DZB3600S钢支撑轴力智能补偿系统及应用简介

DZB3600S钢支撑轴力智能补偿系统及应用简介
DZB3600S钢支撑轴力智能补偿系统及应用简介

DZB3600S钢支撑轴力智能补偿系统简介

陈建海金立源刘可可

(徐州盾安重工机械制造有限公司徐州泉山开发区 221000)

(陈建海:联系电话1305202989 邮箱chenjh168@https://www.360docs.net/doc/a37434535.html,)

摘要:文章介绍了“DZB3600S钢支撑轴力智能补偿系统”的构成、工作原理、主要设备的作用、现场安装的位置、安装流程。

关键词:钢支撑轴力智能补偿简介

一、概述

随着我国地下工程的高速发展,基坑开挖过程中安全问题也被越来越多的关注。基坑支护的轴力监测问题在许多国家基础建设中都存在,并得到高度重视,日本、德国、英国、新西兰等国家很早就在这方面开展了相关工作,并取得了一定的进展。钢支撑在我国使用以来,多次出现重大安全事故,给施工单位、业主的资产造成严重损坏和伤亡等问题。

DZB3600S钢支撑轴力智能补偿系统是徐州盾安重工机械制造有限公司研制的最新基坑支护轴力实时监测、补偿系统,由补偿节、泵站、控制柜及软件系统共同组成的一套完整的基坑支护、实时监测装置。

轴力实时补偿对应土体压变化,极大的减少基坑位移的影响,系统通过各单元元件冗余进行原件的故障进行控制,降低了因系统故障而影响整体安全的事故因素。通过自主设计的随动自锁油缸,保证在系统全部瘫痪的前题下依然能保证基坑不会失稳。通过集成通信模块对系统数据进行压缩传输到网络,使整个系统信息实现实时传输与远程控制功能,降低了施工成本与数据传输的滞后性,让施工更准确更轻松更安全。

系统特点及功能:输出液压管路排线式布置,外型紧凑美观,集成度高;三组液压系统相互独立运行,每组液压系统可独立控制8根补偿节,输出推力可根据需要实时调节并进行监控;三组液压系统相互间顺序监控,如某一路的压力源出现故障(如电机或是泵出现故障,无法打出压力油),故障自动诊断系统会自行识别,并在极短的时间内切换到旁边的液压系统供油,以保证系统安全运行。

表一:钢支撑轴力智能补偿系统主要技术参数

二、DZB3600S钢支撑轴力智能补偿系统简介

1、钢支撑轴力智能补偿系统的构成

钢支撑轴力智能补偿系统由动力系统、补偿系统、控制系统组成的成套基坑支撑压力自动补偿装置,可以在无人值守情况下全天候实现稳定可靠的自动补偿运作,保证补偿系统的压力自动维持在设定的范围内。一个控制中心(控制柜)同时控制3套液压动力站,1套液压动力站同时控制8个补偿油缸(即补偿节,对应8个钢支撑),一套钢支撑轴力智能补偿系统可同时实现对24个钢支撑轴向力的自动补偿控制(见图一),具有响应速度快,控制精度高等一系列优点。

图一钢支撑轴力智能补偿系统构成分配图

2、适用范围

钢支撑轴力智能补偿系统适用于周围环境变形敏感、基坑围护变形控制要求较高的深基坑工程。广泛应用于地下连续墙工程,特别是针对地铁沿线、高层建筑周边的基坑支护,由于其特殊的地理位置,为了确保工程施工不影响到地铁隧道、周边建筑物的安全,有效控制地面沉降,严格控制基坑围护结构变形等情况。

3、动力系统的特点及功能

动力系统有电源系统和液压体统两部分组成:

1)液压系统

(1)多组液压系统(液压动力站,见图二)相互独立运行,每组液压系统可独立控制8个补偿油缸(即补偿节,对应8个钢支撑),输出压力可根据需要实时调节并进行监控。

(2)多组液压系统相互间顺序监控,如有一路的压力源出现故障,系统将会自动诊断识别,并在5s内切换到旁边的液压系统供油,确保系统安全运行。

图二液压动力站图三发电机

2)电源系统

电源系统是由包括电网电源、发电机(见图三)及UPS不间断电源组成的自动切换的智能电源系统。

基于安全设计思想,在电网电源出现故障时,系统在UPS不间断电源供电下继续

正常工作,维持主系统监测和信息传输。当系统监测到补偿节需要进行推力补偿时,系统发送控制信号,启动发电机,然后再启动液压系统对补偿节进行补偿。

4、补偿系统特点及功能

1)补偿节(见图四)由液压驱动,输出推力可达300吨,系统运行过程中推力的大小可以进行监控,并且无极可调。

2)补偿节行程为150mm,可以根据现场情况进行长度补偿。

3)补偿节具有随动自锁功能,对系统进行实时保压,在液压锁定时,增加机械保护功能,避免发生事故。

4)回程时液控解锁。

5)补偿节的外支撑结构对补偿节有机械保护,在运输途中起到稳定的作用,便于储存和运输;端部的接口可直接与标准的609钢管连接;一体化结构设计,外型美观紧凑。

图四补偿节(油缸)

5、控制系统特点及功能

1)控制系统包括ECU主控模块、CPU的自动冗余安全切换模块、基于以态网的有线和无线信息传输的GROOV模块、基于总线的输出模块、基于智能触摸控制的组态软件模块。

2)主控CPU通过总线实时监测各补偿节的状态,当与设定值不符合时,输出相应的指令,通过总线让液压系统进行相应的动作,以使补偿节的输出推力达到设定值;基于CPU故障安全的设计思想,备用CPU对主控CPU进行实时监控,当主控CPU出现故障时,备用CPU立即切换到主控模式运行,并触发报警信息;基于以太网的GROOV 模块可通过3G、4G网络或互联网,将现场ECU与基站、工控机或是智能终端系统进行数据交互,使授权的终端能实时显示现场的运行状态,操控各个补偿节,并能传输

和接收现场的视频文件。

3)控制系统具有PAC控制模式(手动或自动)、远程遥控模式及越权控制模式三种,可通过该界面进行参数设定及实时监控等。

4)系统输出推力的控制:当某一补偿节实时监测的推力低于设定值时,电机自行启动,泵压力上到预定值,开启开关阀,往该补偿节中供油,使之压力达到设定值,到设定之后换向阀断电通过液压锁保压,电机停掉。当检测到推力高于所需的值,可将换向阀开启,卸掉一部分压力,然后断电通过液压锁保压。

5)压力控制

压力控制精度控制在±3~±5范围内(根据实际情况),当补偿节压力低于设定油压值的-5时,补偿节电机自动运行,当系统压力达到设定值时,换向阀自动打开,补偿节压力达到设定油压时自动停止补偿。

自动控制系统可以在无人值守情况下全天候实现稳定可靠地自动补偿运作,保证补偿节的压力自动维持。

图五控制柜

6)远程监控系统

在远程监控模式下,无需操作工程师在基坑现场,其应用手机、Ipad、Pc等终端

设备,通过3G、4G网路或者因特网即可实现远程补偿控制、控制参数设定、数据采集监控、实时、历史曲线的分析等。

7)越权控制

在设备急需维护检修或者控制网络链路出现故障的情况下,实现在就地专用控制箱强制操作,不依赖PAC控制网络实行应急控制,保证系统的安全性和可靠性。

三、钢支撑轴力智能补偿系统补偿系统的安装

1、安装前的准备

在安装前应按照工地施工计划用量备足补偿节、控制柜、泵站、供电应急系统、及各种规格长度液压胶管等相关材料;同时根据基坑围护结构图纸尺寸,还要备足各种长度的Φ609×16钢支撑管、活络头及钢垫块、钢楔块、紧固螺栓、铁板等支撑材料。

2、补偿系统具体安装步骤

在补偿节拼装及钢支撑安装吊装前要将控制柜、泵站及供电应急系统放置到位,并保持各个柜体放置平整,柜门可以打开自如,各个柜体之间要保证一定的距离(具体根据现场情况而定)。

1)连接电力:将控制柜的动力线与工地现场的三相电连接,完成后并将泵站柜与控制柜之间、发电柜与控制柜之间的重载插件互相连接起来。

2)安装附件:按说明书安装报警灯、摄像头、信号发射器、无线网卡等附件。

3)检测信号:准备一个操作室(操作室距离现场控制柜距离不得大于50米),将电脑放置在操作室内,连接好电源、鼠标、键盘、网卡及打印机等,启动电脑并检测现场信号;如检测到信号,并且强度很好则表明可以正常使用。

4)补偿节与钢支撑的连接:将补偿节与拼装好的钢支撑用M24螺栓连接紧固(见图六)。

图六补偿节与钢支撑的连接示意图

5)钢支撑补偿节的吊装和钢支撑补偿节吊装安装位置:将已拼装好的补偿节与钢支撑用吊车水平吊放, 在补偿节或钢支撑活络头端没有施加预应力之前,吊车不准松开钢支撑与补偿节(见图七、图八)。

图七 有围囹的基坑钢支撑补偿节安装示意图

图八 没有围囹的基坑钢支撑补偿节安装示意图

错误的安装

图九补偿节及钢支撑安装完成后效果

6)施加预应力:在补偿节与钢支撑放置到位后,在活络头端用相关顶紧工具缓慢对钢管支撑施加预应力至预定值。

7)连接液压管:在每个补偿节安装到位并施加预应力完毕后,对每个补偿节进行液压管的连接,用液压管将泵站与补偿节之间连接起来,泵站端和控制柜端的操作面板相对应,以便于方便从控制面板上知道,操作控制时所对应的的补偿节具体位置。

9)补偿节的控制:将控制柜打开并启动,在操作面板上将每个泵站上的补偿节压力调整到预先所需要的设定压力,完成整个过程的控制。

四、总结

DZB3600S钢支撑轴力智能补偿系统是一种新型的基坑支护轴力实时监测、补偿系统,由补偿节、泵站、控制柜及软件系统共同组成的一套完整的基坑支护、监测装置。

DZB3600S钢支撑轴力智能补偿系统适用于周围环境变形敏感、基坑围护变形控制要求较高的深基坑工程。广泛应用于地下连续墙工程,特别是针对地铁沿线、高层

建筑周边的基坑支护,由于其特殊的地理位置,为了确保工程施工不影响到地铁隧道、周边建筑物的安全,有效控制地面沉降,严格控制基坑围护结构变形等情况。

轴力实时补偿对应土体压变化,极大的减少基坑位移的影响;系统通过各单元元件冗余进行原件的故障进行控制,降低了因系统故障而影响整体安全的事故因素;通过随动自锁油缸,保证在系统全部瘫痪的前题下依然能保证基坑不会失稳;通过集成通信模块对系统数据进行压缩传输到网络,使整个系统信息实现实时传输与远程控制功能,降低了人工成本与数据传输的滞后性,让施工更准确更轻松更安全。

DZB3600S钢支撑轴力智能补偿系统已在地下连续墙工程、地铁基坑施工中得到广泛应用,其中有上海虹口区海南路10号地块项目、上海万科53号地块项目、天津天河城购物中心项目。

DZB3600S钢支撑轴力智能补偿系统提升了我国钢支撑轴力智能补偿系统的设计

及制造水平,引领了行业技术进步,实现了我国轴力智能补偿系统的“中国创造”的跨越式发展,并具有重大的经济效益和社会效益。

地铁站钢支撑轴力计算新

地铁站钢支撑轴力计算 新 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

地铁站钢支撑轴力计算书 庆丰路站: 根据基坑施工方案图,考虑基坑两头45度处单根米最长的钢支撑 和对基坑垂直的钢支撑单根米最长的钢支撑进行受力分析计算,已 知单根钢支撑承受的最大轴心垂直压力设计值为1906KN,考虑基坑两头45度支撑处钢支撑所承受的轴向力N=1906√2=2695KN。 钢材为:Q235-B型钢。取的安全系数。 一、单头活动端处受力计算: 由单头活动端结构受力图可知,受力面积最小的截面为A-A处截面。查表得,单根槽钢28c的几何特性为: 截面面积A= cm2, Ix=268cm^4, Iy= 5500cm^4。 该截面f取205N/mm2,截面属于b类截面。 (一)、受力截面几何特性 截面积:A=×2+4×30= cm2 截面惯性矩: Ix=2×268+30×43/6=856 cm^4 Iy=2×5500+4×303/6=29000 cm^4 回转半径: ix=√Ix/A=√856/= iy=√Iy/A=√29000/= (二)、截面验算 1.强度

σ=A=(×2695×103)/(×102)=mm2

地铁站钢支撑轴力计算新(完整资料).doc

【最新整理,下载后即可编辑】 地铁站钢支撑轴力计算书 庆丰路站: 根据基坑施工方案图,考虑基坑两头45度处单根14.5米最长的钢支 撑 和对基坑垂直的钢支撑单根23.2米最长的钢支撑进行受力分析计 算,已 知单根钢支撑承受的最大轴心垂直压力设计值为1906KN,考虑基坑 两头 45度支撑处钢支撑所承受的轴向力N=1906√2=2695KN。 钢材为:Q235-B型钢。取1.2的安全系数。 一、单头活动端处受力计算: 由单头活动端结构受力图可知,受力面积最小的截面为A-A处截面。

查表得,单根槽钢28c的几何特性为: 截面面积A=51.234 cm2,Ix=268cm^4,Iy= 5500cm^4。 该截面f取205N/mm2,截面属于b类截面。 (一)、受力截面几何特性 截面积:A=51.234×2+4×30=222.5 cm2 截面惯性矩: Ix=2×268+30×43/6=856 cm^4 Iy=2×5500+4×303/6=29000 cm^4 回转半径: ix=√Ix/A=√856/222.5=1.96cm iy=√Iy/A=√29000/222.5=11.42cm (二)、截面验算 1.强度 σ=1.2N/A=(1.2×2695×103)/(222.5×102)=145.4N/mm2

围护结构钢支撑施工工艺工法

围护结构钢支撑施工工艺工法 1前言 工艺工法概况 钢支撑是明挖结构内支撑体系重要组成部分,每根钢支撑有多个短节钢管拼接而成,通过法兰盘进行连接,钢支撑一头安放在钢围檩的托板上,另一头通过活络头安装在对面的一侧,通过活络头用千斤顶对钢支撑按照设计要求预施加一个轴力,并对该轴力实行监控,以便掌握结构变形情况。在结构拐角处由于距离比较小,不适合架设钢支撑,可以用型钢焊接成短节的型钢支撑作为支撑体系。工艺原理 钢支撑是支撑体系的一种形式。目前较为广泛的应用于地下工程,特别是深基坑开挖工程中最为常见,它主要是将基坑一侧土压力通过钢支撑的作用,传递到另一侧,与另一侧的土压力保持平衡,从而使基坑处于安全的状态,钢支撑轴力的变化能间接的反应出基坑两侧土压力变化情况,因此可以通过对钢支撑轴力监测,正确的指导安全施工。 基坑在开挖过程中,随着深度的增大,两侧土压力也随之增大,土压力通过力的传递到围护结构上,向基坑内侧侵斜,采用刚性的型钢对撑之后,将基坑两侧的土压力很好的平衡。以达到预期效果。 2工艺工法特点 钢支撑施工简单,适用性强,操作方便,时效性强,可周转重复使用。 3适用范围 主要使用在地下工程、深基坑工程。 4主要引用标准 《地铁设计规范》(GB50157) 《建筑基坑工程技术规范》(YB9258) 《建筑基坑支护技术规程》(JGJ120) 《地下铁道工程施工及验收规范》(GB50299)

《建筑桩基技术规范》(JGJ94) 《建筑工程施工现场供用电安全规范》(BG50104) 《建筑地基基础设计规范》(GB50007) 《建筑钢结构焊结技术规程》(JGJ81) 5施工方法 钢支撑架设与基坑土方开挖是深基坑施工密不可分的两道关键工序,支撑架设极具时间性和协调性,支撑架设的方法、时间、位置及预加力的大小直接关系到深基坑稳定的成败。支撑架设必须严格满足设计工况要求。 钢支撑拼装过程 钢支撑在拼装时保证支撑接头的承载力符合设计要求。钢支撑连接时必须对称上螺栓,按顺序紧固。要有钢支撑支托措施,防止坠落。 钢支撑安装前一定要检查钢管的平直度,若不平直要进行矫正。 钢支撑架设方法 每节段分层开挖至钢支撑架设的高度后,立即放出支撑位置线及标高线。 第一道钢支撑架设在冠梁预埋钢板上,其它各层钢支撑安装钢围檩支架牛腿后,安装加工好的钢围檩,钢支撑两端的钢围檩应保持同一水平位置。 将焊接好的三角形钢支架在钢支撑中心位置与钢围檩相焊接,并与其背后的抗剪加强肋板相焊接。 将厂家制作的单根支撑钢管与活接头采用高强螺栓进行现场连接,组装成为成型的单根钢支撑。 用2台25t汽车吊或1台50t履带吊(或龙门吊)吊放钢支撑到钢支座上,并使活动端较宽位置支撑于围护桩上。 钢支撑的长度由现场实际长度确定。微调采用特制钢楔,完成钢支撑组装的各种工作。 为防止钢支撑在施加轴力时由于自重产生过大的挠度,在对钢支撑施加预应力时汽车吊(或龙门吊)吊装钢丝绳必须持力,不得放松。 在钢支撑支架处焊接防坠钢板,完成施加预应力前的各种准备。

5、地铁车站钢支撑轴力自动补偿施工工艺工法

地铁车站钢支撑轴力自动补偿施工工艺工法 (QB/ZTYJGYGF-DT-0307-2014) 广州分公司王小孟 1 前言 1.1 工艺工法概况 钢支撑自动轴力补偿系统,是结合了现代机电液压一体化自动控制技术、计算机信息处理技术、总线通信技术以及可视化监控技术等高新技术手段,对支撑轴力进行全天候不间断监测,并根据高精度传感器所测参数值对支撑轴力进行适时的自动补偿来达到控制基坑变形目的支撑系统。 钢支撑自动轴力补偿系统将传统支撑技术与现代高科技控制技术等有机结合起来,对钢支撑轴力实时补偿与监控,实现对钢支撑轴力24小时不间断的监测和控制,使支撑系统始终处于可控和可知的状态。与传统钢支撑体系相比,自动轴力补偿系统能明显降低基坑围护结构的最大变化速率,控制基坑的变形,减小对邻近运营线路、建筑等周边环境的影响,有效解决常规施工方法无法控制的苛刻变形要求和技术难题。 目前在上海地区邻近地铁运营线的基坑应用较多,在深圳地铁11号线前海湾站首次应用。 1.2 工艺原理 钢支撑是基坑内支撑体系的一种常用型式。每根钢支撑有多个标准节钢管拼接而成,通过法兰盘进行连接。钢支撑两端为固定端、活动端端头,活动端通过活络头调节长度。常规做法是通过活动端的活络头用千斤顶对钢支撑按照设计要求预施加一定轴力,并安装轴力计监控钢支撑的轴力,以便掌握基坑结构变形引起的应力变化情况。钢支撑自动轴力补偿系统,是采用钢支座套箱端头替代活动端,钢支座套箱端头内安装千斤顶(设计轴力决定其吨位),通过液压转换为支撑轴力,与基坑外侧土压力保持平衡,从而使基坑处于安全的状态。地面通过监控站、操作站、现场控制站、液压伺服泵站等成套系统即时控制钢支撑端部千斤顶压力,通过持续“保压”,使钢支撑恒定轴力,起到自动控制、监测钢支撑轴力作用。 1.2.1 系统组成

地铁站钢支撑轴力计算新

地铁站钢支撑轴力计算书 庆丰路站: 根据基坑施工方案图,考虑基坑两头45度处单根14.5米最长的钢支撑和对基坑垂直的钢支撑单根23.2米最长的钢支撑进行受力分析计算,已知单根钢支撑承受的最大轴心垂直压力设计值为1906KN,考虑基坑两头45度支撑处钢支撑所承受的轴向力N=1906√2=2695KN。 钢材为:Q235-B型钢。取1.2的安全系数。 一、单头活动端处受力计算: 由单头活动端结构受力图可知,受力面积最小的截面为A-A处截面。

查表得,单根槽钢28c的几何特性为: 截面面积A=51.234 cm2, Ix=268cm^4, Iy= 5500cm^4。 该截面f取205N/mm2,截面属于b类截面。 (一)、受力截面几何特性 截面积:A=51.234×2+4×30=222.5 cm2 截面惯性矩: Ix=2×268+30×43/6=856 cm^4 Iy=2×5500+4×303/6=29000 cm^4 回转半径: ix=√Ix/A=√856/222.5=1.96cm iy=√Iy/A=√29000/222.5=11.42cm (二)、截面验算 1.强度 σ=1.2N/A=(1.2×2695×103)/(222.5×102) =145.4N/mm2

1.2N/φA=(1.2×2695×103)/(0.791×22 2.5×10 2)=183.7N/mm2

支撑轴力

深基坑钢支撑轴力作用指导书 随着城市建设的迅猛发展,城市中心深基坑工程也越来越多,深基坑支护体系的结构计算和现场测试信息化施工也显示出其重要的意义。钢支撑轴力监测则是反映支撑结构计算成果与施工工况的差距是否合理。同时也是深基坑开挖施工过程中预警的一个最直观的方法。 测量目的: 基坑围护支撑体系处于动态平衡之中,随着基坑施工工况的变化建立新的平衡。通过支撑轴力监测,可及时了解钢支撑受力及其变化情况,准确判断基坑围护支撑体系稳定情况和安全性,以指导基坑施工程序、方法,确保基坑施工安全。 测量原理: 通过设置在仪器内部的振弦,感知仪器轴向应变,通过其自身频率的变化反映出来的,他们之间的差别主要就是在于安装及费用方面。 观测方法: 使用FX-180型多功能读数仪进行测量,一般情况下轴力计的电缆线分为红色和黑色,先打开读数仪,将仪器模式切切换到F模式下,测量时将读数仪的鳄鱼夹红色的夹子夹到轴力计红色的电缆线上,黑色的夹子夹到黑色的电缆线上,读取读数仪显示屏上F值并做好记录。计算方法: 将现场记录的数据检查时间、观测员、记录员是否准确、清晰。在将

检查合格的数据输入电脑,计算出刚支撑的受力p,计算公式如下: P=K(f02-fi2) P:应力(单位KN); f0:初始频率; fi:本次频率; k:标定系数; 将计算出的受力整理成表、画出曲线图。做好分析报告,上报有关单位。 报警应急措施: 支撑轴力计是随基坑开挖围护结构变形或位移直接影响支撑受力的。当支撑受力达到报警时,分析报警的原因及因素,做好书面报告。及时通知各有关单位,特别是施工单位,采取相应措施,以保证基坑的安全性和稳定性。 注意事项: 装有轴力计的基坑一般为深基坑,在观测时必须做好安全三宝(安全帽、安全绳、安全网),雨天观测注意仪器的保护。我们使用的仪器都是电子仪器,雷雨天最好别进行观测,以防雷击。

基坑钢支撑计算实例

基坑钢支撑计算实例 本车站主体围护结构基坑内竖向设四道钢支撑斜撑。其中第三道、第四道的第四排和第五排为两根钢管并放。主要材料为φ=529、t=12mm(第四道为φ630、t=12mm)的钢管。本计算只对斜撑跨度最大的一跨(跨度取20m)进行了验算, 跨度为支撑两端钢围檩之间净距,其它各跨斜撑的截面尺寸和所用材料与该跨相同。 1、活动端肋板焊缝计算: .为保证φ529(630)钢管均匀受力且不在钢板上有丝毫位移,所以在钢管与钢板间用四块三角内肋板焊接(左右每边各二块),钢板厚度为20mm, 钢支撑厚度为t=12mm,钢支撑活动端千斤顶承压肋板厚度20mm,焊缝厚度按规范1.5×t1/2≤h f≤1.2t(t=12mm) 即5.2≤h f≤14.4,施工图纸上规定焊缝厚度为10mm 故焊缝厚度取10mm 按照设计最大轴力为3600KN,四块外肋板承担1/3 设计轴力(1200 KN),故分配到每块内肋板上的力为600KN 查表的直角焊缝的强度设计值f t w=160N/mm2 考虑到肋板上部焊缝承受一定轴力则有 N‘’=0.7×h f×∑L’w×βf×f t w=0.7×0.01×0.02×2×1.22×1.6×108=54656N N=N‘- N‘’=600-54.656=545.344KN l w=N/(2×0.7 ×h f×f t w)= 545.344 ×103/(2×0.7×0.01×1.6×108)+0.01=0.244m 故需要肋板的长度为25cm. 2、稳定性计、验算: 主体结构西北角、东北角、东南角和盾构上方设有钢支撑,其中西北、东北、东南角采用φ529(630)钢管钢支撑,盾构上方采用双工28b工字钢支撑。钢材全部为A3钢 应力σcr=200MPa;极限值为235MPa;标准值为215MPa 根据公式λp=(π2E/σp)1/2=100 首先根据公式:λ=μl/i 其中钢支撑的长度为20m, i为回转半径,查表得系数μ=1.0 钢支撑计算:

钢支撑架设技术要求

钢支撑架设技术要求 一、钢支撑场外组装 钢支撑在运送到场后,根据基坑开挖宽度尺寸和钢支撑长度进行选材配节,拼装成完全能吊装的单根成型钢支撑。预拼装完毕后,需按设计文件允许值要求检查钢支撑轴线偏差。 二、三角托架施工 按照设计要求的材料及尺寸制作三角托架,焊好后的钢三角托架应保证两直角边相互垂直,焊接牢靠,并有足够的稳定性,不得出现歪扭、虚焊现象。 每层土方开挖至指定标高后,测量放出三角托架轴线位置及标高,按设计间距、设计标高在围护结构上安装三角支撑,安装完毕后应检查相邻三角托架之间是否在同一水平面及标高。 膨胀螺栓钻孔后,应检查孔内是否存在地下水,若有地下水,应及时除水处理。

三、钢围檩施工 钢围檩一般采用双拼工字钢。分段加工,一般分段长度取2~3个支撑间距,同时确保每根钢支撑安装位置避开钢 围檩与钢围檩接缝。转角部位应根据实际长度加工。 钢围檩随支撑架设顺序逐段吊装,人工配合吊机将钢 围檩安放于钢三角托架上,并及时按设计要求安装防脱落装置。钢围檩安装后应检查钢三角托架是否因撞击而松动。钢围檩就位后,应检查与钢支撑接触面垂直度是否满足设计要求。若有设计要求,需在检查无误后在钢围檩与围护结构之间空隙填嵌设计填充物,一般为细石混凝土。本段钢围檩上的钢支撑预应力施加完毕后,应及时与上段钢围檩三面焊接,接成连续梁,避免出现悬臂现象。每段钢围檩接缝处,安装平面位置和高程位置应一致,不允许出现错台等现象。每层钢围檩须设置抗剪凳,,抗剪凳位置应与实际护披桩位置相 对应,凿出护披桩保护层内钢筯,与抗剪凳钢板相焊接,焊接长度应与钢板长度相对应。 三面焊接

四、钢支撑架设 采用吊车将在基坑外预拼装完毕的钢支撑吊入安装位置,吊装过程应严格按照起重吊装规范施工。 将钢支撑吊装就位在固定于钢围檩上的挂板处,安装必须保证钢支撑端头与围檩或预埋钢板密贴,钢支撑就位后应初步固定活络头。若施工场地及操作空间允许,应初步施加预应力后,再解开吊装钢丝绳。钢支撑安装完成后,为了防止钢支撑因轴力变化而产生不稳定现象,可利用钢丝绳和U 型卡拴住钢支撑两端头,并将钢丝绳一端采用膨胀螺栓固定在围护结构上,防止支撑掉落或倾覆。 背后填充 生命绳 钢支撑防脱落 钢围檩防脱落 五、施加预应力 钢支撑安装就位并复核位置、水平合格后,根据设计预加轴力确定千斤顶,预应力施工前,必须对油泵及千斤顶进行标定,并出具有效的标定报告。 钢支撑轴力施加分三次进行,支撑第一次施加设计轴力的40%,第二次施加设计轴力的70%,第三次施加设计轴力的100%。支撑的第一、二次加压完成后保持压力不小于3min,第三次加压完成后保持压力不小于5min,稳定后采用45号铸钢制作的楔块楔牢锁定,并设置插销。锁定后进行观察,3分钟无明显回压,保证轴力锁定及稳压情况符合设计及规

监测反力计使用说明书

JYFLJ-400振弦式反力计(轴力计) 1、用途和特点 JYFLJ-400振弦式反力计,又称轴力计,是一种振弦式载重传感器,具有分辨力高、抗干扰性能强,对集中载荷反应灵敏、测值可靠和稳定性好等优点,能长期测量基础对上部结构的反力,对钢支撑轴力及静压桩试验时的载荷,并可同步测量埋设点的温度. 2、主要技术指标 规格:50、100、150、200、250、300、400、500、600 测量范围:500、1000、1500、2000、2500、3000、4000、5000、6000KN 分辨力:≤0.08%F·S 综合误差:≤2.0%F·S 工作温度:-25℃~+60℃ 工作温度精度:±0.5℃ 3、埋设与安装 轴力计的使用场合较多,仪器的工作及施工条件也不完全一样,需要时可及时与我厂联系,,下面主要针对支撑轴力测量的安装情况进行叙述: 3.1由我厂配套提供的轴力计安装架(另购),安装架圆形钢筒上没有开槽的一端面与支撑的牛腿(活络头)上的钢板电焊焊接牢固,电焊时必须与钢支撑中心轴线与安装中心点对齐. 3.2待冷却后,把轴力计推入焊好的安装架圆形钢筒内并用圆形筒上的4个M10螺丝把轴力计牢固地固定在安装架内,使支撑吊装时,不会把轴力计滑落下来即可. 3.3测量一下轴力计的初频,是否与出厂时的初频相符合(≤±20HZ),然后把轴力计的电缆妥善地绑在安装架的两翅膀内侧,使钢支撑在吊装过程中不会损伤电缆为准. 3.4 钢支撑吊装到位后,即安装架的另一端(空缺的那一端)与围护墙体上的钢板对上,轴力计与墙体钢板间最好再增加一块钢板250㎜×250㎜×25㎜,防止钢支撑受力后轴力计陷入墙体内,造成测值不准等情况发生. 3.5 在施加钢支撑预应力前,把轴力计的电缆引至方便正常测量时为止,并进行轴力计的初频率的测量,必须记录在案.

钢支撑轴力计算表.docx

建设十一路站主体第三道支撑预加轴力支撑设计参数预加轴力 间距轴力设围檩预加施工控 支撑支撑轴计值角度轴力制轴力编号线位置 轴力预加锁定 m KN/m°轴力轴力 (KN) (KN)(KN) B3- 6-7轴 3.017090510510561.0 10 B3- 6-7轴 3.017090510510561.0 11 B3- 7-8轴 3.017090510510561.0 12 B3- 7-8轴 3.017090510510561.0 13 B3- 7-8轴 3.017090510510561.0 14 B3- 8-9轴 3.017090510510561.0 15 B3- 8-9轴 3.017090510510561.0 16 B3- 9-10轴 3.017090510510561.0 17 B3- 9-10轴 3.017090510510561.0 18 分级控制预加力 回归方程 标定系数 Y=a+bX(X:千斤第1级顶,Y:油压表) 千斤预加 油表油表 理论实际 顶编a b轴力 读数读数 号(KN) (MPa)(MPa) 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5

基坑施工监控与监测方案

第十章基坑施工监控与监测方案 10.1 监控与监测目的 基坑开挖施工过程中,基坑边坡土体应力状态发生变化,边坡土体和支护结构不可避免产生侧向位移、沉降。如果变形过大,或变形速率明显加快,超过了限值,会影响周围建筑物、管线的正常使用。基坑监测是基坑工程中重要的组成部分,尤其超深、周边环境复杂的基坑,监测工作是必不可少的,在施工过程中,对支护结构、周围建筑物必须进行监测,根据观测数据及时调整开挖速度和支护措施,确保基坑工程顺利进行。没有基坑监测就不能及时发现基坑的安全隐患。实践证明,忽视基坑监测造成的后果是灾难性的,因此,必需对基坑监测引起足够重视。该基坑工程基坑深度超过11m,5#楼基础深度超过15m,难度大、技术含量高。鉴于基坑工程的复杂性、不确定性因素,该工程必需采用信息化施工,通过监测,及时分析反馈监测结果,掌握基坑支护结构及周边环境的情况,确保基坑安全。概括而言,本次监测工作的主要目的如下: (1)及时为基坑工程施工反馈变形信息,施工方可随时根据监测资料调整施工程序,消除安全隐患,是工程信息化施工的重要组成部分,是判断基坑安全和环境安全的重要依据; (2)为修正设计和施工参数、预估发展趋势、确保工程质量及周边管线的安全运营提供实测数据,是设计和施工的重要补充手段; (3)为各相关单位优化施工方案提供信息。 10.2 监控与监测内容 10.2.1监测原则 (1)以该工程基坑施工区域周围3倍基坑开挖深度范围内地下管线、周边土体和基坑围护结构本身作为本工程监测及保护的对象; (2)基坑周边3倍开挖深度范围内的土体地面沉降比较明显地反映出基坑围护结构的变形情况和周边环境受基坑影响变形趋势。故基坑周围垂直基坑走向要布设若干组地表沉降监测断面; (3)设置的监测内容和监测点必须满足本工程设计和符合有关规范规程的要求,并能全面反映本工程施工过程中周围环境和基坑围护体系的变化情况; (4)监测过程中,采用的监测方法、监测仪器及监测频率符合设计和规范要求,能及时、准确地提供数据,满足信息化施工的要求; (5)监测数据的整理和提交满足现场施工及建设单位的要求。 157

温差对钢支撑轴力的影响及调整方法

温差对钢支撑轴力的影响及调整方法 摘要:为了探明和量化在特定条件下温差对钢支撑的影响并针对该影响采取相应措施指导施工,本文根据南宁轨道交通一号线广西大学站基坑工程的成功实例,分析了温差影响的相对幅度,并采用相应措施使“温差影响”变为“温差控制”。 关键词:钢支撑;支撑内力;温差影响;c abstract: in order to proven and quantify the temperature difference between the impact of the steel support under certain conditions and for the effects to take appropriate measures to guide the construction, this paper based on the successful examples of the station foundation pit one line of rail transportation in nanning guangxi university, analyzed the difference in temperature affect the relative amplitude, and to adopt appropriate measures so that the “temperature influence” to “temperature control”.key words: steel support; brace force; temperature difference influence; temperature control 中图分类号:tb61+9.2 文献标识码:a文章编号: 温差条件下钢支撑伸长率的实验 实验目的:自由状态下或未施加预应力条件下单位温差及单位长度钢支撑伸长率

钢支撑安装及拆除技术交底

技术交底记录(轨道交通工程)

钢丝绳,吊具采用20mm吊环。钢丝绳使用前仔细检查其安全性,若有破损、起毛、断股等现象,及时更换钢丝绳。 ③钢支撑需事先在地面上试拼好,然后再吊运至基坑,及时架设。钢支撑法兰盘连接螺栓采用对角和分等分顺序扳紧,一般分两次拧紧,支撑拼接采用扭矩扳手检测其力矩是否符合要求,保证法兰螺栓连接强度。拼接好的支撑经质检工程师及监理工程师检查验收合格后方可安装。 ④吊放钢支撑要缓慢放在钢围檩托架上,不得冲击、碰撞钢围檩。 ⑤轴力监测点布置:按监控量测施工布置图,确定钢支撑轴力监测点位置,拼接钢支撑时,考虑轴力计的长度,实际拼接长度要比普通钢支撑短20cm。轴力计布置在受力集中的典型断面上。 ⑥在确保钢板与钢围檩的焊接质量的同时,还应保证钢围檩与围护桩之间的稳定性。为了防止钢围檩松动、滑落,采用悬挂的方法,将钢拉钩一端用膨胀螺栓固定在桩上,另一端挂起钢围檩,将其悬挂在围护桩上,详见钢围檩悬挂保护详细构造图1。 图1 钢围檩悬挂保护详细构造图 ⑦钢支撑施加轴力后,用Φ14钢丝绳配合绳卡将钢支撑悬挂固定在围护桩上。悬挂方法同钢围檩悬挂保护。如图2所示

图2 钢支撑防脱落措施示意图 ⑧钢支撑安装完成后,在横抬梁设置抱箍,防止钢支撑因挠度变化移位。抱箍采用L80×80×5角钢制作。 (4)钢支撑施加轴向预应力和复加预应力 设计钢支撑预加轴力如下表1。 钢支撑轴力表表1 计算结果断面第一道 支撑 第二道 支撑 第三道 支撑 第四道 支撑 围护桩最大 水平位移 (mm) 基坑深 度(m) 西侧盾构段 预加轴力 (kN) 0400500400 20.7625.11轴力计算值 (kN) 462166834142398 东侧盾构段 预加轴力 (kN) 0400500400 20.2525.66轴力计算值 (kN) 819155336662889 标准段 预加轴力 (kN) 0400500400 19.2924.55轴力计算值 (kN) 579163032822138 说明:以上轴力为每根钢支撑的轴力,支撑轴力为设计值。 (1)钢支撑施加轴向力 ①在基坑开挖过程中随挖随撑,同时要对随挖随撑好的钢支撑及时施加的轴向预应力,以此减小由于支撑不及时而引起的围护结构变形。 ②采用汽车吊将加力器的两个100t千斤顶吊放到活络头加压处,定位加压,观察压力表,达到设计预加轴力值后,停止加压,将钢楔用大锤打入活络头预留

钢支撑方案

目录 一、工程概况 -----------------------------------------------------------2 二、施工流程 -----------------------------------------------------------2 三、施工方法 -----------------------------------------------------------2 四、预应力施加 --------------------------------------------------------4 五、支撑施工质量保证措施 -----------------------------------------5 六、施加荷载计算 -----------------------------------------------------6

七、临时用电安全管 ---------------------------------------------------6 八、安全及文明施工 ---------------------------------------------------7 九、施工机械的配备 ---------------------------------------------------8 十、主要材料 -------------------------------------------------------------8 十一、施工人员配备 ----------------------------------------------------8 十二、施工工期 ----------------------------------------------------------9 十三、钢支撑安装示意图 ----------------------------------------------9 附图:1、坡道换撑平面布置图

基坑钢支撑支护总结

基坑钢支撑支护总结 基坑支护是为保证地下结构施工及基坑周边环境的安全,对基坑侧壁及周边环境采用的支挡、加固与保护措施。 1、基坑支护特点 (1)基坑支护工程是个临时工程,设计的安全储备相对可以小些,但又与地区性有关。不同区域地质条件其特点也不相同。基坑支护工程又是岩土工程、结构工程以及施工技术互相交叉的学科,是多种复杂因素交互影响的系统工程,是理论上尚待发展的综合技术学科。 (2)由于基坑支护工程造价高,开工数量多,是各施工单位争夺的重点,又由于技术复杂,涉及范围广,变化因素多,事故频繁,是建筑工程中最具有挑战性的技术上的难点,同时也是降低工程造价,确保工程质量的重点。 (3)工程实践证明,要做好基坑支护工程,必须包括整个开挖支护的全过程,它包括勘察、设计、施工和监测工作等整个系列,因而强调要精心做好每个环节的工作。 (4)基坑支护工程包含挡土、支护、防水、降水、挖土等许多紧密联系的环节,其中的某一环节失效将会导致整个工程的失败。 (5)相邻场地的基坑施工,如打桩、降水、挖土等各项施工环节都会产生相互影响与制约,增加事故诱发因素。 (6)在支护工程设计中应包括支护体系选型、围护结构的承载力、变形计算、场地内外土体稳定性、降水要求、挖土要求、监测内容等,应注意避免“工况”和计算内容之间可能出现的“漏项”,从而导致基坑失误。在施工过程中,尤其在软土地区中施工时,应该认真研究合理安排好挖土的方法,以及支撑与挖土的配合,将会显著地减少基坑变形和基坑支护事故的发生。 (7)基坑支护工程造价较高,但又是临时性工程,一般不愿投入较多资金。可是,一旦出现事故,处理十分困难,造成的经济损失和社会影响往往十分严重。(8)基坑支护工程施工周期长,从开挖到完成地面以下的全部隐蔽工程,常需经历多次降雨、周边堆载、振动、施工不当等许多不利条件,其安全度的随机性较大,事故的发生往往具有突发性。 2、常见的基坑支护型式主要有:

钢支撑技术交底

基 坑 开 挖 钢支撑组拼 施工监测 吊 装 钢 支 撑 施 加 预 加 力 楔 块 锁 定 安设牛腿钢围檩 技术交底书 表格编号 1310 项目名称 杭州地铁2号线SG2-22标项目经理部 第 页 共 页 交底编号 工程名称 新月路站A 、D 出入口钢支撑安装 设计文件图号 HD2/2/S/HCY/04/Z07/JG/04/A 施工部位 新月路站A 、D 出入口 交底日期 2016年11月 日 技术交底: 1 工程概况 新月路站A 、D 出入口基坑采用钢支撑作为支撑体系,由冠梁、钢支撑和钢围檩等组成。钢支撑选用Φ609×16mm 钢管,由多节钢管拼成一道支撑,并用法兰盘、螺栓连接;钢围檩选用HW400×400×13×21双拼H 型钢。基坑支撑体系竖向分布三道钢支撑,其中第一道钢支撑架设在冠梁上,第二道和第三道钢支撑架设在钢围檩上。 2 施工工序流程 钢支撑施工流程图 3 施工准备 3.1 材料进场 按照计划用量备足各种长度的φ609×16钢管、活络头和不同规格的钢垫块、钢楔子、HW400×400×13×21型钢、角钢、连接螺栓、钢板等支撑材料,分类堆放在材料场。钢管

图4-1 钢支撑、钢围檩架设立面图 注:A出入口基底标高为-5.10,D出入口基底标高为-5.15。 (2)测量放线 基坑开挖到支撑设计底标高位置后,对钢支撑控制轴线和水准标高进行测放,准确定位钢支撑的轴线和标高位置,并采用十字交叉法划线标识。 (3)钢围檩的安装 钢围檩安装时要保证其紧密顶压在工法桩上,并按设计施工图的布置间距,在工法桩上定出支撑中心点位,在标出的支撑位置处凿出工法桩内H型钢,以支撑中心的水平线为基准,将支撑牛腿及拉结筋焊接到H型钢相应的位置。

基坑钢支撑轴力应力伺服自动补偿系统技术的原理和应用

基坑钢支撑轴力应力伺服自动补偿系统技术的原理和应用 针对上海绿地恒滨置业集团龙华路1960地块项目紧邻地铁深基坑开挖具体情况,运用钢支撑轴力应力伺服系统,减少钢支撑轴力损失。并对基坑临近地铁侧变形最大位置点进行监测,使基坑邻地铁侧围护地下连续墙的变形控制在20mm之内,地铁沉降控制在5mm以内,确保了周边居民建筑的安全和地铁运行安全。 Key words:deep pit;steel support;stresses servo system;envelope underground continuous wall;deformation control 本工程地下室与7#线共用地下连续墙,为了确保7#线地铁正常运营安全,申通地铁公司对紧邻地铁基坑工程基坑变形提出了更高标准和更严要求,变形控制在20mm之内,工期由5个月改为3个月,施工难度逐渐加大。为确保基坑及地铁安全,基坑施工过程中必须运用有效的控制变形工具、施工工艺及相关控制措施。 本文介绍了钢支撑轴力应力伺服系统的原理和施工应用,并结合基坑、地铁围护变形数据的整理分析,总结应力伺服系统在施工中基坑地铁变形曲线趋势,为钢支撑轴力应力伺服系统应用提供现场依据,从而确保基坑施工与地铁正常运营安全。 1.应力伺服自适应支撑系统介绍 应力伺服自适应支撑系统是结合了现代机电液一体化自动控制技术、计算机信息处理技术以及可视化监控系统等高新技术手段,对支撑轴力进行全天候不间断监测,并根据高精度传感器所测参数值对支撑轴力进行适时的自动或手动补偿来达到控制基坑变形目的的支撑系统。运用自适应支撑系统,实现了对钢支撑轴力的实时监测和控制,解决常规施工方法无法控制的苛刻变形要求和技术难题,使工程始终处于可控和可知的状态,具有良好的社会效益、经济效益和环境保护效益。 2.应力伺服系统施工原理 钢支撑轴力应力伺服系统主要分为4部分:PC人机交流系统,DCS控制系统,油压泵压力系统和钢支撑系统(见图1),其中DCS控制系统为整个系统的控制枢纽,连接其他3大系统。DCS将数据反映至PC系统,显示给监测人员;控制油压泵开启或关闭,增压保压;接收钢支撑端部千斤顶轴力数据,与设计数据进行比较。PC系统将设计数据输入,转换成视觉可操作平面,油压泵提供支撑轴力支持,支撑直接进行压力输出(施予地下连续墙),同时通过传感器将实时轴力数据反馈给DCS控制系统。当反馈数据低于设计轴力数据范围时,DCS 控制系统输出信号驱动油压泵系统开启工作,油压泵不断输送给钢支撑千斤顶压力,待传感器传回数据在一段时间(一般5~10min)稳定在设计数据之上时,

基坑监测方案完整版

长江国际花园期住宅小区(凯迪大酒店)酒店二期项目 基坑工程 监 测 方 案 扬州大学工程设计研究院 二○一九年一月

监测方案 工程名称:长江国际花园期住宅小区(凯迪大酒店)酒店 二期 工程地点:泰兴市虹桥镇虹桥大道北侧,飞虹路东侧 建设单位:江苏凯地置业有限公司 编写: 校对: 审核: 扬州大学工程设计研究院 2019年01月25日 目录 1. 工程概况 (4)

2. 监测目的及编制依据 (4) . 监测目的 (4) . 编制依据 (4) 3. 监测内容及布点方法 (5) . 本工程主要监测项目 (5) . 基准点布设 (5) . 监测点布设 (6) 4. 监测方法及精度 (9) . 平面控制网及水准基准网 (11) . 观测注意事项 (11) . 数据处理及分析 (11) . 围护桩(坡)顶面位移及沉降 (12) . 围护结构外围地下水位观测 (13) . 周围道路及建筑沉降 (14) . 深层土体水平位移 (14) . 锚杆内力 (14) . 巡视检查 (15) 5. 仪器设备和人员组成 (15) 6. 监测频率 (16) 7. 预警值和预警制度 (17) . 监测报警 (17) . 监测报警措施 (17) 8. 监测数据的处理及信息反馈 (17) . 监测数据的分级管理 (17) . 监测数据的分析和预测 (18) . 监测数据的反馈 (18) 9. 技术保证措施 (18) . 测试方法 (19) . 测试仪器 (19) . 监测点的保护 (19) . 数据处理 (19) 10. 服务承诺 (19) 11. 合理化建议 (20) 1.工程概况 长江国际花园期住宅小区(凯迪大酒店)酒店二期。受业主委托,拟对此基坑进行坡顶的位移及沉降监测、圈梁的位移及沉降监测、围护结构外围地下水位监测、深层土体水平位移监测、支撑轴力、周围道路及建筑沉降监测。

深基坑工程钢支撑轴力实测分析预测

深基坑工程钢支撑轴力实测分析与预测 摘要:随着地下空间的开发利用,各种深基坑工程不断涌现,钢支撑技术因施工方便在深基坑设计中广泛应用。目前,对钢支撑系统的研究多采用传统理论和数值模拟技术,这些方法对模型的基本参数有严格要求,通常情况下很难取得。人工神经网络具有很强的学习、联想和抗干扰能力,在预测分析等方面表现出极大的优势。本文以青岛地铁火车北站深基坑工程为背景,通过钢支撑轴力现场监测得到轴力变化规律。研究深基坑支撑轴力变化影响因素,将各因素根据一定规律进行划分,建立了钢支撑轴力影响因素的评价指标体系。并基于人工神经网络对钢支撑轴力进行预测,预测数据和实测数据吻合较好。 abstract: with the development and utilization of underground space, a variety of deep foundation pits are constantly emerging. the steel support technology is widely used in deep foundation design because of its simple and convenient construction. at present, the research on steel support system has been by using the traditional theory and numerical simulation technology; however, these methods have a higher demand for the basic parameters of the model. under normal circumstances, it is difficult to obtain these parameters. the artificial neural network has a strong learning, lenovo and anti-jamming capability, and has shown

钢支撑安装质量控制要点

钢支撑安装质量控制要点: 一、钢支撑及围檩进场:检验构件大小尺寸是否与设计相符,构件出厂合格证,钢板、钢管、焊丝、高强度螺栓送检,钢支撑做焊缝探伤实验;二、斜撑段及直撑安装:1、围檩底部施做三角托架,尺寸、原材必须符合设计与规范要求,检查螺栓、螺栓打眼深度28.5cm,螺栓安装不得外漏太多,三角托架安装时必须拉线,确保顶面在同一标高,安装完成后,托架必须牢固,螺栓必须设止回垫片,检验合格后方可架设围檩;2、钢围檩必须平直,不得有凹凸不平、起拱、损坏现象,围檩与地下连续墙间距10cm,采用C20细石混凝土填充,两段围檩接口处,采用700*200*20钢板进行封口焊接,围檩必须施做防坠措施,在围檩上部外侧钢板处焊接吊耳,吊耳必须按图纸设计要求设置,采用双面满焊焊接,在吊耳对应的地下连续墙上1m左右位置打眼安装膨胀螺栓,打眼深度22cm,采用M20膨胀螺栓,螺栓插入深度必须符合要求,螺栓紧固时,外漏丝扣必须达到1-2丝,螺母背后设止回垫片,防坠杆件必须符合设计要,防坠拉杆角度应在45°~ 60°之间;围檩与每幅地下连续墙工字钢处采用20mm厚钢板坡口焊接,起到抗剪效果;3、钢支撑斜支座与围檩焊接:同一道钢支撑两个斜支座定位必须准确,保证架设完成后斜撑与围檩两边成等腰三角形,斜支座内部设两块梯形钢肋板,必须与支座成满焊状态,斜支座与围檩焊接面缝隙不宜过大,两侧焊接口采用满焊,焊接完成后及时清除焊渣,斜支座与围檩连接处,大于90°角位置,焊接带肋板;活络端斜支座底部焊接钢牛腿,牛腿必须按图纸要求进行加工,

与支座采用双面焊满焊;4、钢支撑拼装与安装:钢支撑应提前拼装完成,拼装过程中,两段支撑接口处不得有错位现象,螺栓必须紧实,每道螺栓螺母后必须设止回垫片;钢支撑吊装架设时,支撑周边除专业施工人员外,不得站人,支撑必须安全平稳的架设到支座牛腿上,活络端、固定端与支座接触面不得偏移;5、支撑轴力加设:采用两个千斤顶在活络端两侧同时加压,加压强度必须严格按照设计(23Mpa)要求进行施工,加压分两次进行,第一次加设设计轴力的50%,持荷时间5-10min,第二次加压到设计轴力100%,持荷时间5-10min,并观察度数表变化,如压力有回弹,需再次实施加压力;6、支撑轴力加设完成后,对围檩三角托架、防坠拉杆、钢支撑连接处螺栓进行二次紧固,在钢支撑两端焊接吊耳及对应地下连续墙上部1.5m 位置打眼植入膨胀螺栓,采用花篮螺丝、钢丝绳连接对钢支撑进行防坠保护。7、直撑安装时,需先将地下连续墙预埋钢板凿出,并检验两侧预埋钢板位置是否在同一水平面,定位完成后,在两块钢板同一标高位置焊接钢托盘,钢托盘与钢板满焊,钢托盘底部焊接牛腿,以上工序完成后方可架设支撑。三、轴力监测:钢支撑活络端处预埋轴力监测计,每天进行监测,轴力应变较小时,及时安排施工人员对钢支撑轴力进行补加;轴力应变较大时,及时作出预警并分析原因做相关措施。

相关文档
最新文档