题那么困难。文献综述选题范围广,题目可大可小,大到一个领域、一个学科,小到一种算法、一个方法、一个理论,可根据自己的需要而定。 选定题目后,则要围绕题目进行搜集与文题有关的文献。关于搜集文献的有关方法,可以如看专著、年鉴法、浏览法、滚雪球法、检索法等等,在此不述。搜集文献要求越全越好,因而最常用的方法是用检索法。搜集好与文题有关的参考文献后,就要对这些参考文献进行阅读、归纳、整理,如何从这些文献中选出具有代表性、科学性和可靠性大的单篇研究文献十分重要,从某种意义上讲,所阅读和选择的文献的质量高低,直接影响文献综述的水平。因此在阅读文献时,要写好“读书笔记”、“读书心得”和做好“文献摘录卡片”。有自己的语言写下阅读时得到的启示、体会和想法,将文献的精髓摘录下来,不仅为撰写综述时提供有

人教版高中数学必修三 第三章 概率概率学案3超几何分布

概率学案3 §2.5.3概率综合 ——超几何分布 学习目标 1.根据题意能够识别概率模型。 学习过程 【任务一】分析典型例题,总结解题思路 例:某班共有学生40人,将一次数学考试成绩(单位:分) 绘制成频率分布直方图,如图所示. (Ⅰ)请根据图中所给数据,求出a的值; (Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3 名学生的成绩都在[60,70)内的概率; (Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70) 内的学生中随机选取3人的成绩进行分析,用X表示所 选学生成绩在[60,70)内的人数,求X的分布列和数学期望. 小结: 1.模型特点:总数为N的几类元素,其中含某一类元素M个,从中随机选取n个元素,观察这类元素个数情况; 2.解题思路: A.根据题意识别超几何分布模型; B.利用超几何分布概率特点计算问题中描述的某个事件的概率。 【任务二】跟踪练习 甲口袋中有大小相同的白球3个,红球5个;乙口袋中有大小相同的白球4个,黑球8个,从两个口袋中各摸出2个球,求: (1)甲口袋中摸出的2个球都是红球的概率; (2)两个口袋中摸出的4个球中恰有2个白球的概率.

产品数量 【任务三】课后作业 (2010崇文一模文16)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20, [)20,25,[)25,30,[30,35],频率分布直方图如图所示. 已知生产的产品数量在[)20,25之间的工人有6位. (Ⅰ)求m ; (Ⅱ)工厂规定从生产低于20 件产品的工人中随机的选取2工人进行培训,则这2位工人 在同一组的概率是多少?

二项分布中方差的计算

二项分布中方差的计算 假设ξ~B (n ,p ), 即k n k k n q p C k P -==}{ξ 考虑E [ξ(ξ-1)]=Eξ2-Eξ 而 ∑∑ ∑∑=----=-=-=--=-----?-?=--=-=-n k k n k k n n k k n k n k k n k n k k n k k n q p C p n n q p k n k n n n q p k n k n k k q p C k k E 2 222222 )1()]!2(2[)!2()!2()1()! (!! ) 1()1()]1([ξξ 令2-=k i 上式=222220 22 2 )1()1(np p n p n n q p C p n n n i i n i i n -=-=-∑-=--- 即2222np p n E E -=-ξξ, 再将E ξ=np 代入上式,得)1(222222p np p n np np p n E -+=+-=ξ 最后得npq np p np p n E E D =--+=-=22222)()1()(ξξξ 例1的分布图 例2的分布图 4.2 超几何分布 例1的图形:

例2的图形: 定义4.2 设N 个元素分为两类, 有N 1个属于第一类, N 2个属于第二类(N 1+N 2=N ). 从中不重复抽样取n 个, 令ξ表示这n 个中第一类元素的个数, 则ξ的分布称为超几何分布, ),....,1,0()(2 1n m C C C m P n N m n N m N == =-ξ 规定: 如n

二项分布、超几何分布数学期望与方差公式的推导

二项分布、超几何分布数学期望与方差公式的推导 高中教材中对二项分布和超几何分布数学期望与方差公式没有给出推导公式,现笔者给出一推导过程仅供参考。 预备公式一 11--=k n k n nC kC (1≥n ) ,利用组合数计算公式即可证明。 预备公式二 []2 2)()()(ξξξE E D -=,证明过程可见教材。 预备公式三 2 2)1()1(---=-k n k n C n n C k k (2,2≥≥k n ) ,利用组合数计算公式即可证明。 预备公式四 ),,,,(022110n k m k N k n m C C C C C C C C C k n m m k n k m n k m n k m n ≤≤∈=++++++--Λ,利用恒等 式m n n m x x x )1()1() 1(++=++的二项展开式中k x 的系数相等可证。 一、二项分布 在n 次独立重复试验中,每次试验中事件A 发生的概率为p (10<

索洛模型详细推导

Solow 模型之详细推导 参考资料: 戴维·罗默 《高级宏观经济学》 龚六堂 《经济增长理论》 研究生一年级 《高级宏观经济学》、《动态优化》课堂笔记 Solow 模型含四个变量:产出(Y )、资本(K ),劳动(L )、技术进步(A )。 生产函数的形式为: ()((),()())Y t F K t A t L t = 满足: ①二阶连续可微; (,)F ??②对变量非减且严格凹(即资本和劳动力的边际生产率都是递减的) ; (,)F ??③生产函数是常数规模回报的,即对任意λ>0,有 (,)(,F K AL F K AL )λλλ=, (1) 从而可得到欧拉(Euler )方程: (,)(,)(,)F K L F K L F K L K L K L ??=+??; ④生产函数满足Inada 条件,即 00lim (,),lim (,)lim (,)0lim (,)0K L K L K L K L F K L F K L F K L F K L →→→∞→∞ =∞=∞==,。 通常所讲的Cobbel-Douglas 生产函数满足此条件: ()()()()Y t A t K t L t αβ=,0,1αβ<<。 规模报酬不变的假定使我们得以使用密集形式的生产函数。 11(,1)(,)K F F K AL Y AL AL AL ==, (2) 令 K k AL =表示每单位有效劳动的平均资本数量, Y y AL =表示每单位有效劳动的平均产出 那么可将(2)式写为: (,1)()y F k f k == 假定储蓄率为,资本折旧为s δ,人口增长率既定,为L n L =&,技术进步率也既

二项分布方差公式推导

二项分布方差公式推导 若ξ~B(n,p),q=1-p ,求证D ξ=npq ∵E ξ=np , kC n k p k q n-k =n p 11 k n C --p k-1q n-k , kk C n k p k q n-k =np[(k-1)11 k n C --p k-1q n-k +11k n C --p k-1q n-k ] =np[(n -1)p 22k n C --p k-2q n-k +11k n C --p k-1q n-k ] 而D ξ=22()E E ξξ-, ∴D ξ=(1×1×C n 1p 1q n-1+2×2 C n 2p 2q n-2+…+k ×k C n k p k q n-k +…+n ×n C n n p n q 0)2() np - =np(1×C n-10p 0q n-1+2C n-11p 1q n-2+3C n-12p 2q n-2+…+ k C n-1k-1p k-1q n-k +…+n C n-1n-1p n-1q 0)-2np E ξ+n 2p 2(p +q)n =np{[0×C n-10p 0q n-1+1C n-11p 1q n-2+2C n-12p 2q n-2+…+ (k-1) C n-1k-1p k-1q n-k +…+(n-1)C n-1n-1p n-1q 0]+(C n-10p 0q n-1+ C n-11p 1q n-2+C n-12p 2q n-2+…+C n-1k-1p k-1q n-k +…+ C n-1n-1p n-1q 0)}2()np - =np[E η+(p +q)n-1] 2() np - =np[(n -1)p +1] 2() np - =np(1-p) =npq .

索罗余值法测算全要素生产率的文献综述

第46卷 第8期 2019年8月 天 津 科 技 TIANJIN SCIENCE & TECHNOLOGY V ol.46 No.8Aug. 2019 基金项目:天津市重点招标项目“2017年天津市全要素生产率测算研究”(18ZLZDZF00210)。 收稿日期:2019-07-18 科学与社会 索罗余值法测算全要素生产率的文献综述 孟 媛,张 弛 (天津市科技统计与发展研究中心 天津300051) 摘 要:国内外全要素生产率的测算方法很多,例如索罗余值法、随机前沿法、数据包络法等,其中应用较为普遍的是索罗余值法。通过简要梳理索罗余值法的推导过程,归纳较为普遍的关于该理论的基本假设(即规模效益不变和希克斯中性)的质疑,以及阐述全要素生产率与技术进步的关系,说明全要素生产率衡量技术进步是不完全准确的。关键词:全要素生产率 索罗余值法 技术进步 中图分类号:F204;F224 文献标志码:A 文章编号:1006-8945(2019)08-0094-02 Literature Review on Measurement of Total Factor Productivity by Solow Residual Method MENG Yuan ,ZHANG Chi (Tianjin Science and Technology Statistic Center ,Tianjin 300051,China ) Abstract :There are many measurement methods of total factor productivity at home and abroad, such as the Solow residual method, stochastic frontier method, data enveloping method and so on. The Solow residual method is widely used. The gen-eral doubts about its basic assumptions (namely, constant scale benefit and Hicks neutral) are summarized by briefly combing the derivation process of the Solow residual method. The relationship between total factor productivity and technical progress is discussed, indicating that the measurement of technical progress by total factor productivity is not completely accurate. Key words :total factor productivity ;Solow residual method ;technical progress 十九大指出,我国经济已由高速增长阶段转向高质量发展阶段,并提出要提高全要素生产率。关于全要素生产率,国内外学者进行了较多研究,测算方法不一,包括索罗余值法、随机前沿法、数据包络法等,其中索罗余值法的应用范围较为广泛。本文通过文献综述,简要介绍索罗余值法测算全要素生产率的过程,根据其适用的前提条件探讨测算的局限性,进而阐述全要素生产率与技术进步的关系。 1 索罗余值法简介 索罗[1]并不是第一个将生产函数与生产率联系起来的人,早在1942年Tinbergen 就探索过两者之间的关系,但是索罗的开创性贡献在于他在生产函数和指数方法之间建立了较为简洁且实用的理论联系。 索罗余值法是基于柯布-道格拉斯生产函数(即CD 生产函数)得到的,以规模效益不变和希克斯中 性(Hicks neutral )为基本假设前提。规模效益不变指 的是在既定的技术水平下,要素价格不变时,产出增加的比例等于所有投入要素增加的比例。希克斯中性指的是投入要素资本和劳动的边际产出的比率不变。CD 生产函数为: (,)t t t t Q A F K L = (1) 式中:Q t 指的是产出,K t 指的是资本投入,L t 指的是劳动投入,希克斯A t 指的是在资本和劳动投入水平不变时产出增加的部分,即全要素生产率,经常被用以衡量“技术进步”。 上述公式(1)变形,可以得到相对希克斯效率A t /A 0,即Q t /Q 0作分子,生产函数中要素积累的部分F (K t ,L t )/F (K 0,L 0)作分母。但是由于各投入要素的计量单位不同,这样并不能直接得到希克斯效率。 索罗运用非参数指数法,将上述公式变形得到: t t t t t t t t t t t t Q K K L L A Q Q Q K Q K L Q L A ??=++?? (2)

几何概型常见题型归纳

几何概型常见题型归纳 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。求解几何概型的概率问题,一定要正确确定试验的全部结果构成的区域,正确选择合理的测度,进而利用概率公式求解。^_^天体运动,万有引力定律核心考点研读■安徽 张北春(特级教师) 《天体运动、万有引力定律》是高中物理的重要章节。主要考点有:开普勒定律、天体运动、万有引力定律、估算天体的质量和密度、揭示天体运行规律等。近几年高考试题中的天体运动问题多为匀速圆周运动模型,大多数试题可直接运用开普勒第三定律进行分析或计算,有些试题则需运用牛顿第二定律与万有引力定律、“黄金代换”等分析计算。下面通过典型例题解读这些核心考点,希望对同学们的学习有所帮助。 考点1:开普勒定律 【考点研读】开普勒行星运动定律具体表述如下。第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。第二定律:对任意一个行星来说,它与太阳

的连线在相等时间内扫过相等的面积。第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 温馨提示:古人把天体的运动看得十分神圣,他们认为天体的运动不同于地面物体的运动,天体做的是最完美、最和谐的匀速圆周运动。开普勒则认为行星做椭圆运动。他发现假设行星做匀速圆周运动,计算所得的数据与观测数据不符,只有认为行星做椭圆运动,才能解释这一差别。 温馨提示:我们预期太阳对行星的引力与太阳到行星的距离有关,希望通过行星绕太阳做匀速圆周运动需要的向心力求出这个引力,通过两次数学代换得到了太阳对行星的引力与太阳到行星的距离相关的数学表达式;通过类比得到了行星对太阳的引力与太阳到行星的距离相关的数学表达式;综合概括得到了太阳与行星间引力的数学表达式。 例2(2014年新课标全国卷I)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。对于地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”。据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日。已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是(

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)生存分析贝叶斯概率公式全概率公式(新)

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X2分布、t分布、F分布 抽样分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution):例子抛硬币 1、重复试验(n个相同试验,每次试验两种结果,每种结果概率恒定———— 伯努利试验) 2、

新经济增长理论——文献综述

新经济增长理论——文献综述 西南交通大学 《区域经济理论》课程论文 新经济增长理论——一个文献的综述 年级:2014级 学生:张镨心 学号:2014201491 课程:区域经济理论 指导老师:骆玲 2015年1月7日 新经济增长理论——一个文献的综述 一、理论产生背景 1、现实背景 20 世纪 70 年代以后,第三次科技革命方兴未艾,科技与经济增长的关系日 益紧密,许多经济学家提出,知识的积累和技术的革新对经济增长作用很大,甚至是决定性的。为更好地解释经济增长,必须将这些因素纳入模型。而分析工具和经济理论的进步,也为研究经济增长提供了更好的工具和思路。在此背景下,诞生了经济增长研究的新成果———新经济增长理论。 2、理论背景 半个世纪以来,经济增长理论历经兴衰,出现了三次大的高潮。第一次高潮是 第二次高潮是新古典增长模型的产生和发展;第哈罗德-多马模型的产生和发展; 三次高潮是新经济增长理论的产生和发展。三次大高潮都共同关注经济学中一 个重要且令人困惑的问题:经济增长是否可以长期持续,如果可以,增长的根本原因

究竟是什么?哈罗德-多马模型和新古典增长模型虽然对经济增长的原因做出了重要的说明,但他们难以就人类漫长的经济增长史给出一致的、富有说服力的解释。因而,他们的理论不可避免地在上世纪60年代末衰落了。 在20世纪80年代中期,以罗默(Romer, P.)、卢卡斯(Lucas, R.)等人为代表 的一批经济学家,在对新古典增长理论重新思考的基础上,撰写了一系列以内生技术变化为核心的论文,探讨了经济长期增长的可能前景,掀起了一股新经济增长理论研究的潮流。 二、相关理论分析 20世纪40年代末,英国经济学家哈罗德(Harrod,R.)和美国经济学家多马(Dormar, E.),根据凯恩斯收入决定论的思想,把凯恩斯理论动态化和长期化,分别推演出极为相似的长期经济增长模型,人们合称为哈罗德-多马模型。这一经济增长模型的提出不但带来了动态理论(古典经济增长理论)的复归,而且奠定了现代经济增长理论的基本框架。 1、哈罗德——多马模型哈罗德-多马模型突出了资本积累在经济增长中的决 定性作用。在模型中,由于假定资本/产出比不变,因而经济增长唯一地决定于储蓄率,也就是资本积累率,从而为经济增长找到了一种似乎是合理的持久动力和源泉。同时,他们为经济增长理论的研究提供了一个科学的范式,即应用数理工具构建模型研究经济增长。按照哈罗德—多马模型的结论,经济稳态增长的条件是: G = Gw = Gn,即实际增长率、合意增长率和自然增长率相等,经济将长期繁荣。一旦出现偏离,经济不仅不能自行纠正“实际增长率”和“合意增长率”之间的偏离,而且由于乘数效应的作用,还具有将这种偏离积累型增大的效应,这使得哈罗德———多马模型提出的经济稳定增长的条件具有“刀刃”( knife , edge) 性质。经济的这种内在不稳定性,要求政府对经济实行永久性干预。但是这一理论模型也存在不少的缺陷,遭到以索罗为代表的新古典增长理论的批评。首先,资本/产出比不变的

几何概型的定义及计算

几何概型的定义及计算 几何概型的概念: 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。 几何概型的概率: 一般地,在几何区域D中随机地取一点,记事件"该点落在其内部一个区域d内"为事件A,则事件A发生的概率。 说明:(1)D的测度不为0; (2)其中"测度"的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积; (3)区域为"开区域"; (4)区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关. 几何概型的基本特点: (1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等. 古典概型的定义及计算 基本事件的定义: 一次试验连同其中可能出现的每一个结果称为一个基本事件。 等可能基本事件: 若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。 古典概型: 如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件的发生都是等可能的; 那么,我们称这个随机试验的概率模型为古典概型.

古典概型的概率: 如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。 古典概型解题步骤: (1)阅读题目,搜集信息; (2)判断是否是等可能事件,并用字母表示事件; (3)求出基本事件总数n和事件A所包含的结果数m; (4)用公式求出概率并下结论。 求古典概型的概率的关键: 求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。 概率的基本性质(互斥事件、对立事件) 互斥事件: 事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。 如果A 1,A 2 ,…,A n 中任何两个都不可能同时发生,那么就说事件A 1 ,A 2 ,…A n 彼此互斥。 对立事件: 两个事件中必有一个发生的互斥事件叫做对立事件,事件A的对立事件记做。注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。 事件A+B的意义及其计算公式: (1)事件A+B:如果事件A,B中有一个发生发生。 (2)如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A 1,A 2 ,…A n 彼此互斥 时,那么P(A 1+A 2 +…+A n )=P(A 1 )+P(A 2 )+…+P(A n )。

ASSHTO模型中碰撞几何概率的修正及在长江上的应用

龙源期刊网 https://www.360docs.net/doc/a29552061.html, ASSHTO模型中碰撞几何概率的修正及在长江上的应用 作者:周立万大斌王辉杨洋 来源:《中国水运》2015年第08期 摘要: AASHTO(美国道路工程师协会)规范模型为目前应用最广泛的船桥碰撞概率计算模型之一,该模型将船桥碰撞几何概率作为正态分布考虑,正态分布的标准差等于设计代表船只的船长,期望为0。通过统计长江上船舶过桥时的船位分布情况得知,受航行规则影响,船舶通过单孔双向通航的桥梁时船位沿桥轴线方向成“双峰”分布,该双峰分布可近似的看成由两个正太分布混合而成,据此对AASHTO模型中碰撞几何概率参数进行了修正,修正后的模型与长江干线实际情况更加适应。 关键词: ASSHTO修正模型长江干线船舶碰撞桥梁概率 近年来国内发生了较多的船舶碰撞桥梁事故造成了巨大的人命财产损失,2006年杭州湾 大桥被一走锚失控船舶撞击,大桥多处局部破损,造成经济损失1000余万元;2007年广东九江大桥被砂石船舶碰撞致倒塌造成8人死亡,损失约1.4亿元人民币;2008年浙江宁波金塘大桥被一艘货轮撞击,桥面箱梁塌落,4人死亡;而在长江干线上,从1957年首个有记载的桥 梁被船碰撞的事故以来,已发生的船舶撞桥事故超过300起,其中武汉长江大桥被撞次数最多,已被撞击100余次,虽未造成桥梁倒塌事故,但每一次撞击都会牵动亿万人民的心。因此,开展船舶碰撞桥梁概率研究,为船舶通航安全、桥梁设计、建设与管理提供技术支撑依据非常有必要。 目前,在桥梁防撞设计中,应用较多的船桥碰撞概率计算模型有AASHTO规范模型、拉森(IABSE)模型、欧洲规范模型、昆兹(Kunz)模型和黄平明直航路模型等,不同的模型各有不同侧重和特点。相比较而言,AASHTO模型虽然是依照美国和欧洲的船舶碰撞资料统计 而设计出来的,但因其思路清晰、方法完善、实用性强,是目前应用最为广泛的船桥碰撞概率模型,该规范将船撞桥事件视为风险事件,根据可接受风险的水平指导桥梁的防撞设计,已经形成了系统的思想。 AASHTO模型在长江上应用存在的问题 在该模型中船舶碰撞几何概率以航道中心线为对称轴,船舶的横向分布用正态分布描述,期望为0,即船舶出现的峰值在桥墩之间航道的中间位置。该模型适用于长江上单孔单向通航的桥梁,但长江干线上90%以上的桥梁实行的是单孔双向通航,且长江干线界石盘以下河段均实行了船舶定线制或船舶分道航行规则,船舶在通过单孔双向通航的桥孔时各自靠一边行驶,其中定线制水域还设有分隔带,因此从理论上分析船舶在航道上的几何分布应成“双峰”或“多

常用分布概率计算的Excel应用

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。 §3.1 二项分布的概率计算 一、二项分布的(累积)概率值计算 用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为: BINOMDIST (number_s,trials, probability_s, cumulative) 其中 number_s:试验成功的次数k; trials:独立试验的总次数n; probability_s:一次试验中成功的概率p; cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1 或TRUE时,则计算累积概率F n(k),。 即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有 P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1) 现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。 例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率: (1)一人负责15台机床的维修; (2)3人共同负责80台机床的维修。 原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。 设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布: X~B(15,0.01), 而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15 故所求概率为 P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1) =1-(0.99)15-15×0.01×(0.99)14 =1-0.8600-0.1303=0.0097 (2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即 Y~B(80,0.01) 此时因为 n=80≥30, p=0.01≤0.2 所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)

高中数学几何概型经典考点及例题讲解

几何概型 考纲解读 1.根据随机数的意义,用模拟方法估计生活中的概率问题;2.根据几何概型的意义,运用几何度量求概率;3.根据几何概型,估计几何度量. [基础梳理] 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的特点 (1)无限性:试验中所有可能出现的结果(基本事件)有无限多个. (2)等可能性:试验结果在每一个区域内均匀分布. 3.几何概型的概率公式 P (A )= 构成事件A 的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) . [三基自测] 1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( ) 答案:A 2.已知A ={(x ,y )|-1≤x ≤1,0≤y ≤2},B ={}(x ,y )|1-x 2≤y .若在区域A 中随机地扔一粒豆子,则该豆子落在区域B 中的概率为( ) A .1-π 8 B.π4 C.π 4-1 D.π8 答案:A 3.在区间[-2,3]上随机选取一个数X ,则 X ≤1的概率为( ) A.4 5 B.35 C.25 D.15 答案:B

4.(必修3·3.3例1改编)在[0,60]上任取一个数,则x ≥50的概率为________. 答案:16 5.(2017·高考全国卷Ⅰ改编)求在半径为r 的圆内随机撒一粒黄豆,它落在圆内接等腰直角三角形内的概率. 答案:1π 考点一 与长度型有关的几何概型|方法突破 命题点1 与线段长度有关的几何概型 [例1] (2018·长春模拟)已知线段AC =16 cm ,先截取AB =4 cm 作为长方体的高,再将线段BC 任意分成两段作为长方体的长和宽,则长方体的体积超过128 cm 3的概率为________. [解析] 设长方体的长为x ,宽为(12-x ), 由4x (12-x )>128,得x 2-12x +32<0, ∴4

相关文档
最新文档