静态拉伸法测量金属丝杨氏弹性模量实验结果的偏差分析

静态拉伸法测量金属丝杨氏弹性模量实验结果的偏差分析
静态拉伸法测量金属丝杨氏弹性模量实验结果的偏差分析

传统的杨氏弹性模量实验报告

杨氏弹性模量的测定 实验人: 杨氏弹性模量是材料弹性性质的一个主要特征量.本实验通过对钢丝杨氏弹性模量的测量,学习一种测量长度微小变化的方法:光杠杆镜尺法. [目的] 1.测定金属丝的杨氏弹性模量. 2.掌握光杠杆镜尺法测定长度微小变化的原理,学会具体的测量方法. 3.学习处理实验数据的两种方法:图解法和逐差法. [原理] 1.金属丝受外拉力作用,会有伸长,且遵从虎克定律,有L L S mg Y ?= 其中,Y:杨氏弹性模量 mg:外力 S:金属丝横截面积 L:金属丝长度 △L:金属丝伸长量 2.光杠杆镜尺法测微原理 如图1,该系统利用镜子放大微小变化,从而达到测微效果.结合虎克定律及光杠杆镜尺法,可得杨氏弹性模量为 图1. 拉伸法测量杨氏弹性模量原理图 标尺 l m sk LDg Y ??= 2

其中,L:金属丝原长 D:镜面到标尺的垂直距离 S:金属丝截面积 K:光杠杆前足到两后足连线的垂直距离m ?:单个砝码质量 l ?:加/减单个砝码时,标尺读数变化量 LDgSK 均为常量,l m ??/由图解法和逐差法求出 [仪器] 杨氏模量测定仪(如图M-4-3),调节方法如下: 1.调节光杠杆与望远镜在同一高度,光杠杆镜面尽可能铅直. 2.在望远镜外侧寻找光杠杆镜面上标尺的象(如看不到,应调节镜面方位和移动测定仪的位置) 3.移动望远镜,使其缺口与准星大致对准标尺的像. 4.调节望远镜目镜,使观察到的十字叉丝清晰. 5.调节望远镜调焦手轮,先观察到镜子,再观察到标尺,使观察到的标尺读数与十字叉丝均清晰而无视差. [实验步骤] 1.调节测定仪,使支架铅直. 2.在金属丝下端先挂一负载(如2千克),使金属丝完全拉直,此负载为初始负载,不计入作用力内. 3.用带有卡具的米尺量出金属丝长度L. 4.在不同位置,用螺旋测微计测10次金属丝直径d,取平均值. 5.安装光杠杆,调节望远镜,记录望远镜读数x 0,逐渐增加砝码到9×0.500kg,每次增加0.500kg,记录望远镜读数x i ’,再逐渐减少砝码,记录望远镜读数,则x i =0.5(x i ’+ x i ’’) 6.用钢皮尺测量光杠杆镜面到标尺的距离D 7.用游标卡尺测量光杠杆前足到后两足连线的垂直长度K. [注意事项] 1.调节望远镜时,注意消除视差,即要求标尺读数相对十字叉丝无相对位移.

拉伸法测弹性模量 实验报告0204192300

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。 成 绩 教师签字

实验中测定E , 只需测得F 、S 、l 和即可, 前三者可以用常用方法测得, 而的数量级l ?l ?很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖 直状态, 此时标尺读数为n 0。 当金属丝被拉长以l ?后, 带动平面镜旋转一角度α, 到图中所示M’位置; 此时读得标尺读数为n 1, 得到刻度变化为 。 Δn 与呈正比关系, 且根据小量 01n n n -=?l ?忽略及图中的相似几何关系, 可以得到 (b 称为光杠杆常数) n B b l ??= ?2将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 02 8n F bE D lB n i i +?= π可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 P.S. 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 , 又在仪器关系上, 有x=2B , 则 , () 。 N p f x ?= N p f B ??=21100=p f 由上可以得到平面镜到标尺的距离B 。

杨氏模量实验报告记录

杨氏模量实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:金属丝杨氏模量的测定 学院:食品学院专业班级:食品科学与工程152班学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号: 实验时间:第四周星期二下午十六点开始

一、实验目的:1.学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原理 2.学会用“对称测量”消除系统误差 3.学习如何依实际情况对各个测量进行误差估算 4.练习用逐差法、作图法处理数据 二、实验原理: 在外力作用下,固体材料所发生的形状变化称之为形变。形变分为弹性形变和范性形变。如果加在物体上的外力停止作用后,物体能完全恢复原状的形变称之为弹性形变;如果加在物体上的外力停止作用后,物体不能完全恢复原状的形变称之为范性形变。 在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。本实验是针对连续、均匀、各向同性的材料做成的丝,进行拉伸试验。设细丝的原长为L ,横截面积为S ,两端受拉力(或 压力)F 后,物体伸长(或缩短)L ?。而单位长度的伸长量L L ?称为应变,单位横截面积所承受的力S F 称 为应力。根据胡克定律,在弹性限度内,应力与应变成正比关系,即 L L E S F ?= 式中比例系数E 称为杨氏弹性模量,简称杨氏模量。实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,而只决定于物体的材料。杨氏模量是表征固体材料性质的一个重要物理量,是选定机械构件材料的依据之一。 由上式得 L S FL E ?=0 在国际单位制(SI)中,E 的单位为2-m ?N 实验证明,杨氏模量与外力F 、物体长度L 和横截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量 设金属丝的直径为d ,则 2d 41 π=S L FL E ?=2d 4π 而L ?是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的L ?约为0.3mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量L ?的间接测量。

拉伸法测量金属丝的弹性模量

实验三拉伸法测量金属丝的模量 一、实验目的 1. 掌握用拉伸法测量金属丝弹性模量的原理和方法。 2. 学习光杠杆测量微小长度变化的原理和方法。 2、 实验原理 1.弹性模量 在外力作用下,固体所发生的形状变化称为形变。如果力较小时,一旦外力停止了作用,形变将随之消失,这种形变称为弹性形变。如果外力足够大,当停止作用时,形变不能完全消失,留下剩余的形变称之为塑性形变。当开始出现塑形形变时,表明材料达到了弹性限度。 针对连续,均匀,各向同性的材料做成的钢丝,设其长为L,横截面积为S。沿长度方向施力F后,钢丝绳伸长或缩短ΔL。单位长度的伸长量ΔL/L称为线应变,单位横截面积所受的力F/S称为正应力。根据胡克定律,在金属丝弹性限度内正应力和线应变呈正比关系。比例系数 (1)称为弹性模量,旧城杨氏模量,他表征材料本身的弹性性质。E越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力就越大。实验表明,弹性模量E与外力F,物体的原长L和横截面积S的大小无关。仅与材料的性质有关。 为测定弹性模量E值,式中F,S,L都可以用普通仪器及一般方法测出。唯有ΔL是一个微小的变化量。很难用普通测长的仪器准确的量度。本实验将采用光杠杆方法进行准确的测量。 2.光杠杆装置 初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中呈像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为。当钢丝下降L时,平面镜将转动角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为处。由于平面镜转动角,进入望远镜的光线旋转2角。从图中看出望远镜中标尺刻度的变化。 因为角很小,由上图几何关系得:

用拉伸法测材料弹性模量

实验21 用拉伸法测氏模量 林一仙 1 实验目的 1)掌握拉伸法测定金属氏模量的方法; 2)学习用光杠杆放大测量微小长度变化量的方法; 3)学习用作图法处理数据。 2 实验原理 相关仪器: 氏模量仪、光杠杆、尺读望远镜、卡尺、千分尺、砝码。 2.1氏模量 任何固体在外力使用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。本实验研究的是棒状物体弹性形变中的伸长形变。 设金属丝的长度为L ,截面积为S ,一端固定, 一端在延长度方向上受力为F ,并伸长△L ,如图 21-1,比值: L L ?是物体的相对伸长,叫应变。 S F 是物体单位面积上的作用力,叫应力。 根据胡克定律,在物体的弹性限度,物体的应力与应变成正比,即 L L Y S F ?= 则有 L S FL Y ?= (1) (1)式中的比例系数Y 称为氏弹性模量(简称氏模量)。 实验证明:氏模量Y 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。 根据(1)式,测出等号右边各量,氏模量便可求得。(1)式中的F 、S 、L 三个量都可用一般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。本实验采用光杠杆法进行间接测量(具体方法如右图所示)。 2.2光杠杆的放大原理 如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改变后的镜面和改变前的镜面必然成有一个角度差,用θ来表示这个角度差。从下图我们可以看出:

h L tg ?= θ (2) 这时望远镜中看到的刻度为1N ,而且θ201=ON N ∠,所以就有: D N N tg 0 12-= θ(3) 采用近似法原理不难得出: L h D N N N ?= -=?201(4) 这就是光杠杆的放大原理了。 将(4)式代入(1)式,并且S=πd 2 ,即可得下式: N h d F LD Y ??=π2 8 这就是本实验所依据的公式。 2.3 实验步骤 1)将待测金属丝下端砝码钩上加1.000kg 砝码使它伸直。调节仪器底部三脚螺丝,使G 平台水平。 2)将光杠杆的两前足置于平台的槽,后足置于C 上,调整镜面与平台垂直。 3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D 约为1.5米左右。 4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L 。 5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。 6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。若有视差,应继续细心调节目镜,直到无视差为止。检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。记下水平叉丝(或叉丝交点)所对准的标尺的初读数N 0,N 0一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。 7)每次将1.000kg 砝码轻轻地加于砝码钩上,并分别记下读数N '1、N '2、…、N i ',共做5次。 8)每次减少1.000kg 砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0。 9)当砝码加到最大时(如6.000kg )时,再测一次金属丝上、中、下的直径d ,并与挂1.000kg 砝码时对应的直径求平均值,作为金属丝的直径d 值。 10)用卡尺测出光杠杆后足尖与前两足尖的距离h ,用尺读望远镜的测距功能测出D (长短叉丝的刻度差乘100倍)。

低碳钢弹性模量e的测定实验报告doc

低碳钢弹性模量e的测定实验报告 篇一:低碳钢弹性模量E的测定 低碳钢弹性模量E的测定 一、实验目的 1.在比例极限内测定低碳钢的弹性模量E 2.验证虎克定律 二、实验设备 1. WE-300型液压式万能试验机。 2.蝶式引伸仪、游标卡尺、米尺。 三、实验原理 低碳钢弹性模量E的测定,是在比例极限以内的拉伸试验中进行的。低碳钢在比例极限内服从胡克定律,即PL0 ?L?EA0 式中,P为轴向拉力,L0是引伸仪标距长度(亦即试件的标距),A0为试件原始截面面积。 为了验证胡克定律和消除测量中可能产生的误差,我们采用“增量法”测量低碳钢的弹性模量。就是对试件逐级增加同样大小的拉力?P,相应地由引伸仪测得在引伸仪标距范围内的轴向伸长量?li。如果每一级拉力?P增量所引起的轴向伸长量?li基本相等,这就验证了胡克定律。根据测得的各级轴向伸长量增量的平均值?l平均,可用下式算出弹性模量

E??PL0 A0?l平均 利用“增量法”进行测量时,还能判断实验有无错误(本文来自:小草范文网:低碳钢弹性模量e的测定实验报告),因为若发现各次的应变增量不按一定规律变化,就说明实验工作有问题,应进行检查。实验时,为了消除试验机夹具与试件的间隙,以及引伸仪机构内的间隙,需要加初载荷P0 四、实验步骤 1.用游标尺测量试件直径。 2.开动万能机,使上夹头抬高3厘米,将试件上部装入试验机上夹头内, 移动下夹头到适当位置,再夹紧试件下部。 3.把蝶式引伸仪加在试件上,如图1-3所示。 4.拟定加载方案:从载荷P=4KN开始读数,以后载荷每增加2KN读一次引伸仪数据。选好测力盘,调整试验机测力指针,使其对准零点,将引伸仪上左右两只千分表上大指针,也调到零点. 5.关闭回油阀、送油阀,启动电源,缓慢打开送油阀开始加载。取P0 =4KN作为初载荷,记下引伸仪初读数.以后每增加相同载荷△P=2KN记录一次引伸仪读数,一直加到低于比例极限的某一值(如14KN)为止。 6.停机。检查引伸仪读数差值是否大致相等,如果数值相差太大,须重新测量。

杨氏模量实验报告汇总

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:金属丝杨氏模量的测定 学院:食品学院专业班级:食品科学与工程152班 学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号: 实验时间:第四周星期二下午十六点开始

)调节测定仪支架螺丝,使支架竖直,使夹头刚好穿过平台上的圆孔而不会与平台发生摩擦(1 )将杠杆后尖脚置于夹头上,两尖脚置于平台凹槽上(2 )调节光杠杆与望远镜、米尺中部在同一高度上(3)调节望远镜的位置或光杠杆镜面仰角,直至眼睛在望远镜目镜附近能直接(不通过望远镜筒)从4(光杠杆镜面中观察到标尺中部的像)细微调节望远镜方位和仰角调节螺丝,直至望远镜上缺口与准星连线粗略对准光杠杆镜面(5 (6)调节望远镜目镜调焦旋钮,直至在望远镜中能看清叉丝。)调节望远镜的物镜调焦旋钮直至在望远镜中能看清整个镜面。(如果只能看到部分镜面,应调节7(望远镜仰角调节螺丝,直至看到整个镜面)。 8)继续调节望远镜的物镜调焦旋钮,直至在望远镜中能看清标尺中部读数。()如果只有部分标尺清楚,说明只有部分标尺聚焦,应调节望远镜仰角调节螺丝直至视野中标尺读(9 数完全清楚。 四、实验内容和步骤:个底脚螺丝,同时观察砝码挂在钢丝下端钢丝拉直,调节杨氏模量仪底盘下面的32kg(1)用放在平台上的水准尺,直至中间平台处于水平状态为止。 )调节光杠杆镜位置。将光杆镜放在平台上,两前脚放在平台横槽内,后脚放在固定钢丝下(2端圆柱形套管上(注意一定要放在金属套管的边上,不能放在缺口的位置),并使光杠杆镜镜面基本所示。垂直或稍有俯角,如图6-1左右处,松开望远镜固定螺钉,上下移动使得望远2m(3)望远镜调节。将望远镜置于距光杆镜移动望远镜固定架位置,从望远镜筒上方沿镜筒轴线瞄准光杠杆镜面,镜和光杠杆镜的镜面基本等高。直至可以看到光杠杆镜中标尺的像。然后再从目镜观察,先调节目镜使十字叉丝清晰,最后缓缓旋转调焦手轮,使物镜在镜筒内伸缩,直至从望远镜里可以看到清晰的标尺刻度为止。n砝,然后每加上1kg砝码时的读数作为开始拉伸的基数(4)观测伸长变化。以钢丝下挂 2kg0n,n,n,n,n,n,n,n这是钢丝拉伸过程中的读数变, 这样依次可以得到码,读取一次数据, 76543210''''''''nnnnnnnn砝码,读取一次数据,依次得到1kg化。紧接着再每次撤掉,这是钢丝收缩过程中50671342的读数变化。注意:加、减砝码时,应轻放轻拿,避免钢丝产生较大幅度振动。加(或减)砝码后,钢丝会有

拉伸法测弹性模量实验报告

大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级0705成绩 姓名童凌炜学号200767025实验台号 实验时间2008 年11月11日,第 12 周,星期二第5-6节 教师签字 实验名称拉伸法测弹性模量 教师评语 实验目的与要求: 1.用拉伸法测定金属丝的弹性模量。 2.掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3.学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置),米尺,螺旋测微器 实验原理和内容: 1.弹性模量 一粗细均匀的金属丝,长度为 l,截面积为S,一端固定后竖直悬挂,下端挂以质量为m 的砝码;则金属丝在外力F=mg 的作用下伸长l 。单位截面积上所受的作用力F/S 称为应力,单位长度的伸长量l/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和l/l 应变成正比,即 F E l S l 其中的比例系数 F / S E l / l 称为该材料的弹性模量。 性质:弹性模量 E 与外力 F、物体的长度l 以及截面积S 无关,只决定于金属丝的材料。

实验中测定E,只需测得 F S l 和 l 即可,前三者可以用常用方法测得,而 l 的数量级 、、 很小,故使用光杠杆镜尺法来进行较精确的测量。 2.光杠杆原理 光杠杆的工作原理如下:初始状态下,平面镜为竖直状态,此时标尺读数为n0。当金属丝被拉长l 以 后,带动平面镜旋转一角度α ,到图中所示M ’位置; 此时读得标尺读数为 n1,得到刻度变化为 n n1 n0。n 与l 呈正比关系,且根据小量忽略及图中的相似几何关系,可以得到 l b ( b 称为光杠杆常数)n 2B 将以上关系,和金属丝截面积计算公式代入弹性模量的计算公式,可以得到 E 8FlB D 2b n (式中 B 既可以用米尺测量,也可以用望远镜的视距丝和标尺间接测量;后者的原理见附录。) 根据上式转换,当金属丝受力F i时,对应标尺读数为n i,则有 8lB n i D 2bE F i n0 可见 F 和 n 成线性关系,测量多组数据后,线性回归得到其斜率,即可计算出弹性模量 E。 P.S. 用望远镜和标尺测量间距 B : 已知量:分划板视距丝间距p,望远镜焦距f、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1 、N2 ,读数差为N 。在几何关系上忽略数量级差别大的量后,可以得到 x f1f N ,( f )。 N ,又在仪器关系上,有 x=2B,则B p 100 p2p 由上可以得到平面镜到标尺的距离 B 。

大学物理设计性实验用拉伸法测定金属丝的杨氏弹性模量

教学章节:实验7 用拉伸法测定金属丝的杨氏弹性模量 教学内容:1、讲述“用拉伸法测定金属丝的杨氏弹性模量”实验的实验原理 2、介绍实验的操作要领、数据处理等 3、指导学生进行实验操作、观察实验现象、测量并记录实验数据。教学学时:3学时 教学目的:1、使学生了解“用拉伸法测定金属丝的杨氏弹性模量”的实验原理 2、使学生学会用光杠杆法测量长度的微小变化量 3、使学生掌握本实验的仪器调节和实验数据的测量 4、使学生学会用逐差法处理实验数据 教学重点、难点: 1、光杠杆放大原理 2、实验仪器的调节 3、逐差法处理实验数据 教学方法、方式:讲解、演示、学生操作教师指导。 教学过程:(引入、授课内容、小结、作业布置等) 用拉伸法测定金属丝的杨氏弹性模量 一、引入 杨氏弹性是描述固体材料抵抗形变的能力的物理量,它与固体材料的几何尺寸无关,与外力大小无关,只决定于金属材料的性质,它的国际单位为:牛/米2(N/m2),它是表征固体材料性质的重要物理量,是选择固体材料的依据之一,是工程技术中常用的参数。杨氏弹性模量测量的常用方法: 1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。 2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。所以它不能很真实地反映出材料内部结构的变化。②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。 3、动态悬挂法:将试样(圆棒或矩形棒)用两根线悬挂起来并激发它作横向振动。在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏弹性模量,如果我们在实验中测出了试样在不同温度下的固有频率,就可以算出试样在不同温度下的杨氏弹性模量。此法克服了静态拉伸法的缺点,具有实用价值,是国家标准规定的一种测量方法。

拉伸法测弹性模量

清华大学实验报告 系别:航天航空学院班号:航04班姓名:张大曦(同组姓名:) 作实验日期:2011年9月28日教师评定: 实验2.1拉伸法测弹性模量 一、实验目的 (1)学习用拉伸法测量弹性模量的方法; (2)掌握螺旋测微计和读数显微镜的使用; (3)学习用逐差法处理数据。 二、实验原理 1.弹性模量及其测量方法 弹性形变范围内,正应力与线应变成正比,即 式中的比例系数 称作材料的弹性模量 利用本实验中直接测量的数据,可将上式进一步写为 测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F,测出钢丝 E。 2.逐差法处理数据 该方法称为逐差法,可以减小测量的随机误差和测量仪器带来的误差。 三、实验仪器 包括支架、读数显微镜、底座、钢尺和螺旋测微计(分别用来测量钢丝长度和直径)。 四、实验步骤与注意事项 (1)调整钢丝竖直。 (2)调节读数显微镜。先粗调再细调。 (3)测量。测量钢丝长度L D,测6次,并在测量前后记录螺旋测微计的零点d各3次。

五、数据表格及数据处理 1. 测量钢丝长度L 仪器编号;钢丝长度L=mm。 得到: = mm = mm 2. 测定钢丝直径D 测定螺旋测微计的零点d 测量前____,___,____ 测量后____,____,____ mm 得到: 3. 总不确定度计算

由计算公式推导出E的相对不确定度的公式 出 结论:拉伸法可以测量钢丝的弹性模量,由于实验仪器的精密程度有限,所得的弹性模量的不确定度较大。 六、思考题解答与分析 1. 在本实验中读数显微镜测量时那些情况下会产生空程误差?应如何消除它? 在测量中,转动手轮至标记点的过程中反转手轮会产生空程误差,在从增砝码变到减砝码手轮反转时会产生空程误差。 在测量中,应通过使手轮只向一个方向转动来消除空程误差,若是在调节某次标记线位置时,叉丝转过了标记线,则舍去这次的位移值,继续测量下一个位移值。在增减砝码手轮反转过程中,因尽量使手轮多转几圈,消除空程误差后,再进行下面的测量。 2. 从E的不确定度计算式分析哪个量的测量对E的结果的准确度影响最大?测量中应注意哪些问题? 通过多次测量取平均值来减小误差。另外,在测量前后要记录螺旋测微计的零点各3次,来减小系统误差对测量值的影响。 八、实验感受与收获 这是我的第一次实验,心情激动但也害怕结果会误差很大。事实证明顾虑其实是多余的,认真踏实的做实验就会有收获。通过本次试验,我锻炼了动手和观察能力,也深刻地体会到实验工作的辛苦,长时间使用读数显微计会使眼睛非常疲劳。 实验2.2动力学法测弹性模量 一、实验目的 (1)学习一种更实用、更准确的测量弹性模量的方法; (2)学习用实验方法研究与修正系统误差。

弹性模量的测量实验报告

弹性模量的测量实验报告 一、拉伸法测量弹性模量 1、实验目的 (1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。 2、实验原理 (1)、杨氏模量及其测量方法 本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸长的形变(称拉伸形变)。设有一长度为L ,截面积为S 的均匀金属丝,沿长度方向受一外力后金属丝伸长δL 。单位横截面积上的垂直作用力F /S 成为正应力,金属丝的相对伸长δL /L 称为线应变。实验结果指出,在弹性形变范围内,正应力与线应变成正比,即 L L E S F δ= 这个规律称为胡克定律,其中L L S F E //δ= 称为材料的弹性模量。它表征材料本身的性质,E 越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力也越大,E 的单位为Pa(1Pa = 1N/m 2; 1GPa = 109Pa)。 本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D ,则可以进一步把E 写成: L D FL E δπ2 4= 测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量δL ,即可求出E 。钢丝长度L 用钢尺测量,钢丝直径D 用螺旋测微计测量,力F 由砝码的重力F = mg 求出。实验的主要问题是测准δL 。δL 一般很小,约10?1mm 数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。为了使测量的δL 更准确些,采用测量多个δL 的方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录伸长位置。通过数据处理求出δL 。

动态法测杨氏模量实验报告

动态法测量杨氏模量 一、 实验目的 1. 理解动态法测量杨氏模量的基本原理。 2. 掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3. 了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。学会用示波器观察判断样品共振的方法。 4. 培养综合运用知识和使用常用实验仪器的能力。 二、 实验原理: 在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。 根据杆的横振动方程式 02 244=??+??t y EJ S x y ρ (1) 式中ρ为杆的密度,S 为杆的截面积,?= s dS y J 2 称为惯量矩(取决于截面的形状),E 即为杨氏模量。 如图1所示,长度L 远远大于直径d (L >>d )的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为 02244=??+??t EJ y S x y ρ (1) 棒的轴线沿x 方向,式中y 为棒上距左端x 处截面的y 方向位 移,E 为杨氏模量,单位为Pa 或N/m 2;ρ为材料密度;S 为 截面积;J 为某一截面的转动惯量,??=s ds y J 2。 横振动方程的边界条件为:棒的两端(x =0、L )是自由端,端点既不受正应力也不受切向力。用分离变量法求解方程(1),令)()(),(t T x X t x y =,则有 2 24411dt T d T EJ S dx X d X ?-=ρ (2) 由于等式两边分别是两个变量x 和t 的函数,所以只有当等式两边都等于同一个常数时等式才成立。假设此常数为K 4,则可得到下列两个方程 044 4=-X K dx X d (3) 0422=+T S EJ K dt T d ρ (4) 如果棒中每点都作简谐振动,则上述两方程的通解分别为 图1 细长棒的弯曲振动

拉伸法测量金属丝弹性模量带大数据处理

本科实验报告(详写)【实验目的】 1.掌握拉伸法测量金属丝弹性模量的原理和方法。 2.学习光杠杆测量微小长度的变化的原理和方法。 3.进一步学习用逐差法,作图法处理数据。 4.多种长度测试方法和仪器的使用。 【实验内容和原理】 1.测定金属丝弹性模量 假定长为L、横截面积为S的均匀金属丝,在受到沿长度方向的外力F作用下伸长?L,根据胡克定律可知,在弹性限度内,应变?L /L与外F/S成正比,即 (E称为该金属的杨氏模量)(1)由此可得:

(2) 其中F,S 和L 都比较容易测量;?L 是一个很小的长度变化量。 2.光杠杆测量微小长度变化 当金属丝受力伸长?L 时,光杠杆后脚1f 也随之下降?L ,在θ较小(即?L << b )时,有 ?L / b = tan θθ≈ (1) 若望远镜中的叉丝原来对准竖尺上的刻度为0r ;平面镜转动后,根据广的反射定律,镜面旋转θ,反射线将旋转2θ,设这时叉丝对准新的刻度为1r 。令?n= |1r –0r |,则当2θ很小(即?n <

i n ?L 。其中2D/b 称为光杠杆的放大倍数。 bl d FLD E 28π= (3) 4.为减小实验误差依次在砝码钩上挂砝码(每次1kg ,并注意砝码应交错放置整齐)。待系统稳定后,记下相应十字叉丝处读数(i=1,2,……,6)。依次减小砝码(每次1kg ),待稳定后,记十字叉丝处相应读数(i=1,2,……,6)。取同一负荷刻度尺读数平均值 2n n n ' i i i += (i=1,2, (6) 5.按逐差法处理数据的要求测量弹性模量。 计算对应3Kg 负荷时金属丝的伸长量 i 3i i n -n n +=? (i=1,2,3,) 及伸长量的平均值 3 n n 3 1 i i ∑=?= ? 将n ?,L,D,K,d 各测量结果代入(3)式,计算出待测金属丝的弹性模量及测量结果的不确定度。 22222 2)()()()(4)()(F K n d D L E E F K n d D L ?+?+??+?+?+?=?? (4) 【实验仪器】

杨氏模量实验报告

钢丝的杨氏模量 【预习重点】 (1)杨氏模量的定义。 (2)利用光杠杆测量微小长度变化的原理和方法。 (3)用逐差法和作图法处理实验数据的方法。 【仪器】 杨氏模量仪(包括砝码组、光杠杆及望远镜-标尺装置)、螺旋测微器、钢卷尺。 【原理】 1)杨氏模量 物体受力产生的形变,去掉外力后能立刻恢复原状的称为弹性形变;因受力过大或受力时间过长,去掉外力后不能恢复原状的称为塑性形变。物体受单方向的拉力或压力,产生纵向的伸长和缩短是最简单也是最基本的形变。设一物体长为L,横截面积为S,沿长度方向施力F后,物体伸长(或缩短)了δL。F/S是单位面积上的作用力,称为应力,δL/L是相对变形量,称为应变。在弹性形变范围内,按照胡克(HookeRobert1635—1703)定律,物体内部的应力正比于应变,其比值 (5—1) 称为杨氏模量。 实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。从微观结构考虑,杨氏模量是一个表征原子间结合力大小的物理参量。 2)用静态拉伸法测金属丝的杨氏模量 杨氏模量测量有静态法和动态法之分。动态法是基于振动的方法,静态法是对试样直接加力,测量形变。动态法测量速度快,精度高,适用范围广,是国家标准规定的方法。静态法原理直观,设备简单。 用静态拉伸法测金属丝的杨氏模量,是使用如图5—1所示杨氏模量仪。在三角底座上装两根支柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个支架受力后变形极小,可以忽略。待测样品是一根粗细均匀的钢丝。钢丝上端用卡头A夹紧并固定在上横梁上,钢丝下端也用一个圆柱形卡头B夹紧并穿过平台C的中心孔,使钢丝自由悬挂。通过调节三角底座螺丝,使整个支架铅直。下卡头在平台C的中心孔内,其周围缝隙均匀而不与孔边摩擦。圆柱形卡头下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸。下卡头的上端面相对平台C的下降量,即是钢丝的伸长量δL。钢丝的总长度就是从上卡头的下端面至下卡头的上端面之间的长度。钢丝的伸长量δL是很微小的,本实验采用光杠杆法测量。 3)光杠杆

弹性模量和泊松比的测定

弹性模量和泊松比的测定

弹性模量和泊松比的测定

目录 一、弹性模量和泊松比 (2) 二、弹性模量测定方法 (2) 三、泊松比测定方法 (4) 四、结论 (4) 五、参考文献 (4)

一、弹性模量和泊松比 金属材料的弹性模量E为低于比例极限的应力与相应应变的比值;金属材料的泊松比μ指低于比例极限的轴向应力所产生的横向应变与相应轴向应变的负比值(详见GB/T 10623-2008 金属材料力学性能试验术语)。 二、弹性模量测定方法 铝合金材料的弹性模量E是在弹性范围内正应力与相应正应变的比值,其表达式为: E=σ/ε 式中E为弹性模量;σ为正应力;ε为相应的正应变。 铝合金材料弹性模量E的测定主要有静态法、动态法和纳米压痕法。 1.静态法 1.1测量原理 静态法测量铝合金材料的弹性模量主要采用拉伸法,即采用拉伸应力-应变曲线的测试方法。 拉伸法是用拉力拉伸试样来研究其在弹性限度内受到拉力的伸长变形。由上式有: E=σ/ε=FL/A△L 式中各量的单位均为国际单位。 可以看出,弹性模量E是在弹性范围所承受的应力与应变之比,应变是必要的参数。因此,弹性模量E的测试实质是测试弹性变形的直线段斜率,故其准确度由应力与应变准确度所决定。 应力测量的准确度取决于试验机施加的力值与试样横截面积,此时试验机夹具与试样夹持方法也非常关键,夹具与试样要尽量同轴;应变测量的准确度要求引伸计要真实反映试样受力中心轴线与施力轴线同轴受力时所产生的应变。 由于试样受力同轴是相对的,且在弹性阶段试样的变形很小,所以为获得真实应变,应采用高精度的双向平均应变机械式引伸计。 拉伸法测量弹性模量适用于常温测量,由于拉伸时载荷大,加载速度慢,

实验2.1 拉伸法测弹性模量

物理实验报告 系别机械系班号机53 姓名丁旭阳(同组姓名)做实验日期 2006 年 10 月 19 日教师评定 2.1 拉伸法测弹性模量 一、实验目的 1、学习用拉伸法测弹性模量的方法。 2、掌握螺旋测微计和读数显微镜的使用。 3、学习用逐差法处理数据。 二、实验仪器 支架、读数显微镜、底座、钢尺、螺旋测微计、砝码 三、实验原理 物体在外力作用下都要或多或少地发生形变。当形变不超过某一限度时,撤走外力之后,形变将随之消失,这种形变称之为"弹性形变"。发生弹性形变时,物体内部产生恢复原状的内应力。弹性模量是反映材料形变与内应力关系的物理量。拉伸法是一种直接简单的测量材料弹性模量的方法。 在弹性范围内,长度L、截面积S 的金属丝,受拉力F作用后伸长了d L。F/S为正应力,d L/L为线应变。有胡克定律: 比例系数 E称作材料的弹性模量,也称为杨氏模量。使用实验中直接测量量表示,E 为:

四、实验方法与步骤 1、调整钢丝支架使它竖直。调整底座螺钉使钢丝夹具不与周围支架碰蹭。 2、调节读数显微镜。 3、加砝码测量伸长。 4、减砝码测量伸长。 5、测量钢丝直径和长度。 五、数据记录 1、测量钢丝长度L 及伸长量L δ 5 L l δ==0.263mm

0.01mm l ?=仪 l s =0.0184mm 15L l δ?=?==L L δδ+?=0.263±0.005mm 2、测量钢丝直径D 零点/d mm 测量前 -0.021 -0.019 -0.020 测量后 -0.021 -0.022 -0.022 平均值d =-0.208mm 钢丝的平均直径D =0.200mm ,D s =0.0019mm 。 螺旋测微计示值误差?仪=0.004mm 。 D ?==D D ±?=0.200±0.004mm 3、总不确定度的计算 E E ?=2 4FL E D L πδ= =237.34GPa E E E E ? ?=?=5GPa E E +?=237.3±5GPa

用拉伸法测钢丝杨氏模量——实验报告

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器 (0-150mm,0.01) 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L,截面积为S,沿长度方向施

力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ???????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】

<一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上; 4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2 以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0 n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0 ‘ ,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微

弹性模量的测定整理

弹性模量的定义及其相互关系 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量(Elastic Modulus )。弹性模量的单位是GPa 。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。 线应变:对一根细杆施加一个拉力F ,这个拉力除以杆的截面积S ,称为“线应力”,杆的伸长量dL 除以原长L ,称为“线应变”。线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L)。 剪切应变:对一块弹性体施加一个侧向的力f (通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a 称为“剪切应变”,相应的力f 除以受力面积S 称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 。 体积应变:对弹性体施加一个整体的压强P ,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V 称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V)。 意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E 是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。 说明:弹性模量只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。 泊松比(Poisson's ratio ),以法国数学家 Simeom Denis Poisson 为名,是横向应变与纵向应变之比值它是反映材料横向变形的弹性常数。 在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。比如,一杆受拉伸时,其轴向伸长伴随着横向收缩(反之亦然),而横向应变 e' 与轴向应变 e 之比称为泊松比ν。 泊松比ν与杨氏模量E 及剪切模量G 之间的关系 ()()??? ? ??+=+==ννν1G 2orE 12E orG 1-G 2E 材料弹性模量的测试方法 弹性模量的测试有三种方法:静态法、波传播法、动态法。 静态法测试的是材料在弹性变形区间的应力-应变,静态法指在试样上施加一恒定的弯曲应力,测定其弹性弯曲挠度,根据应力和应变计算弹性模量。静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会,且测试精度低,测试结果波动大。另外,静态法只能对材料的杨氏模量进行测定,不能测试材料的剪切模量及泊松比。 其主要缺点是: 1.应力加载的速度会影响弹性模量的数值 2.脆性材料如陶瓷无法测量 3.不能在高温下测试.在高温下,材料发生蠕变,使得应变测试值增大。 超声波法:测试超声波在试样中的传播时间及试样长度得到纵向或横向传播速度,然后计算

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》[1]

用拉伸法测金属丝的杨氏弹性模量 一、 实验目的 1.学会用光杠杆法测量杨氏弹性模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定的计算方法,结果的正确表达; 5.学会实验报告的正确书写。 二、 实验仪器 杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、 实验原理 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ??? ?? ? ? =?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?)

n x d FLD L n D x d F L L S F E ??=?=?=22 8241ππ 四、 实验内容 <一> 仪器调整 1. 杨氏弹性模量测定仪底座调节水平; 2. 平面镜镜面放置与测定仪平面垂直; 3. 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上; 4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、 准星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜, 然后继续调节物镜焦距并能看到尺子清晰的像; 6. 0n 一般要求调节到零刻度。 <二>测量 7. 计下无挂物时刻度尺的读数0n ; 8. 依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ; 9. 依次取下kg 1的砝码,七次,计下' 7'65' 4' 3' 2' 1,,,,,,' n n n n n n n ; 10. 用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: 4 ) ()()()(37261504n n n n n n n n n -+-+-+-= ? 3. 注:上式中的n ?为增重kg 4的金属丝的伸长量。 五、 实验数据记录处理

相关文档
最新文档