Ⅲ型风力发电增速齿轮箱有限元分析

Ⅲ型风力发电增速齿轮箱有限元分析
Ⅲ型风力发电增速齿轮箱有限元分析

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

减速齿轮箱课程设计

减速齿轮箱课程设计

————————————————————————————————作者:————————————————————————————————日期: ?

机械设计基础课程设计说明书 设计题目:减速齿轮箱 专业:热能与动力工程 学生姓名: 学号: 班级: 指导教师:

目录 一、传动装配的总体设计 1.1电机的选择 (3) 1.2求传动比··················································3 1.3计算各轴的转速、功率、转矩 (4) 二、链的设计计算·············································4 三、齿轮的设计 3.1原始数据 (5) 3.2齿轮的主要参数 (5) 3.3确定中心距 (6) 3.4齿轮弯曲强度的校核 (7) 3.5齿轮的结构设计············································7 四、轴的设计计算 4.1轴的材料的选择和最小直径的初定····························8 4.2轴的结构设计 (8) 4.3轴的各段直径 (8) 4.4各轴的轴向距离···········································9 4.5轴的弯曲强度的校核 (10) 五、滚动轴承的选择 5.1滚动轴承的选择 (10) 六、键连接的选择与计算

6.1键连接的选择和校核 (10) 七、联轴器的选择 7.1类型选择 (12) 7.2计算转矩··············································12 7.3型号选择 (12) 八、润滑方式、润滑油型号及密封方式的选择 8.1润滑方式、润滑油型号的选择 (12) 8.2减速器密封方式的选择·······································12 九、箱体及附件的结构设计和选择 9.1箱体的结构尺寸 (12) 十、参考资料 (13) 机械设计课程设计计算说明书 设计要求: 工作年限:8年 工作班制:2 工作环境:清洁 载荷性质:平稳 生产批量:小批 技术参数: 滚筒圆周力:2200N 滚筒直径:300mm 带速:1.8m/s滚筒长度:400mm 齿轮箱设计原理简图

风力发电并网技术及电能控制分析 樊海

风力发电并网技术及电能控制分析樊海 发表时间:2019-07-24T13:41:31.893Z 来源:《电力设备》2019年第5期作者:樊海 [导读] 摘要:风力发电技术日趋成熟,装机容量在不断增加,虽然可以在一定程度上缓解社会生产与电力资源之间的供需矛盾,但是风电总量的增加还是对电网系统产生了一定影响。 (宁夏银星能源股份有限公司宁夏银川市 750021) 摘要:风力发电技术日趋成熟,装机容量在不断增加,虽然可以在一定程度上缓解社会生产与电力资源之间的供需矛盾,但是风电总量的增加还是对电网系统产生了一定影响。一般风力发电厂多建设在地广人稀地区,远离供电网中心区域,所需承受的冲击力比较小,在并网时就很容易导致配电网出现谐波污染与闪变问题。并且受风力发电特性影响,其不稳定性也会影响电网整体供电质量。因此还需要加强对风力发电并网技术与电能控制策略的研究。 关键词:风力发电;并网技术;电能控制 1风力发电并网技术 1.1同步并网技术 同步发电机机组与风力发电机组保持相同步调,是风力发电并网技术实现的最佳效果。对于风力发电来讲,整个过程并不稳定,受风力、风速、风向等因素影响较大,因此发电转子也会产生较大幅度的摇摆,使得风电并网调速难以满足同步发电机的精度,有非常大的可能会出现失步状况。怎样才能够实现和推广风力发电的同步并网一直都是技术研究要点,目前已经取得了初步效果,可以为风力发电与发电运营提供一定支持。 1.2异步并网技术 异步发电动力组和风力发电动力组两者先进行结合然后保持相同步调运转,则为异步并网技术,与同步并网技术相比,受限的可能性极大程度上地降低,无需风力发电并网调速精准做到与同步发电机精度一致,只需要发电转子运转时风力发电并网调速异步发电机的转动转速保持一定程度的协调一致即可。风力电机组搭配使用的异步发电机方式,可避免整个系统设置复杂的控制装置,并且在并网后,也不必担心产生无振荡或者失步问题,整体运行状态相对稳定。但是就实际应用效果来看,电力发电异步并网技术还存在一定缺陷,部分情况下在并网后,会因为冲击电流过大、电压降低等因素干扰,而导致风力发电系统异常,尤其是不稳定系统频率值降低过大,会导致异步发电机的电流急剧增大,造成系统运行过载,甚至整个瘫痪,生产安全风险增大,因此想要选择此种并网方式,还需要提前做好相关准备工作,采取一定措施来维持异步风力发电机组的稳定运行状态。 2我国风力发电技术现存问题 我国风力发电技术发展趋势良好,但是在实际应用中仍旧存在较大问题,在顶层技术上的建设较弱,和美国等发达国家有着较大的差距,发电设备的建设以及制造成本较高,不仅在购入元件上花费过多资金,且涉及到大量的专利费、技术咨询费以及许可费,这就造成了巨大的损失,并且传统的风力发电技术规范,制约着创新思想的发展,在顶层技术上一直都没有创新。如今,我国风力发电技术处于一个稳固的瓶颈,在规划上没有协调好需求和发展之间的关系,风力电厂建设和建设区域的实际用电量存在一定矛盾。因此,我国应该尽快提高顶层技术,解决科研和需求之间的供需矛盾,在经营的过程中应该注重长远的发展,舍弃一定的经济效益来推动科研技术发展以及社会发展。 3风力发电电能控制要点 3.1安全生产体系建设 我们一定要明确风力发电安全生产是一个持久的过程,它需要我们长期共同努力。在这个过程中,我们需要不断地发现问题并且不断地改进和完善每个环节。各个风力发电企业在这个过程中要发挥自身的作用。在符合国家法律法规的前提下,企业应当结合一些相关政策对企业本身进行改革,建立完善的安全生产管理体系。除此之外,企业必须建立严格的规章制度来规范员工的行为,同时组织全体员工对它们进行学习,使企业的规章制度牢记于每个人的心中。这样,企业的安全生产体系才能显露其最佳的效果。电力企业各部门应该有明确分工,各部门工作人员也要正确认识自己的职责。在做好自己本职工作的之后,与其他部门进行一定的合作交流,确保整个工作流程的实施,充分调动员工的积极性,以求带动全体成员参与到风力发电安全生产的监督和管理上来。 3.2遵循能源发展原则 风力发电技术需要遵循新能源发展原则,首先,需要遵循安全发展原则,风力发电既要能够满足电力系统安全负荷要求,同时也要和各类电力能源相互调剂,从而确保电力能源传输的稳定性、安全性;其次,需要遵循经济性发展原则,以新能源发电总量为指导内容,结合风力发电的技术特征,实现风力发电的技术、投入、收益均衡协调。一方面,要实现风力发电和常规电力发电的相互协调;另一方面,需要协调风力发电工程建设和电网建设之间的关系,从而让电力系统的调节能力得到保证;最后,要遵循有序发展原则,实现陆地、海上风力发电的协同发展,从而完成我国风力发电建设目标。 3.3完善双馈发电变速恒频系统 双馈发电变速恒频系统是使用双馈绕线式发电机的风力发电机组,所谓双馈,指的是双端口馈电,定子和转子可同时发电,互相切割磁感线。通常来说,双馈电机必须配合变频器使用,变频器给双馈电机转子施加转差频率电流,起到励磁的作用,有效调节励磁电流的相位、频率、幅值,实现稳定的定子恒频输出。在风力发电系统中,无论风力作出什么样的变化,当电机转速改变的时候,利用变频器就可调整旋转速度,从而让电机的转速和风速之中保持同步(转子励磁电流改变转子磁势)。该系统主要是依靠转子侧来实现的,通过转子电路的功率由交流励磁发电机转速运行来决定,所以该系统的成本较低,设计较为简便,且后期的维护也十分便捷。另外,该系统还能吸收更多无功功率,可有效解决电压升高的弊端,从而有效提升电网运作效率,保障电能换换质量以及稳定性。 3.4电压波动与闪变控制 1)增设有源电力滤波设备。风力发电并网技术的应用,为避免过程中出现电压闪变问题,需要在负荷电流产生较大波动前,对因负荷变化产生的无功电流进行补偿,做到补偿负荷电流的目的。在风力发电系统中,可关断电子设备作为其中的零件之一,将其应用到有源电力滤波设备中,能够通过电子控制设备来将此过程中的系统电源更换掉,实现畸变电流向电压负荷的输送,确定只向负荷电流提供系统正弦基波电流。2)增设优良补偿设装置。为有效抑制电压波动的产生,可选择向系统增设动态恢复设备以及增设优良补偿装置的方式应

风力发电机的增速齿轮箱的设计

摘要 风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。 本文设计的是兆瓦级风力发电机组的齿轮箱,通过方案的选取,齿轮参数计算等对其配套的齿轮箱进行自主设计。 首先,确定齿轮箱的机械结构。选取一级行星派生型传动方案,通过计算,确定各级传动的齿轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。 其次,基于Pro/E参数化建模功能,运用渐开线方程及螺旋线生成理论,建立斜齿轮的三维参数化模型。 然后,对齿轮传动系统进行了齿面接触应力计算。先利用常规算法进行理论分析计算。关键词:风力发电,风机齿轮箱,结构设计,建模 Abstract The rapid development of wind power industry lead to the prosperity of wind power equipment manufacturing industry.As the core component of wind turbine,the gearbox is received much concern from related industries and research institution both at home and abroad.However, due to the domestic research of gearbox for wind turbine starts late,technology is weak,especially in the gearbox for MW wind turbine,which mainly relied on the introduction of foreign technology.Therefore,it is urgent need to carry out independent development and research on MW wind power gearbox,and truly master the design and manufacturing technology in order to achieve the goal of localization. This paper takes the wind power。The independent design of the gearbox matching for the wind turbine has been carried out by selecting the transmission scheme and calculating the gear parameters。 Firstly, the mechanical structure of gearbox is determined.The two-stage derivation planetary transmission scheme is selected.The gear parameters of every stage transmission is

风机齿轮箱介绍

设为首页 加入收藏 联系我们退出登录用户管理 论文发布人:chjchjchj 减小字体增大字体站内广告站内搜索 栏目导航

低温状态下抗冷脆性等特性;应保证齿轮箱平稳工作,防止振动和冲击;保证充分的润滑条件,等等。对冬夏温差巨大的地区,要配置合适的加热和冷却装置。还要设置监控点,对运转和润滑状态进行遥控。 不同形式的风力发电机组有不一样的要求,齿轮箱的布置形式以及结构也因此而异。在风电界水平轴风力发电机组用固定平行轴齿轮传动和行星齿轮传动最为常见。 如前所述,风力发电受自然条件的影响,一些特殊气象状况的出现,皆可能导致风电机组发生故障,而狭小的机舱不可能像在地面那样具有牢固的机座基础,整个传动系的动力匹配和扭转振动的因素总是集中反映在某个薄弱环节上,大量的实践证明,这个环节常常是机组中的齿轮箱。因此,加强对齿轮箱的研究,重视对其进行维护保养的工作显得尤为重要。 第二节设计要求 设计必须保证在满足可靠性和预期寿命的前提下,使结构简化并且重量最轻。通常应采用CAD优化设计,排定最佳传动方案,选用合理的设计参数,选择稳定可靠的构件和具有良好力学特性以及在环境极端温差下仍然保持稳定的材料,等等。 一、设计载荷 齿轮箱作为传递动力的部件,在运行期间同时承受动、静载荷。其动载荷部分取决于风轮、发电机的特性和传动轴、联轴器的质量、刚度、阻尼值以及发电机的外部工作条件。 风力发电机组载荷谱是齿轮箱设计计算的基础。载荷谱可通过实测得到,也可以按照JB/T1030 0标准计算确定。当按照实测载荷谱计算时,齿轮箱使用系数KA=1。当无法得到载荷谱时,对于三叶片风力发电机组取KA=1.3。 二、设计要求 风力发电机组增速箱的设计参数,除另有规定外,常常采用优化设计的方法,即利用计算机的分析计算,在满足各种限制条件下求得最优设计方案。 (一)效率 齿轮箱的效率可通过功率损失计算或在试验中实测得到。功率损失主要包括齿轮啮合、轴承摩擦、润滑油飞溅和搅拌损失、风阻损失、其它机件阻尼等。齿轮的效率在不同工况下是不一致的。 风力发电齿轮箱的专业标准要求齿轮箱的机械效率应大于97%,是指在标准条件下应达到的指标。 (二)噪声级 风力发电增速箱的噪声标准为85dB(A)左右。噪声主要来自各传动件,故应采取相应降低噪声的措施: 1. 适当提高齿轮精度,进行齿形修缘,增加啮合重合度; 2. 提高轴和轴承的刚度; 3. 合理布置轴系和轮系传动,避免发生共振; 4. 安装时采取必要的减振措施,将齿轮箱的机械振动控制在GB/T8543规定的C级之内。(三)可靠性 按照假定寿命最少20年的要求,视载荷谱所列载荷分布情况进行疲劳分析,对齿轮箱整机及其零件的设计极限状态和使用极限状态进行极限强度分析、疲劳分析、稳定性和变形极限分析、动力学分析等。分析方法除一般推荐的设计计算方法外,可采用模拟主机运行条件下进行零部件试验的方法。 在方案设计之初必须进行可靠性分析,而在施工设计完成后再次进行详细的可靠性分析计算,其中包括精心选取可靠性好的结构和对重要的零部件以及整机进行可靠性估算。 本月热门 ·语文教学论文集语文论文·毛泽东军事思想来源论略_·电子商务与物流_电子商务·建立科学有效的绩效管理体·浅谈小学一年级数学教学数·突围三农:求教马克思_经·锁定高效沟通管理_管理理·音乐课应重视音乐欣赏论·小学低年级识字教学浅谈语·网络营销市场每周分析摘要·小学一年级语文数学试卷集·德育“六化”_德育论文 ·初中学生期末评语300条_班·试论旅游资源的开发与保护·“做个守纪律的学生”主题 本日热门 ·浅谈小学一年级数学教学数·小学低年级识字教学浅谈语·音乐课应重视音乐欣赏论·突围三农:求教马克思_经·初中学生期末评语300条_班·试论大学生体育能力及其培·社交礼仪 ·全面预算发展趋势——战略·学会宽容_思想道德论文·如何创建学习型组织 ·目前国内经济形势与建立社·“做个守纪律的学生”主题·小学一年级数学试题库 ·探究──小学科学教育的灵·在企业各层级建立领导力

风力发电并网方式的

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第7期0引言 当今石化能源的日益匮乏,社会的发展对能源的需求不断增加。 风能作为一种清洁可再生能源越来越受到世界各国的重视。近年来风 力发电在国内外都得到了突飞猛进的发展。但由于风能的随机性和不 稳定性,在其发展的过程中也出现很多问题,其中风力发电并网难最 为突出。风电并网技术成为风力发电领域研究的重难点问题。如何将 并网瞬时冲击电流降低到最小规范值,进一步保证并网后系统电压稳 定是当今研究的重点方向。本文对并网技术问题进行相关研究,提出 并网运行方式并进行分析比较。1风力发电并网运行的分析随着风力发电的快速发展,风电场的并网已成为必然的途径。从风电问世以来,风力发电经历了独立运行方式、恒速恒频运行方式、变速恒频运行方式。当今变速恒频发电系统已成为主流,但风力发电并 网仍是热点的研究话题。 不管是哪一种发电类型,并网总是以保证电力系统稳定性为基本 原则。风力发电相比于火力发电和水力发电,由于其不稳定性需要更 精确的并网控制技术。并网运行时,需满足:(1)电压幅值与电网侧电 压幅值相等;(2)频率与电网侧频率相同;(3)电压相角差为零;(4)电压 波形及相位与电网侧的电压波形及相位保持一致。这样保证了并网时 冲击电流理想值为零。否则,若并网产生很大的瞬时冲击电流,不仅损 坏电力设备,更严重的是使电力系统发生震荡,威胁到电力系统稳定 性。 从大的方向看,风力发电系统并网分为恒速恒频风力发电机并网 和变速恒频风力发电机并网。恒速恒频并网运行方式为风力发电机的 转子转速不受风速的影响,始终保持与电网频率相同的转速运行。虽 然其结构简单、运行可靠,但是对风能的利用率不高,机械硬度高,而 且发电机输出的频率完全取决与转速,如控制不好,并网时会发生震 荡、失步,产生很大的冲击电流。所以恒速恒频系统已逐渐退出人们的 视线。随着电力电子技术的日益成熟,以变速恒频并网运行方式取而 代之。变速恒频风力发电并网系统是发电机转速随着风速的变化而变 化,系统通过电力电子变化装置,使机组输出的电能频率控制在与电 网频率一致。变速恒频并网方式减少了机组的机械应力,充分的利用 风能源,使发电效率大大提高;并网时通过精确合理地控制电力电子 变换器,使得并网更加稳定,降低系统因冲击电流过大使电网电压降 低从而破坏电力系统稳定性。2变速恒频双馈发电机并网 目前,并网型的变速恒频风力发电机组主要采用双馈发电机和永 磁同步发电机。 变速恒频双馈发电机的并网原理图如图1所示。 双馈发电机并网的工作原理为当风速变化时,发电机的转子励磁回路由双PWM 变频器控制转子励磁电流的频率,转子转速与励磁电流频率合成定子电流频率。调节励磁电流频率,使定子电流频率始终与电网频率保持一致。电机转动频率、定、转子绕组电流频率的关系式为:f 1=pn 60±f 2式中:f 1为定子电流频率,f 2为转子电流频率,n 为转子转速。双馈发电机既可以同步运行也可以异步运行,通过精确地控制双PWM 变频器,可以实行“柔性并网”,大大提高并网的成功率。一般双馈发电机 并网的结构相对复杂,大多采用多级齿轮箱双馈异步风力发电机组。 当自然风速使得风力发电机转子转速频率与电网频率相同时,风力发 电机同步运行;当风力发电机的转速小于或者大于电网频率时,风力 发电机异步运行,通过双向变频器实现发电机组转子与电网的功率交 换,保证输出频率与电网侧保持一致。在异步运行程中,不仅有励磁损 耗,而且还要从电网吸收无功功率,所以需在并网侧安装无功补偿器。图1变速恒频双馈发电机的并网原理图3直驱式永磁同步发电机并网变速恒频永磁同步发电机并网原理图如图2所示。图2变速恒频永磁同步发电机并网原理图 直驱式永磁同步发电机并网的原理为当风速改变时,发电机输出不同频率的交流电,经过不可控整流电路将交流电变成直流电,再经过DC/DC 直流斩波让直流电压幅值保持压稳定。以逆变器为核心,采用IGBT 作为开关器件构成全桥逆变电路,将整流器输出的直流电逆变成与电网侧电压相角、幅值、相位、频率相同的交流电。逆变有时会产生一定的电压谐波污染和冲击电流,这时必须有效(下转第92页)风力发电并网方式的研究 张伟亮潘敏君韦大耸陈富玲 (贺州学院机械与电子工程学院,广西贺州542800) 【摘要】通过分析风力发电系统并网方式的原理,针对风力发电并网难的问题,提出利用直驱式永磁同步发电机实现风力发电并网。直驱式永磁同步发电机并网比传统的恒速恒频并网方式更加稳定。 【关键词】风力发电;并网运行;恒速恒频;变速恒频 Study on wind Power Grid-connected Mode ZHANG Wei-liang PAN Min-jun WEI Da-song CHEN Fu-ling (School of Mechanical and Electronics Engineering,Hezhou Univ.Hezhou Guangxi,542800,China ) 【Abstract 】By analyzing the theory of grid-connected wind farms,the paper presents using direct-driven permannet magnet synchronous generator to achieve grid-connerted wind power according to the problem in wind power grid-connected difficult.Direct drive permanent magnet synchronous generator than traditional way of constant speed constant frequency grid interconnection is more stable. 【Key words 】Wind power generation ;Parallel operation ;Constant speed constant frequency ;Variable speed constant frequency ※项目基金:此文为贺州学院大学生创新项目研究成果,项目编号2013DXSCX08。 作者简介:张伟亮(1982—),男,硕士,讲师,从事电气工程及其自动化的教学及高压设备的生产研发。 潘敏君,男,贺州学院电气工程及其自动化专业在读学生 。 ○本刊重稿○4

南京高精传动设备制造集团有限公司高线粗中轧齿轮箱飞剪减速机技术协议

XXXXX钢铁集团有限公司 高线工程项目 65万吨/年高速线材生产线1H-14V平立交替轧机齿轮箱,1#、2#飞剪 技术协议 甲方:XXXXXXX钢铁集团有限公司 乙方:南京高精传动设备制造集团有限公司

年月日 XXXXX钢铁集团有限公司(甲方)和南京高精传动设备制造集团有限公司(乙方)就XXXX钢铁集团有限公司65万吨/年高速线材生产线1#~14#轧机齿轮箱,1#、2#飞剪的设计、制造、技术服务等有关技术事宜经过友好协商,达成如下技术协议: 1 概述 1.1设备的用途和要求 新建高速线材生产线设计规模为年产65万吨的高速热轧盘条,该生产线为单线高速线材生产线,布置在21m主轧跨内。平台标高+2000mm,轧制线标高+2800mm。 产品规格:φ5.5~16.Omm 主要钢种:普碳钢、优质碳素结构钢、低合金钢(包括Q235、HPB235、HPB300、HRB335、HRB400)。 钢坯出炉温度:1050~1200℃;断面温差:≤30℃;长度方向温差:≤30℃。 来料方向:左进料(从操作侧看)由甲方提供车间工艺平面布置图(电子版一份) 1.2 1H~14H轧机减速机供货范围:

2 技术要求 2.1规范和标准 轧机齿轮箱的设计、制造、检验、包装、运输、测试按国家、行业、设备图纸的标准、规范和要求执行,这些标准和规范是最新和有效的版本,对于国外采购的设备按其相应的国际标准执行。 2.2设备详细技术要求 买方要求供货商应承担供货范围内所有设备与整条连续生产线中相衔接设备的技术协调责任并保证所供设备与衔接设备之间的完整过渡。买方负责供货范围内的减速机详细设计,安装指导和调试指导工作。为方便齿轮箱的设计与制造,本技术同时将与齿轮箱相配的轧机的结构及性能要求提供如下。 2.2.1对齿轮箱的要求 2.2.1.1 齿轮箱速比及主电机功率应符合设计要求,来料方向为左进料(从操作侧看),齿轮箱的摆放位置和方向应根据现场平面布置图确定。轧机间距问题要求在减速机设计师充分考虑与相邻机架减速机基础之间距离,保证不干涉。 2.2.1.2 齿轮箱结构形式:根据买方、轧机厂家提供资料卖方进行设计;水平齿轮箱水平剖分,立式齿轮箱立式剖分。在设计时尽量考虑设备零件的互换性。 2.2.1.3 每台齿轮箱由一台直流电机单独传动。齿轮箱与主电机间的接手为鼓形齿联轴器(属于卖方供货范围)。供货厂家对所选联轴器向买方提供详细型号和说明,买方认可后才可以选用。 2.2.1.4 齿轮箱润滑方式为稀油强制润滑齿轮啮合处的润滑油由喷嘴向其喷射,轴承处润滑由油管通过节流孔调节流量,保证各轴承润滑良好。所有配管要求进行酸洗、冲洗、钝化处理。油为L-CKD320硫磷型重负荷极压工业齿轮油,油压0.12~0.18Mpa,由买方提供集中供油。齿轮箱供货厂家提供各架齿轮箱详细的流量、压力参数要求以便买方及时对整个轧线润滑系统进行核算。 2.2.1.5 齿轮箱高速轴轴承采用SKF/FAG,其余轴承采用国产轴承(哈、瓦、洛)。轴承寿命设计要大于五万小时,即正常使用在五年以上。齿轮材料选用20CrNi2MoA;光轴材

风力发电的并网接入及传输方式

风力发电的并网接入及传输方式 摘要:在环境保护之中,风力发电是其中节约资源最为有效地方式,虽然现今一直处在低谷的时期,但是未来的发展前景十分广阔,风力发电技术也在逐渐的趋于成熟,世界装机容量以及发电量也在逐渐的加大,日后在发电市场也逐渐的会占有更大的比例。本文主要就是针对风力发电的并网接入及传输方式来进行分析。 关键词:风力发电;并网接入;传输方式 1、我国风力发电及并网发展情况 相关的数据充分的表明,2010年的中国风电累积装机容量达到了4182.7万KW,在超过了美国之后,已经跃居成为世界第一装机大国。但与此同时,风电的发电量只有500亿千瓦的时候,依据要比美国低,并网容量也只有吊装容量的三成左右,要比国际水平低出很多,这在很大程度之上严重的影响到了效益水平与风电效率的提高。中国的风电行业的风电行业的发展速度也是十分的迅猛,基本上是用到了5年的时间最终才实现了欧美发达国家将近30年的发展进程,在产业逐渐进步市场规模快速发展的同时,其面临的问题与挑战也逐渐的凸显出来。首先是中国风电装备的质量水平,其中包括了发电能力以及设备完好率等等均有待提高,其次就是吊装容量和并网容量之间的差别,和国际先进水平相比之下,还存在着较大差别。怎么从装机大国转变成为风电的利用大国,也就成为了我国目前面临的最大问题。 2、风电机组及其并网接入系统 2.1、同步发电机 在该结构之中,允许同步发电机以可变的速度运行,可以产生频率与可变电压的功率。以此来作为在并网发电的系统之中广泛应用的同步发电机,在运行的时候,不仅仅可以输出有功功率,而且还可以提供无功功率,且频率也是十分的稳定。对于由风力机驱动的同步发电机和电网并联运行的时候,就随机可以采用自动准同步并网以及自同步并网的方式。因为风电的电压、频率的不稳定性,一般就会使得应用前者并网相对比较困难;然而对于后者来说,因为并网的装置比较简单,最为常见的结构就是通过AC—DC—AC的整流逆变方式与系统进行并网,其原理结构如图1所示。 图1同步发电机并网结构 2.2、笼型异步发电机 我们由发电机的特点可以知道,为了电网并联,就务必要在异步发电机与风

齿轮箱

齿轮箱是一种广泛应用于许多行业的基础传动装置, 其产品水平及性能直接决定着配套主机的水平及性能, 因此多年来人们对有关齿轮箱的设计研究和探索从来没有停止过。本文讨论齿轮箱开发设计中的几个基本问题, 应说明的是, 以下所述齿轮箱系指各类减速箱、增速箱、变速箱等, 其传动型式可选择齿轮传动、蜗轮蜗杆传动、行星齿轮传动、摆线针轮传动及以上各种传动的组合。由于使用要求及环境的不同, 齿轮箱的类型及结构型式多种多样, 设计原则及方法也各不相同, 这里仅就其基本及共性问题进行分析、总结、概括, 试图归纳出对产品的开发设计有实用价值的一些原则及方法, 以便使产品的开发设计更快捷、更高效。 1 设计的输入条件产品开发设计的一个重要前提条件是首先要对产品的使用工况及要求有全面深刻的了解, 它一般包括下述几个方面的要求, 也即通常所说的产品开发设计的输入条件: ( 1)动力传递要求, 如原动机及工作机类型、传递功率及转矩、载荷特征及变化规律等。( 2)工作转速要求, 如输入、输出转速值及变化规律、有无空档及反转等要求。( 3)起动及过程要求, 如有无带载起动、过程制动及逆止、过载保护及起动时间与电流等要求。( 4)工作环境及状况要求, 如工作温度、湿度、海拔高度、起动频率及工作制度等。( 5)密封要求, 如接触还是非接触密封、浮动密封或其它密封, 压力要求及操控方式( 液动、气动或手动)。( 6)润滑及冷却要求, 如自身润滑还是循环润滑, 水冷还是风冷。( 7) 安装及连接要求, 如安装方位及方式、输入与输出的形式及连接方式等。( 8)监控要求, 如温度、振动状态、润滑状# 144 # 重型机械2010 ( S2) 况指示等。( 9) 其它特殊要求。审定开发设计的输入条件时应特别注意设计载荷的确定, 尤其是对重载传动或有高可靠性要求及对产品的体积、重量有特殊要求时更应如此。有条件时尽量按实测载荷谱进行设计, 当没有载荷谱可用时, 也要尽可能类比类似工况时的设计载荷进行设计。对一些专用产品, 注意要满足其相应行业标准或规范的要求。 2 设计目标不同使用环境下齿轮箱产品开发设计所追求的目标也各不相同, 大体可分为: 大功率重载齿轮箱: 设计目标为高可靠性、长寿命, 典型实例为风力发电增速箱、热连轧主传动齿轮箱, 立磨齿轮箱等。车辆及船用齿轮箱: 设计目标为体积小、重量轻、有换档要求时应操纵灵活及平顺, 典型实例为工程机械变速箱、车辆行走齿轮箱及船用推进齿轮箱等。高精度齿轮箱: 设计目标为输出转速波动小、回差小、振动小等。典型实例为伺服传动齿轮箱、箔带精轧机齿轮箱、数控机床传动齿轮箱等。通用齿轮箱: 设计目标为模块化、系列化及标准化程度高、互换性好、价格适中。高速齿轮箱: 设计目标为传动平稳、振动及噪声小、动力学性能好。典型实例为汽轮机增速箱、高速线材轧机齿轮箱等。带载起动齿轮箱: 设计目标为输出转速或力矩可控、过载能力强。典型实例为皮带输送机齿轮箱、起重机提升齿轮箱、搅拌机齿轮箱等。一般用途齿轮箱: 设计目标为造价低、精度不高。典型实例为农机齿轮箱、手动齿轮箱等。事实上, 对一个具体的齿轮箱产品, 其设计目标也有可能会同时具备以上所述的多个特征, 自然其设计要求也就要复杂些, 要具体问题具体分析, 这样才能有针对性的解决具体问题。确定了齿轮箱开发设计所追求的目标, 可有助于建立产品优化设计时的目标函数, 或应重点关注的设计要素及方向。3 设计的六大特性在系统总结多年从事传动齿轮箱设计开发经验的基础上, 对于现行的各种类型齿轮箱, 在进行其具体的设计开发时, 一般而言, 应遵循的原则可概括为下述六个方面, 或称为六大特性, 如图1所示。图 1 齿轮箱设计的六大特性311 产品设计的系统性在进行产品设计前, 应对产品的应用环境、载荷状况、作业条件、重要程度等进行全面了解, 将产品置于整机应用系统中去评判其对产品设计和制造工艺的要求。系统性应关注的问题主要是: ( 1)产品在系统中的作用及重要性, 如对产品的寿命、可靠性、重量等的要求。( 2)系统应用方面对产品的特殊要求, 如带载起动情况、软起动要求、制动要求、逆止或超越要求、频繁起制动或反转要求、匀速要求、有无封闭功率存在。( 3)从优化系统动态性能方面对产品的相关要求, 如风力发电增速箱、精轧机齿轮箱都对其整个系统的振动固有频率和振型的影响有一定要求。系统性观点是进行产品设计的重要前提。它是产品设计应关注的宏观层面的问题, 对传动系统的许多要求, 如软起动、制动、调速、逆止或超越等, 往往要结合系统的整体设计方能完成, 因此系统性观点

高速齿轮箱产品介绍

高速齿轮箱产品介绍 高速齿轮箱产品介绍 中国威高传动公司生产的NGSS、NGGS、NGSD 型系列齿轮箱,采用国际先进标准,应用公司十几年产品试制经验进行设计,选用一流设备,按ISO9001:2000质量控制体系程序,设计制造的高精度硬齿面高速齿轮箱。可适用于汽轮机、燃气发电机、离心以及轴流风机、鼓风机、压缩机、高低压泵、裂化催化能量回收、制氧机、平衡机、军用与民用试验台等机组配套增(减)高速齿轮箱。 产品具有以下技术特点: 1.高转速:产品最高转速30000r/min。 2.多规格:标准产品中心距192-545,并可根据用户要求进行非标设计。 3.高精度:齿轮精度达到ISO4-6级,动平衡精度达到ISO0.4-1.6。 4.高标准:齿轮精度标准为ISO1328-1:1995和ISO1328-2:1997,齿轮强度标准AGMA420.04-1975和AGMA421.06-1969。齿轮箱设计检验标准API613-2003,齿轮材料热处理标准ISO6336-5:1996,振动检验标准API670-2000,润滑系统标准API614-1999。 5.高技术:产品采用三维CAD 设计,采用有限元分析,齿形热弹性变形的修形,齿根喷丸强化工艺及轴系动态分析等公司最新研究成果。 6.高可靠度:齿轮箱设计寿命10年 中心距规格:192、215、240、272、305、340、385、430、480、545 功率范围:11kW~1558kW 最高转速:30000r/min 速比:6.3-18 大功率燃透平机专用高速齿轮箱主要用于透平机带动发电机、风机。一般为单级减速传动,该种高速齿轮箱拥有承载能力大,节圆线速度高,防爆等特点。 齿轮箱设计检验按API613标准;齿轮强度按AGMA420.04,AGMA421.06;振动检验按API1670。齿轮材料:17Cr2Ni2Mo、25Cr2Niv 或20CrNi2Mo,渗碳、淬火、

齿轮箱减速机型号大全

减速机(齿轮箱)型号大全------请补全型号谢谢大家! 齿轮减速机, 1、齿轮减速机,结合国际技术要求制造,具有很高的科技含量。 2、节省空间,可靠耐用,承受过载能力高,功率可达90KW以上。 3、能耗低,性能优越,减速机效率高达95%以上。 4、振动小,噪音低,节能高,选用优质段钢材料,钢性铸铁箱体,齿轮表面经过高频热处理。 5、经过精密加工,确保轴平行度和定位的精度,这一切构成了齿轮传动总成的减速机配置了各类电机,形成了机电一体化,完全保证了产品使用质量特征。 摆线减速机 行星摆线减速机是一种应用行星传动原理,采用摆线针轮啮合,设计先进、结构新颖的减速机构。这种减速机在绝大多数情况下已替代两级、三级普通圆柱齿轮减速机及圆柱蜗杆减速机,在军工、航天、冶金、矿山、石油、化工、船舶、轻工、食品、纺织、印染、制药、橡胶、塑料、及起重运输等方面得到日益广泛的应用。 特点 蜗轮蜗杆减速机的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。谐波减速机的谐波传动是利用柔性元件

可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。行星减速机其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。但价格略贵。齿轮减速机具有体积小,传递扭矩大的特点。齿轮减速机在模块组合体系基础上设计制造,有极多的电机组合、安装形式和结构方案,传动比分级细密,满足不同的使用工况,实现机电一体化。齿轮减速机传动效率高,耗能低,性能优越。摆线针轮减速机是一种采用摆线针齿啮合行星传动原理的传动机型,是一种理想的传动装置,具有许多优点,用途广泛,并可正反运转。 产品特点 1.传动比大。一级减速时传动比为1/6--1/87。两级减速时传动比为1/99--1/7569;三级传动时传动比为1/5841--1/658503。另外根据需要还可以采用多级组合,速比达到指定大。 2.传动效率高。由于啮合部位采用了滚动啮合,一般一级传动效率为90%--95%。 3.结构紧凑,体积小,重量轻。体积和普通圆柱齿轮减速机相比可减小2/1--2/3。 4.故障少,寿命长。主要传动啮合件使用轴承钢磨削制造,因此机械性能与耐磨性能均佳,又因其为滚动摩擦,因而故障少,寿命长。 5.运转平稳可靠。因传动过程中为多齿啮合,所以使之运转平稳可靠,噪声低。 6.拆装方便,容易维修。 7.过载能力强,耐冲击,惯性力矩小,适用于起动频繁和正反转运转的特点。 蜗轮蜗杆减速机 HW型直廓环面蜗杆减速器(JB/T7936-1999)因所采用的环面蜗杆副,其蜗杆轴向截面齿廓为直线,故称其为直廓环面蜗杆(亦称球面蜗杆),与其他各种蜗杆减速器相同,为空间交错轴传动,承载能力和传动效率较高,适用于重载、大功率、大转矩传动,如冶金、矿山、起重、运输、石油、化工、建筑等机械设备的减速传动。包括HWT、HWWT、HWB、HWWB型四种形式。 工作条件:输入、输出轴交错角为90℃;蜗杆转速不超过1500r/min;蜗杆中间平面分度圆滑动速度不超过16m/s;蜗杆轴可正、反向运转;工作环境温度为-40℃~40℃。当工作环境温度低于0℃时,启动前润滑油必须加热到0℃以上,或采用低凝固点的润滑油;高于40℃时,必须采取冷却措施。 升降机 升降机减速机>> JWM系列>> JWM系列产品特点 低速、低频率 JWM型(梯形丝杆型)适用于低速、低频率的场合,主要构成部件为:精密梯形丝杆副与主精度蜗轮蜗杆副。 1经济: 结构紧凑、操作简单、保养方便。 2低速、低频率: 主要用于负荷大、低速与无需频繁工作的场所。

风力发电场并网调度协议格式

YOUR LOGO 风力发电场并网调度协议格式 The promotion and use of contracts can promote the further improvement and in-depth development of the socialist legal system 专业协议系列,下载即可用

风力发电场并网调度协议格式 说明:协议的推广和使用可以促进社会主义法制建设的进一步完善和深入发展,有助于提高全民的法律意识,加快社会生活和经济建设的节奏。如果需要,可以直接下载打印或用于电子存档。 GF-2014-0516 风力发电场并网调度协议 (示范文本) 国家能源局 制定 国家工商行政管理总局 二〇一四年七月 《风力发电场并网调度协议(示范文本)》 使用说明 一、《风力发电场并网调度协议(示范文本)》(以下简称《示范文本》)是对风力发电场并入电网时双方调度和运行行为的约定,适用于风力发电场与电网之间签订并网调度协议。 二、《示范文本》主要针对风力发电场并入电网调度运行的安全和技术问题,设定了双方应承担的基本义务、必须满足的技术条件和行为规范。本文本中所涉及的技术条件,如国家、行业颁布的新的相关行业标准和技术规范,双方应遵从其规定。 三、《示范文本》中有关空格的内容由双方约定或据实填写,空格处没有添加内容的,请填写“无”。《示范文本》所列数字、百分比、期间均为参考值。协议双方可根据具体情况和电

力系统安全运行的需要,在公平、合理和协商一致的基础上对参考值进行适当调整[1],对有关章节或条款进行补充、细化或完善,增加或减少定义、附件等。法律、法规或者国家有关部门有规定的,按照规定执行。 四、签订并网调度协议的主要目的是保障电力系统安全、优质、经济运行,维护电网经营企业和发电企业的合法权益,保证电力交易合同的实施。协议双方应注意所签并网调度协议与购售电合同相关约定的一致性。 五、《示范文本》特别条款及附件中略去的部分,双方可根据实际情况进行补充或约定。 目次 第1章定义与解释 第2章双方陈述 第3章双方义务 第4章并网条件 第5章并网申请及受理 第6章调试期的并网调度 第7章调度运行 第8章发电计划 第9章设备检修 第10章继电保护及安全自动装置 第11章调度自动化

齿轮箱知识

齿轮箱基础知识 一、齿轮传动机械的现状和趋势 齿轮是传递运动和动力的机械装置,具有悠久的历史,我国在公元前400-200年便开始使用齿轮。古代的指南车的核心机械即为齿轮,迄今发现最早的青铜齿轮在山西省。目前,齿轮传动装置广泛应用于工农业生产的各个领域,是应用最多、最广泛的传动元件。由于具有速比范围大、传递功率大、可靠性高、传动比准确、寿命长等优点,是大多数机械设备必不可少的传动部件,齿轮加工技术甚至被认为是衡量机械工业水平的重要标志。目前全国共有齿轮生产厂近600家,齿轮年产量达4000余万套,减速器年产量为30-40万台。在各个品种和规格的齿轮加工机床、刀具和量具方面已达到了国际先进制造水平,并形成了完整的配套体系。 近些年我国在各工业领域大量引进了大型成套设备,其中的高速重载齿轮是其关键部件。我国相关科研院所在此基础上,通过引进相关齿轮制造软件技术和科研攻关逐步加以消化和吸收,在代表齿轮制造工业发展水平的高精度、高硬齿面齿轮国产化方面取得重要成就。从发展趋势上看,齿轮装置在向小型化、高速化、低噪声、高可靠性、标准化、系列化方向不断发展。尽管目前电传动技术和其他机械部件技术实现了快速发展,但各种类型的齿轮传动依然在工业生产和工程应用领域中占据主导地位,并持续相当长的发展阶段。 目前常见的齿轮箱按照结构形式可分为七类,即渐开线圆柱齿轮、摆线针轮定轴传动、圆弧圆柱齿轮传动、锥齿轮传动及准双曲面齿轮传动、蜗杆传动、渐开线行星齿轮传动、非园齿轮传动等。不同形式的齿轮结构在传动速比、传动效率、转速、润滑要求、工作可靠性、成本效率等方面各有不同优势和劣势,在设备选型时需要综合考虑以下几方面的因素: 1、工作机对齿轮箱的结构和动力参数的要求,如传动结构尺寸、质量、功率、转速、效率、传动比、负荷特性等; 2、工作机对齿轮箱的性能要求,如:工作可靠性、使用寿命、噪音、振动、温升和传动精度; 3、齿轮箱技术的先进性、合理性、经济性、通用互换性等; 4、齿轮产品的低成本、高效率、高精度、高可靠性。 齿轮材料的选择和齿轮的工作可靠性、使用寿命、工作效率、润滑要求等密切相关。在齿轮传递动力和改变速度的运动过程中,啮合齿面之间同时存在滚动和滑动摩擦,齿面还受到脉动或交变弯曲应力的作用,还有齿面可能发生磨损、胶合及疲劳破坏,因此要求齿轮具有优良的耐磨性能、抗接触疲劳性能和抗弯曲疲劳性能,即要求齿轮材料表面硬度高、强度高、芯部韧性好且硬化层分布合理。在实际选用中还应根据需要和使用条件如负荷、速度、温度、可靠性、质量、精度、价格等因素来确定齿轮选材。 目前,工业制造领域的齿轮选材主要以钢为主,包括各种低碳钢、中碳钢、高碳钢和合金钢。而铝、镁、钛、铜合金、铸铁,甚至塑料和木材等都可用于制作齿轮。通常,为了改善和提高齿轮材料的性能或降低成本,可以采用化学处理、表面强化处理以及复合处理等表面改性技术。 选取齿轮材料要充分考虑材料的经济性、强度和齿轮精度等,不同设备的需求自然也大为不同。就仪器设备、家用器具、玩具等小负荷齿轮而言,可以选择造价低、生产率高的复合塑料齿轮。而坦克、冷轧机等重负荷执行机械,则需要材料及加工要求更高的各种金属和合金材料。如果在航空航天工业中应用,则要求更高的可靠性、精度和轻重量,制造成本放在次要位置。 下面就主要几类齿轮材料一一进行分析: 1、钢材 齿轮用钢多为合金钢,少数为碳钢。通常为降低成本,可以对中碳钢和低合金钢进行各种热处理以提高其强度和硬度。表面硬化处理亦可提高合金钢齿轮材料的强度,使其适用于高负载和中等温度使用的工况。而当齿轮的使用条件进一步提高时,往往需要对齿轮进行淬火以提高其强度和硬度。或通过表面渗碳及表面氧化处理事齿轮表面硬化,以提高其抗疲劳性能,改善

相关文档
最新文档