斜拉桥发展历史及未来方向

斜拉桥发展历史及未来方向
斜拉桥发展历史及未来方向

斜拉桥的发展历程及未来发展趋势

通过本学期的学习,我们学习了梁桥、拱桥、斜拉桥、悬索桥的计算方法。通过老师的讲解使我们了解到了不同桥梁的受力特点的不同以及不同桥梁计算时使用的不同的理论。梁桥以受弯为主的主梁作为承重构件的桥梁。主梁可以是实腹梁或桁架梁。实腹梁构造简单,制造、架设和维修均较方便,广泛用于中、小跨度桥梁,但在材料利用上不够经济。桁架梁的杆件承受轴向力,材料能充分利用,自重较轻,跨越能力大,多用于建造大跨度桥梁。拱桥指的是在竖直平面内以拱作为结构主要承重构件的桥梁。拱桥是向上凸起的曲面,其最大主应力沿拱桥曲面作用,沿拱桥垂直方向的最小主应力为零。悬索桥既吊桥指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。其缆索几何形状由力的平衡条件决定,一般接近抛物线。从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。下面我们重点来说说斜拉桥,斜拉桥是由主梁、索塔和斜拉索三大部分组成,主梁一般采用混凝土结构、钢和混凝土结构、组合结构或钢结构,索塔主要采用混凝土结构,斜拉索采用高强材料的钢丝或钢绞线制成。它的主要优点有在各个支点支承的作用下跨中弯矩大大减小,而且由于结构自重较轻,既节省了结构材料,又能大幅地增大桥梁的跨越能力。此外,斜拉索轴力产生的水平分力对主梁施加了预应力,从而可以增强主梁的抗裂能力,节约主梁中预应力钢材的用钢量。斜拉桥和梁桥和拱桥相比有着跨越能力大的优

势。而与悬索桥相比在300-1000米跨度又有经济性的优势。同时外形对称美观更兼线条纤秀,构造简洁,造型优美。符合桥梁美学的要求。适合在跨度为300-1000米的桥梁使用。

斜拉桥的发展其实进行了一个漫长的历史,在国外1784年德国人勒舍尔建造了一座跨径为32米的木桥,这是世界上第一座斜拉桥。1821年法国建筑师叶帕特在世界上第一次系统地提出了斜拉桥的结构体系。在这个体系里,他构想用锻铁拉杆将梁吊到相当高的桥塔上,拉索扇形布置,所有拉索都锚固于桥塔顶部。1855年美国工程师罗伯林在尼亚加拉河上,建成了跨径达250米的公铁两用桥。这是世界上首次将悬索体系和拉索体系的成功组合。1949年,德国著名的桥梁工程师迪辛格尔发表了他对斜拉桥的结构体系的研究成果,为现代斜拉桥的诞生和发展奠定了理论基础。1952年德国莱昂哈特教授在世界上第一个设计出现代化斜拉桥――德国杜塞尔多夫跨越莱茵河的大桥。1953年迪辛格尔与德国承包商德玛格公司,承建了瑞典的斯特罗姆松德桥,这是世界上第一座现代斜拉桥。从此斜拉桥经历了三个发展阶段:自20世纪50年代中至60年代中,其特征是拉索为稀索体系,钢或混凝土梁体,以受弯为主;第二阶段,自20世纪60年代后期开始,其特征是拉索逐步采用密索体系,并可以换索,钢和混凝土梁以受压为主,截面减小;第三阶段,从20世纪80年代中期至今,拉索普遍采用密索体系,可以换索,梁体结构出现组合式、混合式、钢管混凝土等新的形式。相应地梁向轻型化发展,梁高减小,梁面也出现了肋板式、板式等形式。

在国内斜拉桥的发展历史要比国外晚许多,但是斜拉桥在我国的发展相当迅速,我国于1975年在重庆云阳建成了第一座试验性斜拉桥;1991年上海南浦大桥建成,开创了我国400米以上特大斜拉桥的先河。2001年我国建成了南京长江二桥钢箱梁斜拉桥和福建青州闽江结合梁斜拉桥,使我国的斜拉桥建设技术进一步提高。南京长江二桥是继日本多多罗大桥,法国诺曼底大桥之后的世界第三跨径的斜拉桥。福州市的青州闽江大桥是主跨605m的结合梁斜拉桥,在结合梁斜拉桥类型中位居世界第一。2002年5月我国建成了亚洲最大的单塔混合体系斜拉桥——天津海河大桥。海河大桥位于天津海河入海口西侧,全长2650m,正桥的主跨310m,为钢箱梁结构;边跨190m,为混凝土箱梁结构。主塔高168m,通航净空37.5m。2008年建成通车的苏通大桥。苏通大桥工程规模浩大:其主跨跨径达到1088米,是世界位居第二大跨径的斜拉桥。至今,我国已建的跨径400米以上的斜拉桥27座,其中建成18座在世界上50大斜拉桥的排行榜上我国就占了25座。我国从以前建造斜拉桥需要向国外学习借鉴,经过了几代建桥人的努力,到现在自主设计建造了杨浦大桥、南浦大桥、苏通大桥等。实现了建造斜拉桥的自主创新。使得我国逐步走向一个造桥强国。现代斜拉桥的发展趋势是:

(1)桥跨向特大跨度(即1000m以上)发展;提高斜拉桥的跨越能力。

(2)结构形式更为美观,表现为桥塔独特异形,桥面加劲梁更为轻巧。

(3)桥梁的建造对当地的环境产生积极的影响,表现为桥梁的建造不破坏当地的环境、和不影响当地动植物的生存。

(4)通过科学技术的发展,使得斜拉桥建造需要的材料价格降低,强度升高。使得在1000m以上的斜拉桥的造价降低到悬索桥的造价以下。

因此需要存在改进的问题为:

(1)、抗风设计

风的随机性和其动力振动行为极为复杂,尽管依靠风洞试验来验证抗风设计,但风洞模型与实际还是存在差异。因此,需要多收集跨海峡大桥的风振方面实际资料加以研究。同时通过对箱梁的研究和设计,可以使得风对桥梁的影响减弱。

(2)、抗震设计

斜拉桥的塔、索、梁的各自振动特性有很大差别,给抗震设计带来很大的复杂性。此外结构的阻尼特性也还研究不够,再加之对于大跨度桥梁,地震的行波效应也需要考虑。

(3)、斜索的使用寿命

影响斜索的使用寿命是三个方面的问题:腐蚀、疲劳和斜拉索材料的强度。同时未来可以考虑使用纤维预应力索来代替斜拉索使用。

(4)结构材料强度的提高

结构材料强度的提高可以减轻结构自重,从而提高桥梁跨越能

力。同时改进技术使得材料的价钱降低,使得在1000m以上的特大跨径桥梁上更具有优势。

总结:

虽然斜拉桥在中国的发展时间很短,但中国绝对是世界上斜拉桥发展的最快,最好的地方。由于其刚柔相济的特性,符合受力的特点。使得斜拉桥在我国倍受重视。无论是斜拉桥的结构形式,还是外形美观的设计,我觉得中国基本上包括了斜拉桥的所有形式。世界上好多造型美观,跨度巨大,新工艺新技术的运用。你都可以在中国找到它的影子。身为一个建桥人,我为成长于这个伟大的祖国而感到自豪,作为富有创造力的中华民族的一份子而感到骄傲。随着中国进一步的改革开放,中国已超越日本成为世界上第二大经济强国。中国综合国力也进一步增强,越来越多的不仅功能齐全,外型美观,跨径巨大的斜拉桥会在中国出现。这也更加坚定了我们投身桥梁建设事业的决心和意志。

中国桥梁发展史

中国桥梁发展史 中国桥梁的历史可以上溯到6000年前的氏族公社时代,到了1000多年前的隋、唐、宋三代,古代桥梁发展到了巅峰时期。在最近的1000年中,中国的桥梁技术全面落后于世界的脚步,中国第一座现代化桥梁的出现距今仅100多年历史,而且是由外国人建造的。从钱塘江大桥算起,中国人自己设计现代桥梁的历史还不足70年;从南京长江大桥算起,中国人自行设计建造大型桥梁的历史仅34年。九十年代以来,中国桥梁的成就才使我们重新无愧于祖先地站到了世界前列,这是中国桥梁建设的伟大复兴时代。 梁桥的新生 梁桥作为最简单实用的桥型,在桥梁史上出现得最早,在中国古代曾被拱桥的光环所湮没,但却是现代桥梁的始作俑者。现代梁桥技术中,钢板梁桥和钢桁架梁桥出现得最早,以后,混凝土桥梁以其经济性和便于维护的优势,得到了长足的发展。中国的预应力混凝土简支梁桥和连续梁桥在八十年代以后得到广泛采用,成为长桥和大跨径桥梁的主要桥型。浙江省瑞安飞云江桥最大跨径62米,桥长1722米,是中国当时最大跨径的预应力混凝土简支梁公路桥。八十年代以来,预应力混凝土连续梁桥成为中国公路桥梁的重要桥型。1984年建成的湖北省沙洋汉江桥是首座跨径超过100米的连续梁桥,跨径100米以上的连续梁桥还有广东省广州大桥、江门外海桥、惠州东江桥、湖南省常德沅江桥、贵州省思南乌江桥、天津市永定新河华北桥、湖北省宜

城汉江桥、宜昌乐天溪桥、江苏省南京长江第二大桥北汊桥等,其中南京长江第二大桥北汊桥的最大跨径达到165米,外海桥的连续长度达到880米。 作为现代梁桥的分支——连续刚构、斜腿刚构等新桥型在八十年代取得了突破性进展。1981年中国跨径最大的预应力混凝土斜腿刚构桥——浊漳河桥建成,此桥是邯(郸)长(治)铁路上的一座大型桥梁,位于山西省黎城和潞城交界处,跨越两岸陡峭的浊漳河,主跨达到82米。 1982年底,另一座更大的钢箱型斜腿刚构桥落成。这就是位于陕西省安康水电站铁路专用线上的安康汉江桥,主跨达176米,是当时世界跨径最大的钢斜腿刚构铁路桥。 1988年在广东省广州市郊建成了中国第一座大跨径连续刚构桥——洛溪大桥。大桥位于广州市番禺区洛溪渡口,跨珠江后航道,全长1916.04米,为4孔一联三向预应力混凝土连续刚构桥,最大跨径180米,桥面净宽15米,该桥建设既吸取了中国修建数十座T形刚构的经验,又研究了国外同类桥梁的成熟技术,最大跨径180米,在当时已居亚州同类桥型首位。 洛溪大桥为九十年代连续刚构桥的建设奠定了基础,并成就了虎门大桥辅航道桥跨径纪录。1997年4月建成通车的虎门大桥位于广东省珠江三角洲中部虎门古炮台,连接广深、广珠两条高速公路,是珠江三角洲高速公路网的重要组成部分。辅航道桥是主桥的组成部分,桥型为三跨预应力混凝土连续刚构箱型梁,其主航道桥以888米的跨度

桥梁设计(研究)现状和发展趋势

设计(研究)现状和发展趋势(文献综述) 2.1桥梁设计的现状 2.1.1 梁式桥 1. 简支体系梁桥 实心板桥,空心板桥,T 梁桥,工字型梁桥, 箱型梁桥等 特点:受力简单;标准设计;预制吊装;20~50m;中小桥;引桥 组合式梁桥有两种型式: Ι形组合梁桥____适用于钢筋混凝土简支梁桥 箱形组合梁桥____适用于预应力混凝土梁桥。 优点:显著减轻预制构件的重量,便于集中制造和运输吊装。 2. 简支变连续体系梁桥 T 梁桥,工字型梁桥, 箱型梁桥等 特点:先简支(预制吊装),后连续;连续体系受力;预应力20~50m;中小桥;引桥3. 连续梁桥 箱型截面,连续体系受力,支座 20~30m:普通钢筋混凝土,中小桥;引桥;高架桥; 立交桥;支架现浇较多 40~60m:预应力混凝土,大中桥;次主桥; 等截面,顶推施工 >60m: 大桥,特大桥;变截面, 悬臂施工(现浇或拼装) 4. 刚构桥 门式刚架桥 T 型刚构桥(带挂孔的或不带挂孔的) 连续刚构桥 刚构-连续组合体系桥 斜腿刚构桥 刚构桥特点: 箱型截面,连续体系受力, 墩梁刚接(不需支座) >60m,大桥,特大桥;变截面, 悬臂施工(现浇或拼装)-不需体系转换 2.1.2 拱桥 简单体系拱桥(上承式拱) 组合体系拱桥(中承式拱、下承式拱、系杆拱等) 1. 石拱桥 我国现存的石拱桥最早已有1500多年历史, 常用跨度:8~60m;

1991年,120m,湖南凤凰县乌巢河桥 2001年,146m, 山西晋城丹河大桥, 世界最大跨度。 2. 混凝土拱桥 分箱形拱、肋拱、桁架拱 常用跨度:30~200m 世界已建成跨径超过240M拱桥共15座,中国4座 跨径大于300m的拱桥共5座,中国占3座 1997年,重庆万县长江大桥(主跨420m),为世界最大跨度。 钢管混凝土劲性骨架混凝土箱形拱:以钢管混凝土作为劲性骨架,再外包混凝土形成箱形拱,是修建大跨径拱桥十分好的构思,除了方便施工外,还避免了钢管防护问题。 3. 钢管混凝土拱桥 钢管混凝土是一种钢-混凝土复合材料具有支架、模板二大作用,自架设能力强极限状态下发挥套箍作用,极限承载能力高常用跨度:100~300m。 4. 钢拱桥 ?适用于大跨径 ?我国钢拱桥修建正在较快增加 2.1.3 斜拉桥 特点:组合体系,比梁式桥有更大的跨越能力 200~800m的跨径范围内占据着优势 由于拉索的自锚特性而不需要悬索桥那样巨大锚碇 在800~1100m的跨径范围内,斜拉桥也扮演重要角色 1600m跨径都是可行的 斜拉桥主要由主梁、索塔和斜拉索三大部分成: 主梁一般采用混凝土结构、钢-混凝土组合结构、钢结构或钢和混凝土混合结构; 索塔-采用混凝土、钢-混凝土组合或钢结构;大部分采用混凝土结构; 斜拉索-则采用高强材料(高强钢丝或钢绞线)制成。 2.1.4 悬索桥 世界已建成跨径大于1000米的悬索桥17座;日本于1998年建成了世界最大跨径的明石海峡大桥,是世界建桥史上的一座丰碑。 特点:悬索桥是特大跨径桥梁的主要形式之一 受力明确,造型优美,规模宏伟,“桥梁皇后” 跨径大于800m的桥梁,悬索桥具有很大的竞争力 400~800m也有可比性 抗风稳定性问题突出 2.2桥梁设计的发展趋势 随着我国经济发展,材料、机械、设备工业相应发展,这为我国修建大跨径斜拉桥和悬索桥提供了有力保障。再加上广大桥梁建设者的精心设计和施工,使我国建桥水平已跃身于世界先进行列。以下是桥梁发展得趋势:

国内外桥梁发展史

国内外桥梁发展史 一、桥梁定义 桥梁是为道路跨越天然或人工障碍物而修建的建筑物。桥梁一般由五大部件和五小部件组成,五大部件包括(1)桥跨结构(或称桥孔结构.上部结构)、(2)支座系统、(3)桥墩、(4)桥台、(5)墩台基础;五小部件包括(1)桥面铺装、(2)防排水系统、(3)栏杆、(4)伸缩缝、(5)灯光照明。 二、桥梁分类 按用途分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥。 按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。 按结构分为梁式桥,拱桥,钢架桥,缆索承重桥(斜拉桥和悬索桥)四种基本体系,此外还有组合体系桥。 按行车道位置分为上承式桥、中承式桥、下承式桥。 按使用年限可分为永久性桥、半永久性桥、临时桥。 按材料类型分为木桥、圬工桥、钢筋砼桥、预应力桥、钢桥。 梁式桥:包括简支板梁桥,悬臂梁桥,连续梁桥。其中简支板梁桥跨越能力最小,一般一跨在8-20m。连续梁桥国内最大跨径在200m以下,国外已达240m(目前世界上最大跨径梁桥最跨是330m,是位于中国重庆的石板坡长江大桥复线桥,于2006年建成通车)。 拱桥:指的是在竖直平面内以拱作为上部结构主要承重构件的桥梁。 拱桥分类:①按拱圈(肋)结构的材料分:有石拱桥、钢拱桥、混凝土拱桥、钢筋混凝土拱桥。②按拱圈(肋)的静力图式分:有无铰拱、双铰拱、三铰拱(见拱)。

世界第一拱桥为重庆朝天门长江大桥,主跨达522m,2009年4月29日建成通车。 刚构桥:主要承重结构采用刚构的桥梁。梁和腿或墩(台)身构成刚性连接。结构形式可分为门式刚构桥、斜腿刚构桥、T形刚构桥和连续刚构桥。跨径我国最大已达270m(虎门大桥辅航道桥)。虎门大桥横跨东莞市虎门镇和广州南沙区之间的珠江入海口。大桥工程于1992年10月28日开工,1997年6月9日正式通车。 斜拉桥:又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。

桥梁发展史1

桥梁发展史 桥梁是道路的组成部分。从工程技术的角度来看,桥梁发展可分为古代、近代和现代三个时期。 古代桥梁 人类在原始时代,跨越水道和峡谷,是利用自然倒下来的树木,自然形成的石梁或石拱,溪涧突出的石块,谷岸生长的藤萝等。人类有目的地伐木为桥或堆石、架石为桥始于何时,已难以考证。据史料记载,中国在周代(公元前11世纪~前256年)已建有梁桥和浮桥,如公元前1134年左右,西周在渭水架有浮桥。古巴比伦王国在公元前1800年建造了多跨的木桥,桥长达183米。古罗马在公元前621年建造了跨越台伯河的木桥,在公元前 481年架起了跨越赫勒斯旁海峡的浮船桥。古代美索不达米亚地区,在公元前 4世纪时建起挑出石拱桥(拱腹为台阶式)。 古代桥梁在17世纪以前,一般是用木、石材料建造的,并按建桥材料把桥分为石桥和木桥。 石桥石桥的主要形式是石拱桥。据考证,中国早在东汉时期(公元25~220年)就出现石拱桥,如出土的东汉画像砖,刻有拱桥图形。现在尚存的赵州桥(又名安济桥),建于公元605~617年,净跨径为37米,首创在主拱圈上加小腹拱的空腹式(敞肩式)拱。中国古代石拱桥拱圈和墩一般都比较薄,比较轻巧,如建于公元816~819年的宝带桥,全长317米,薄墩扁拱,结构精巧。 罗马时代,欧洲建造拱桥较多,如公元前200~公元200年间在罗马台伯河建造了8座石拱桥,其中建于公元前62年的法布里西奥石拱桥,桥有2孔,各孔跨径为24.4米。公元98年西班牙建造了阿尔桥,高达52米。此外,出现了许多石拱水道桥,如现存于法国的加尔德引水桥,建于公元前1世纪,桥分为3层,最下层为7孔,跨径为16~24米。罗马时代拱桥多为半圆拱,跨径小于25米,墩很宽,约为拱跨的三分之一,图1为罗马时代建造的列米尼桥示意图。 [列米尼桥示意图]

斜拉桥发展历史及未来方向

斜拉桥的发展历程及未来发展趋势 通过本学期的学习,我们学习了梁桥、拱桥、斜拉桥、悬索桥的计算方法。通过老师的讲解使我们了解到了不同桥梁的受力特点的不同以及不同桥梁计算时使用的不同的理论。梁桥以受弯为主的主梁作为承重构件的桥梁。主梁可以是实腹梁或桁架梁。实腹梁构造简单,制造、架设和维修均较方便,广泛用于中、小跨度桥梁,但在材料利用上不够经济。桁架梁的杆件承受轴向力,材料能充分利用,自重较轻,跨越能力大,多用于建造大跨度桥梁。拱桥指的是在竖直平面内以拱作为结构主要承重构件的桥梁。拱桥是向上凸起的曲面,其最大主应力沿拱桥曲面作用,沿拱桥垂直方向的最小主应力为零。悬索桥既吊桥指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。其缆索几何形状由力的平衡条件决定,一般接近抛物线。从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。下面我们重点来说说斜拉桥,斜拉桥是由主梁、索塔和斜拉索三大部分组成,主梁一般采用混凝土结构、钢和混凝土结构、组合结构或钢结构,索塔主要采用混凝土结构,斜拉索采用高强材料的钢丝或钢绞线制成。它的主要优点有在各个支点支承的作用下跨中弯矩大大减小,而且由于结构自重较轻,既节省了结构材料,又能大幅地增大桥梁的跨越能力。此外,斜拉索轴力产生的水平分力对主梁施加了预应力,从而可以增强主梁的抗裂能力,节约主梁中预应力钢材的用钢量。斜拉桥和梁桥和拱桥相比有着跨越能力大的优

势。而与悬索桥相比在300-1000米跨度又有经济性的优势。同时外形对称美观更兼线条纤秀,构造简洁,造型优美。符合桥梁美学的要求。适合在跨度为300-1000米的桥梁使用。 斜拉桥的发展其实进行了一个漫长的历史,在国外1784年德国人勒舍尔建造了一座跨径为32米的木桥,这是世界上第一座斜拉桥。1821年法国建筑师叶帕特在世界上第一次系统地提出了斜拉桥的结构体系。在这个体系里,他构想用锻铁拉杆将梁吊到相当高的桥塔上,拉索扇形布置,所有拉索都锚固于桥塔顶部。1855年美国工程师罗伯林在尼亚加拉河上,建成了跨径达250米的公铁两用桥。这是世界上首次将悬索体系和拉索体系的成功组合。1949年,德国著名的桥梁工程师迪辛格尔发表了他对斜拉桥的结构体系的研究成果,为现代斜拉桥的诞生和发展奠定了理论基础。1952年德国莱昂哈特教授在世界上第一个设计出现代化斜拉桥――德国杜塞尔多夫跨越莱茵河的大桥。1953年迪辛格尔与德国承包商德玛格公司,承建了瑞典的斯特罗姆松德桥,这是世界上第一座现代斜拉桥。从此斜拉桥经历了三个发展阶段:自20世纪50年代中至60年代中,其特征是拉索为稀索体系,钢或混凝土梁体,以受弯为主;第二阶段,自20世纪60年代后期开始,其特征是拉索逐步采用密索体系,并可以换索,钢和混凝土梁以受压为主,截面减小;第三阶段,从20世纪80年代中期至今,拉索普遍采用密索体系,可以换索,梁体结构出现组合式、混合式、钢管混凝土等新的形式。相应地梁向轻型化发展,梁高减小,梁面也出现了肋板式、板式等形式。

桥梁工程发展史

桥梁工程发展史 姓名:董楠 学号:150298 班级:测控151班 学院:机械工程学院

摘要: 桥梁是线路的重要组成部分。在历史上,每当运输工具发生重大变化,对桥梁在载重、跨度等方面提出新的要求,便推动了桥梁工程技术的发展。随着时代的发展,中国桥梁发生了翻天覆地的变化,从形状、结构、功能上都越来越贴近人们对桥梁的需求。随着新世纪科技的不断进步和发展,新型桥梁将会更加为人类社会的交通发展做出卓越贡献的。 关键词:古代桥梁、现代桥梁、桥梁发展前景 正文: 在19世纪20年代铁路出现以前,造桥所用的材料是以石材和木材为主,铸铁和锻铁只是偶尔使用。在漫长岁月里,造桥的实践积累了丰富的经验,创造了多种多样的形式。但现今使用的各种主要桥式几乎都能在古代找到起源。在最基本的三种桥式中,梁式桥起源于模仿倒伏于溪沟上的树木而建成的独木桥,由此演变为木梁桥、石梁桥、直至19世纪的桁架梁桥;悬索桥起源于模仿天然生长的跨越深沟而可资攀援的藤条而建成的竹索桥,演变为铁索桥、柔式悬索桥,直至有加劲梁的悬索桥;拱桥起源于模仿石灰岩溶洞所形成的“天生桥”而建成的石拱桥,演变为木拱桥和铸铁拱桥。 在有了铁路以后,木桥、石桥、铁桥和原来的桥梁基础施工技术就难于适应需要。但到19世纪末叶,由于结构力学基本知识的传播、钢材的大量供应、气压沉箱应用技术的成熟,使铁路桥梁工程获得迅速发展。20世纪初,北美洲曾在铁路钢桥跨度方面连创世界纪录。到第二次世界大战前,公路钢桥和钢筋混凝土桥的跨度记录又都超过了铁路桥。 第二次世界大战后,大量被破坏的桥梁急待修复,新桥急需修建,而造桥钢材短缺,于是,利用30年代以来所积累的关于高强材料和高效工艺的经验,推广了几种新型桥──用正交异性钢桥面板的箱形截面钢实腹梁桥,预应力混凝土桥和斜张桥。 60年代以来,汽车运输猛增,材料供应缓和,科学技术迅猛发展,桥梁工程又在提高质量、降低造价、降低桥梁养护费等方面获得了很大改进。下面我们来细数一下中国桥梁工程的发展:

中国钢桥发展

中国钢桥发展 历史的回眸 ? ?中国建设钢桥的历史可以追朔到百年以前,在我国7万多公里的铁路线上,有8000多座钢桥在服役,其中超过百年的老龄钢桥有160多孔。而早期的老龄钢桥大多是外国人设计并建造。旧中国的铁路钢桥建设,由于受到当时的政治、经济和科学技术的限制,材料、设计水平、制造水平、施工技术等条件都很落后,钢桥的发展极为缓慢。 ? ?1934年~1937年,39岁的茅以升先生带领中国工程师设计并监造了钱塘江大桥(主跨 65.84m,全长1453m),开创了我国自行建造钢桥的历史 ? ?中国最早的钢桥制造厂有超过百年的历史(1894),但是,直到50年代初期,桥梁工厂只有制造铆接桥的技术。1956年,苏联专家与中国技术人员合作,在沈阳桥梁厂试焊成功第一孔24米焊接板梁,此后,第一批320孔24m焊接板梁桥,架设在石太线和湛江附近支线上,这是我国第一次制造焊接桥。 ? ?1957年,借助前苏联专家的技术和材料,中国建造完成了武汉长江公铁两用大桥。桥梁全长1155.5m,主跨128m,该桥的建设培养了中国第一批钢桥设计、施工、制作、研究的科学技术人员,为中国钢桥事业的发展奠定了基础。 ? ?1968年,中国人靠自己的技术、材料,自行设计建造了正桥长1576m,铁路桥全长6772m,公路桥全长4588m的南京长江大桥,主跨160m,首次使用国产的16Mnq钢。? ?六十年代中期,在中国西南成昆铁路建设中,由科研、设计、施工、制造单位组成了栓焊梁战斗组,系统地研究了栓焊钢桥建造技术,编制了我国最早的《栓焊钢梁设计暂行办法》,并以此为指导,在成昆线上建成了不同形式的栓焊钢桥44座,结束了中国铆接钢桥的历史,开创了中国栓焊钢桥技术发展的新纪元。、 以特大型桥梁建设为标志的五个里程碑 1、武汉长江大桥(第一个里程碑) 特点: (1)长江上第一座公、铁两用桥 (2)跨度:128m (3)材料:3号桥梁钢(Q240) (4)铆接

斜拉桥的分类

斜拉桥的总体布置与结构体系 总体布置主要有跨径布置、拉索及主梁的布置、索塔高度与布置。 一、跨径布置主要有下面三种类型 (1)双塔三跨式。为目前应用最广泛的跨径布置方式。下面是立面图与其荷载作用不同位置时发生的索塔与主梁的形变。 (2)独塔双跨式。这也是应用较为广泛的一种跨径布置,但由于它的主孔跨径一般比双塔三跨式的小,故特别适用于跨越中小河流、谷地及作为跨线桥,或用于跨越较大河流的主航道部分,也可用主跨跨越河流,索塔及边跨布置在河流一岸的方式。

独塔双跨式斜拉桥立面图 (3)多塔多跨式。多塔多跨式斜拉桥适用于需要多个大通航孔的大江大河、宽阔湖泊或海峡上,但这种结构一般采用较少,主要原因是中间塔顶没有端锚索来有效地限制它的变位,使结构柔性及变形增大,整体刚度差。 多塔多跨式斜拉桥示意图 二、拉索的布置,拉索的布置分为空间上的布置与索面内的布置。 (1)拉索索面在空间可布置成单索面和双索面,而双索面又可分为竖直双索面和倾斜双索面。

单索面斜拉桥(临海大桥) 竖直双索面斜拉桥

倾斜双索面斜拉桥 (2)拉索在索面内的布置形式主要有以下三种:辐射形、竖琴形及扇形。 辐射形:拉索与水平面的平均交角较大,拉索的垂直分力较大,故拉索的用量最省。由于在拉索的水平分力在塔顶基本平衡,故索塔的弯矩较小,索塔高度也较小,但由于拉索都固定在塔顶,所以塔顶的结构复杂,集中应力现象突出,给施工和养护带来困难。 竖琴形:所有拉索的倾角完全相同,且拉索与索塔的锚固点分散布置,使拉索与索塔、拉索与主梁的连接构造简单,易于处理。竖琴形布置拉索加强了索塔的顺桥向刚度,对减少索塔的弯矩和提高索塔的稳定性都有利。但是其拉索的倾角与水平方向的交角较小故所需的拉索数量大,布置密集,一般都用于中小跨径的斜拉桥中。

我国钢结构发展现状及前景

我国钢结构建筑的现状及发展前景 【论文关键词】钢结构建筑;现状;发展前景;推广应用 【论文摘要】钢结构目前在我国已经得到初步的发展,因其材料和结构形式的特点,钢结构具有建筑功能分区的可变性强、房屋自重轻、抗震性能优越、生产自动化施工装配化程度高和造价低综合经济效益好等优点。但推广和应用钢结构还需解决一系列的问题。 随着国民经济的快速发展以及人民生活水平的日益提高,钢结构已经广泛的应用在建筑行业,包括工业厂房、大跨度公共建筑、民用住宅等。不过,钢结构的研究还处于起动阶段,研究力度还不够,实际设计和施工还存在不少争议和问题。这些都急需解决,以利于钢结构在我国健康快速持续发展。 1、我国钢结构建筑发展概况 钢结构的应用在我国有悠久的历史。钢结构建筑发展大体可分为三个阶段:一是初盛时期(50年代~60年代初),二是低潮时期(60年代中后期~70年代),三是发展时期(80年代至今)。50年代以苏联156个援建项目为契机,取得了卓越的建设成就。60 年代国家提出在建筑业节约钢材的政策,执行过程中又出现了一些误区,限制了钢结构建筑的合理使用与发展。80年代沿海地区引进轻钢建筑,国内各种钢结构的厂房、奥运会的一大批钢结构体育馆的建设,以及多栋高层钢结构建筑的建成是中国钢结构发展的第一次高潮。但我国每年的建筑用钢量仅1%被用于预制钢结构,与发达国家80%以上的用量比较,差距巨大。可喜的是,目前我国钢结构建筑的发展出现了未曾有过的兴旺景象。主要表现在: 1.1 高层、超高层建筑由中外合作到国产化的起步 我国著名的高层、超高层建筑大多是中外合作的产物,如上海金茂大厦、环球金融中心、深圳地王大厦、北京京广中心等。中外合作设计对于掌握国外先进技术及锻炼培养人才起到了促进和推动作用。1998年建成的大连远洋大厦(高201m,51层)标志着高层钢结构建筑国产化的起步,1999年建成的深圳赛格广场(291.6m,72 层)是世界上最高的钢管混凝土结构建筑。 1.2 轻钢结构建筑的迅猛发展与国外公司的大批涌入 近年来、轻钢建筑以其商品化程度高、施工速度快、使用效果好、应用面广、造价低等优势获得了迅猛发展。全国每年约有200万平方米轻钢建筑竣工。在此背景下,国外轻钢结构生产厂商也纷纷在我国设分公司、制造厂,获得了很大的销售量。 1.3 空间结构得到了进一步的发展 大量大跨度的建设项目陆续兴建。如天津体育中心(直径108m,1994年)、上海8万人体育场看台顶盖(1998年)、沈阳博展中心室内足球场(144 × 204m,2000年)等。 2、大力推广钢结构技术、广泛开展钢结构建筑设计的紧迫性 2.1 环境问题逼迫、促发的紧迫性 面对日益严峻的环境问题,建筑界责无旁贷。我国是世界上最大的砖砌体建筑与混凝土建筑大国。每年生产7000亿块砖(约占世界总产量的1/2)、5亿吨水泥(占世界总产量1/3强),生产砖的代价是每年毁农田约15万亩,消耗标准煤约7000万吨,生产水泥的代价是每年排放温室气体CO2约3亿吨(生产1吨水泥熟料,排施1吨CO2),破坏的矿山与排放的废水则难以统计。如此触目的数字,不能不让人反思。因此,国家采取了一系列具体措施,明确提出要积极合理地扩大钢结构在建筑中的应用。 钢结构的发展带来了解决环境问题的突破口。首先,钢材是一种高强、高效能的材料,具很高的再循环价值,边角料也有价值。其次,钢结构抗震性能好,使用灵活,施工时既不需要耗费大量的木材、钢模板和水,也不会产生强的噪音与空气污染。再次,钢结构的发展

桥梁工程毕业设计开题报告样本

毕业设计(论文)开题报告 题目: 茶庵铺互通式立体交叉K65+687跨线桥 方案比选与施工图设计 √论文□课题类别: 设计□ 学生姓名: 周伟其 学号: 18030222 班级: 桥土07-02班 专业( 全称) : 土木工程( 桥梁工程方向) 指导教师: 韩艳 3月

独塔双跨式斜拉桥也是一种较常见的孔跨布置方式, 由于它的主孔跨径一般比双塔三跨式的主孔跨径小, 适用于跨越中小河流和城市通道。 独塔双跨式斜拉桥的主跨跨径与边跨跨径之比一般为1.25~2, 但多数接近1.52, 两跨相等时, 由于失去了边跨及辅助墩对主跨变形的有效约束作用, 因而这种形式较少采用。 斜拉桥与悬索桥一样, 很少采用三塔四跨式或多塔多跨式。原因是多塔多跨式斜拉桥中的中间塔塔顶没有端锚索来限制它的变位。因此, 已经是柔性结构的斜拉桥或悬索桥采用多塔多跨式将使结构柔性进一步增大, 随之而来的是变形过大。 2.2.4斜拉桥的施工工艺及描述 主梁施工 主梁除钢主梁和叠合梁采用工厂加工制作, 现场起吊拼装形成外, 预应力混凝土主梁大多采用挂篮现浇或支架现浇, 少数也有采用预制拼装法完成。挂篮悬浇法由于其造价较低, 且主梁线形易于控制, 采用较为广泛。在中国, 挂篮悬浇从后支点发展大前支点(也称”牵索式挂篮”) , 从小节距发展到大节距, 从轻型发展到超轻型从节段施工周期15天发展到最快4天, 技术已经逐渐成熟。牵索式挂篮的采用提高了挂篮承载能力, 加快了施工速度。 索塔及索塔基础施工 当前中国斜拉桥无论采用H形, 倒Y形, 还是钻石形索塔, 均采用钢筋混凝土结构。钢筋混凝土索塔的形成, 主要取决于支架和模板工艺。近年来大多采用简易支架或无支架施工法; 索塔施工模板、提模、翻模及爬模工艺, 其中爬模造价较低, 浇注节段高达6~9米, 施工速度快, 外观较光滑。斜拉桥因为其跨径较大使得主塔墩基础竖向荷载相应较大, 从而基础工程相应较大。索塔基础一般采用桩基础、钢围堰、沉井、或围堰加桩基础施工方法。 拉索施工 拉索的加工一般采用热剂PE防护法在工厂或现场加工。拉索锚头有热铸和冷铸两种, 大多采用冷铸锚头。拉素大多系整束集中防护张拉, 但也有个别采用平行钢绞线分束防护张拉。斜拉索的张拉、牵引与张拉。随着斜拉桥的跨径增大, 拉索长度和质量随之增大, 其张拉、牵引及张挂的力度与难度随之增大。一般采用放盘法自下而上牵引到位或采用整盘吊装上梁后牵引上塔。

我国桥梁建设的发展历史

我国桥梁工程的发展现状 1、我国桥梁建设的发展历史 改革开放以来,我国的经济,政治各个方面都处于落后时期,作为公路建设重要组成部分的桥梁建设也得到了相应发展,特别是近十年来,我国大跨径桥梁的建设进入了一个最辉煌的时期,一大批结构新颖、技术复杂、设计和施工难度大和科技含量高的大跨径桥梁相继建成,标志着我国的公路桥梁建设水平已跻身于国际先进行列。近几年建成的特大桥梁,不少在世界桥梁科技进步中具有显著地位。诸如正在建设的重庆朝天门大桥是世界最大跨度钢拱桥,并创造了该类型桥梁十余项世界第一;苏通大桥以主跨1088m 为世界第一跨度斜拉桥,同时成为世界上连续长度最大的双塔斜拉桥;刚通车的杭州湾跨海大桥为世界第一长跨海大桥;万县长江大桥为目前世界上跨度最大的混凝土拱桥;此外江阴长江公路大桥、香港青马大桥,其跨度分别在悬索桥中居世界第四位和第五位;南京长江二桥、白沙洲长江大桥、荆沙长江大桥、鄂黄长江大桥、大佛寺长江大桥、李家沱长江大桥等特大桥的跨度名列预应力混凝土斜拉桥世界前十位。一座座桥,实现了天堑的跨越,缩短了时间与空间的距离,美化了秀美山川,为我国疆域的沟通和经济的腾飞起着了重要的作用。 2、我国桥梁工程面临的问题 随着交通运输事业的发展,交通运输量大幅度增长,行车密度及车辆载重越来越大,而现有道路中部分桥梁或由于当初设计标准低,经过一段时间的交通发展,荷载标准或桥上、桥下的净空不能满足新交通的需要,或结构陈旧老化、到它原有设计能力而危及运行的,严重影响了交通运输的发展。目前公路桥梁运营养护和管理所面临的问题主要有: (1)交通量越来越大,旧桥的承载能力很多已经不能满足新的荷载等级要求。 (2)桥梁耐久性问题 由于设计考虑欠周,钢筋腐蚀、冻融损坏、碱集料反应和化学物质侵袭、环境影响等,使得结构的承载力会随着时间推移而降低。尤其是,当混凝土保护层剥露、钢筋腐蚀后,其有效截面积会不断减小,就使得结构的承载能力迅速下降,并不可恢复,严重时还会出现钢筋断裂。当结构的剩余承载能力低于作用荷载时,桥梁结构就有可能发生破坏。因此,由钢筋腐蚀病害而引起的桥梁耐久性问题,已成为一个非常突出的灾害性问题。 (3)疲劳问题 桥梁所采用的材料往往含有微小的缺陷,在循环荷载作用下,这些微缺陷(微裂纹和微孔洞)会成核,发展及合并形成损伤,并逐步在材料中形成宏观裂纹。如果宏观裂纹不得到有效控制,极有可能会引起材料、结构的脆性断裂。疲劳损伤是钢桥设计中的核心问题,有不少因疲劳断裂引起桥梁垮塌的案例。早期疲劳损伤往往不易被检测到,但其带来的后果可能是灾难性的。 (4)桥梁的超载 桥梁的超载现象是客观存在的,在某些路段十分突出,有两种情况:其一是早期修建的老桥超龄、超负载运营;另一种情况是违规超载车辆的存在。前者产生的原因主要是设计规范的变化和交通量的增加及重载车辆的发展所致,这种

桥梁工程毕业设计【斜拉桥设计】中英文摘要

摘要 XX大桥主孔斜拉桥是一座公铁两用的斜拉桥,跨度为504米。是国内首座上层为六车道公路桥面,下层为四线铁路的斜拉桥。 本文以该斜拉桥为工程背景。首先采用SAP90程序,建立全桥三维有限元模型,考虑了主桁、主塔和斜拉索的关系。三片桁架通过横梁联系,将混凝土桥面板、钢桥面板按恒载考虑。进行恒活载计算时,将横纵梁、桥面板、道碴、道碴槽、汽车活载、列车活载等转化为集中力施加到桁架节点上。并以刚度控制为标准确定斜拉索初张力。 在恒活载内力分析中,上层公路桥面用弹性支撑连续梁法,下层铁路桥面用杠杆法计算横向分布系数,从而确定中桁为最不利桁架。结构计算以跨中和支座处的断面为控制断面,绘出控制杆件的轴力影响线,利用影响线加活载并求内力。按照公路规范进行内力组合,对控制杆件进行强度、刚度和疲劳强度的检算。最后进行结构性能评定。关键词:斜拉桥,钢桁梁,初张力,内力分析,结构验算

ABSTRACT The main span of Tianxingzhou Bridge is a Cable-stayed Bridge in Wuhan, which is used for highway and railway. The main span is 504m.It is the first bridge that its up layer can hold 6 lanes of highway, and it’s down layer is used for 4 track railway in our country.The thesis takes this Cable-stayed Bridge for engineering background.First, three dimensional finite element model is set up using SAP90 program.Consider revising the connection of primary truss, main tower and cables,regarding concrete deck and steel deck as dead load.The three trusses are integrated through cross beams. In the process of load calculating, the gravity of cross beams, girders, deck, ballast, ballast trough are transformed into concentrated force which compel on the joints of trusses.Moreover, according to the stiffness norm, the initial prestress are added to the cables. In the process of internal force analysis, the middle truss is determined as the most dangerous truss through calculating cross subsection factor. The up layer adopts the method of continuous beams on elastic support,and the down layer use heaver method.Next, definite the most dangerous section, the influence line of the most dangerous member is made , and calculate the internal force.According to the highway bridge standard and railway, combine internal force.Check the strength, rigidity and fatigue initiation of the control member.Last, the structural performance is evaluated. Key words: Cable-stayed Bridge, steel truss girder, initial prestress, internal force analysis, structural check

中国桥梁发展史

中国桥梁的历史可以上溯到6000年前的氏族公社时代,到了1000多年前的隋、唐、宋三代,古代桥梁发展到了巅峰时期。在最近的1000年中,中国的桥梁技术全面落后于世界的脚步,中国第一座现代化桥梁的出现距今仅100多年历史,而且是由外国人建造的。从钱塘江大桥算起,中国人自己设计现代桥梁的历史还不足70年;从南京长江大桥算起,中国人自行设计建造大型桥梁的历史仅34年。九十年代以来,中国桥梁的成就才使我们重新无愧于祖先地站到了世界前列,这是中国桥梁建设的伟大复兴时代。 梁桥的新生 梁桥作为最简单实用的桥型,在桥梁史上出现得最早,在中国古代曾被拱桥的光环所湮没,但却是现代桥梁的始作俑者。现代梁桥技术中,钢板梁桥和钢桁架梁桥出现得最早,以后,混凝土桥梁以其经济性和便于维护的优势,得到了长足的发展。中国的预应力混凝土简支梁桥和连续梁桥在八十年代以后得到广泛采用,成为长桥和大跨径桥梁的主要桥型。浙江省瑞安飞云江桥最大跨径62米,桥长1722米,是中国当时最大跨径的预应力混凝土简支梁公路桥。八十年代以来,预应力混凝土连续梁桥成为中国公路桥梁的重要桥型。1984年建成的湖北省沙洋汉江桥是首座跨径超过100米的连续梁桥,跨径100米以上的连续梁桥还有广东省广州大桥、江门外海桥、惠州东江桥、湖南省常德沅江桥、贵州省思南乌江桥、天津市永定新河华北桥、湖北省宜城汉江桥、宜昌乐天溪桥、江苏省南京长江第二大桥北汊桥等,其中

南京长江第二大桥北汊桥的最大跨径达到165米,外海桥的连续长度达到880米。 作为现代梁桥的分支——连续刚构、斜腿刚构等新桥型在八十年代取得了突破性进展。1981年中国跨径最大的预应力混凝土斜腿刚构桥——浊漳河桥建成,此桥是邯(郸)长(治)铁路上的一座大型桥梁,位于山西省黎城和潞城交界处,跨越两岸陡峭的浊漳河,主跨达到82米。 1982年底,另一座更大的钢箱型斜腿刚构桥落成。这就是位于陕西省安康水电站铁路专用线上的安康汉江桥,主跨达176米,是当时世界跨径最大的钢斜腿刚构铁路桥。 1988年在广东省广州市郊建成了中国第一座大跨径连续刚构桥——洛溪大桥。大桥位于广州市番禺区洛溪渡口,跨珠江后航道,全长米,为4孔一联三向预应力混凝土连续刚构桥,最大跨径180米,桥面净宽15米,该桥建设既吸取了中国修建数十座T形刚构的经验,又研究了国外同类桥梁的成熟技术,最大跨径180米,在当时已居亚州同类桥型首位。 洛溪大桥为九十年代连续刚构桥的建设奠定了基础,并成就了虎门大桥辅航道桥跨径纪录。1997年4月建成通车的虎门大桥位于广东省珠江三角洲中部虎门古炮台,连接广深、广珠两条高速公路,是珠江三角洲高速公路网的重要组成部分。辅航道桥是主桥的组成部分,桥型为三跨预应力混凝土连续刚构箱型梁,其主航道桥以888米的跨度在当时居全国悬索桥之首,辅航道桥则更以270米的跨径一举夺得连

中国焊接钢桥四十年

中国焊接钢桥四十年 清华大学陈伯蠡 ⒈中国钢桥发展概况 常见的钢桥型式有:梁桥(I型板梁、桁梁、箱梁),拱桥(系杆拱、下承拱、上承拱、中承拱),以及悬索桥和斜拉桥等。大跨径公路钢桥主要是悬索桥(图1 a)和斜拉桥(图1b);铁路钢桥多为梁桥和拱桥。图1c为低塔斜拉公铁两用梁桥。按造桥方法,钢桥可分为: a b C d 图1 焊接钢桥的几种桥型 a---西陵长江大桥(公路桥);b--- 南京长江二桥(公路桥); c---芜湖长江大桥(公铁两用桥);d---贵州北盘江大桥(铁路桥) 铆接桥(工厂制造和工地拼接均为铆接)、栓焊桥(工厂制造为焊接,工地拼接为高强度螺栓连接)和全焊桥(工厂制造和工地拼接均为焊接)。栓焊桥和全焊桥统称为焊接桥。 我国仅在长江上已有各种型式的桥梁29余座,其中接近半数为钢桥。“万里长江成了中国当代桥梁的展台。”(北京日报,2002.07.17)。关于焊接钢桥,可以公路桥为对象作比较,按大跨径悬索桥的跨径L≥600m,大跨径斜拉桥L≥400m,进行不完全统计,90年代以来中国已建成大跨径悬索桥7座,大跨径斜拉桥10座;同时期国外建成的大跨径悬索桥有10座(其中日本6座),大跨径斜拉桥有15座(其中日本6座)。按跨径大小排序〔1〕〔2〕,在世界上建成的全部悬索桥中排名前十位的焊接钢桥中,中国有2座:江阴长江大桥(L=1385m)排名第四,香港青马大桥(L=1377m)排名第五;日本明石海峡大桥L=1990m,居首位;丹麦的Great Belt大桥L=1624m,排名第二。而在全部斜拉桥排名前十位的焊接钢桥中,日本的多多罗大桥L=890m,居首位;中国有6座桥,排名第三、四、五、六、七和第九(南京长江二桥L=628m,排第三位;武汉长江三桥L=618m,排第四位)。其中“不少已跻身‘世界级’桥梁,展示出中国当代建桥技术达到了世界先进水平”。(北京日报2002.07.17)。 1996年布达佩斯国际焊接钢桥会议中,日本东京大学伊藤教授在题为“东亚焊接桥的

斜拉桥的发展

中国斜拉桥的发展状态和关键技术 摘要:斜拉桥的发展引用着多种现代的高新技术,得以桥梁在大跨度的桥梁施工中,得以精确度的保证以及在规范要求的范围内,并且施工中必须考虑到外部环境的影响,所以接下来对以上的问题作以叙述。 关键词:斜拉桥全球卫新定位系统防护措施施工重点 斜拉桥又称斜张桥,上部结构由索、梁、塔三个主要组成部分构成,从其力学特点看,属于组合体系桥。斜拉桥依靠斜拉索支撑梁跨,类似于多跨弹性支承梁,梁内弯矩与桥梁的跨度基本无关,而与拉索间距有关。斜拉桥开始于17世纪,现在斜拉桥正处于发展的高峰期间,长度、跨度和持久性也在不断增加。 斜拉桥采用斜拉索来支撑主梁,使主梁变成多跨支撑连续梁,从而降低主梁高度、增大跨度。斜拉桥属于自锚结构体系,斜拉索对桥跨结构的主梁产生有利的压力,改善了主梁的受力状态。主要构造有基础、墩塔、主梁和拉索。其上的主梁是受弯构件,为多点弹性支撑,弯矩和挠度显著减小,斜拉索水平分力,提供对称的预应力,减缓主梁的压力。斜索是受拉构件,为主梁提供弹性支持,调整其索力、间距和数量,可调整桥梁内力分布及刚度,对斜拉索进行预张拉。 斜拉桥孔跨布置主要可分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。在特殊情况下,斜拉桥也可以布置成独塔单跨式或者混合式。 1、双塔三跨式 目前双塔三跨式最常用,形式有对称式和非对称式,适用在跨越较大的河流、海口及海面比较近的工程中。以下为双塔三跨式的例子,如图一所示。杭州湾跨海大桥建于2003年11月14日开工,2007年6月26日贯通,2008年5月1日启用。杭州湾跨海大桥是一座横跨中国杭州湾海域的跨海大桥,北起浙江嘉兴海盐郑家埭,南至宁波慈溪水路湾,全长36公里,比连接巴林与沙特的法赫德国王大桥还长11公里,已经成为中国世界纪录协会世界最长的跨海大桥候选世界纪录,成为继美国的庞恰特雷恩湖桥和青岛胶州湾大桥是世界上最长的跨海大桥后世界第三长的桥梁。此桥的特点为两侧都建有辅助墩,目的是为了缓和端锚索应力集中或减少边跨主梁弯矩,增大桥梁总体刚度。杭州湾大桥的钢管桩制作过程中,每个工序都进行严格质量检查,对焊缝百分之百进行超声波检查,还有部分的需要进行射线照相。其中T形和十字形的焊缝及近桩顶焊缝作为重点检查。焊缝不允许有咬边、焊缝未融合、未焊透的情况表面气孔、弧坑、夹渣等外观缺陷,这些都是对桩的焊接要求,而且在做这桥的设计时,还得考虑到一些外在因素,因为作为海上建筑,必须考虑到海上的海风很大,桥墩放下的时候会因为海风的吹动而摇晃,可能导致放置的位置不精确,所以得用到精密仪器测量和GPS 定位导航系统,这个是近几年才开始开发使用在桥梁建筑上的科技技术使用。在建成的时候还得预防以后海上出现台风现象,因为美国就有桥在设计时未能够充分考虑到风力和风速的影响,导致桥在风的作用下,产生摇晃,导致桥的倒塌。钢管桩的制作已经需要考虑到防腐的问题,而且也要考虑到在运输的时候,防止桩与周围的摩擦。而且全球卫星定位系统在这里利用的地方也比较多。像这里外海沉桩施工过程中,因为在海上的施工,所以在岸上看上去距离远,常规的经纬仪和全站仪测量定位很难达到设计的要求,所以只有使用全球卫星定位系统在施

浅谈我国桥梁的发展史

研究生课程论文 学院土木工程专业建筑与土木工程课程名称学科专题讲座 研究生姓名 **** 学号 *********** 开课时 **** 至 **** 学年第 *** 学期考试成绩 教师评语: 教师签字 年月日

说明 一、研究生课程论文必须与本封面一起装订。阅卷教师务必用红笔批阅,并在本封面规定位置打分、写完评语后连同成绩登记表(一式两份)交学院研究生秘书,各学院研究生秘书在第二学期开学后两周内将成绩登记表交研究生学院。论文由开课学院研究生办公室保管。 二、该封面请用A4纸双面打印,将此说明打印于封面背面。

浅谈我国桥梁的发展史 ********** 摘要:桥梁是交通运输线路的重要组成部分。中国古代桥梁的辉煌成就举世瞩目,曾在东西方桥梁发展史中占有崇高的地位,为世人所公认。随着社会的不断发展,人口基数不断增加,交通压力逐渐加大,桥梁正处于高速发展的黄金阶段,相信在当下和未来的世界交通上桥梁仍会起到主导作用。介绍了我国桥梁的发展历程和一些历史著名桥梁的相关情况,说明了我国古代桥梁建设取得的辉煌成就,分析了现在的桥梁建设取得的成就和必须正视的问题,以促进我国桥梁的发展。 关键字:桥梁;发展史 0 引言 我国是有着悠久历史的伟大国家。幅员辽阔,地形西北高而东南低,河道纵横交错,有著名的长江、黄河和珠江等流域,这里孕育了中华民族,创造了灿烂的华夏文化。在历史的长河中,中华民族建设了数以千万计的桥梁,成为华夏文化的重要组成部分。中国古代桥梁的辉煌成就举世瞩目,曾在东西方桥梁发展史中占有崇高的地位,为世人所公认。 1桥梁的发展史 1.1 萌芽阶段 第一阶段以西周、春秋为主,包括此前的历史时代,这是古桥的萌芽阶段。早在原始社会,我国就有了独木桥和数根圆木排拼而成的木梁桥。据史料记载,我国周朝时期已建有梁桥和浮桥。1972年,在春秋时期齐国的京城山东临淄的考古挖掘中,首次发现了梁桥的遗址和桥台遗迹,两处桥梁的跨径均在8 m左右。 1.2 初步发展阶段 第二阶段以秦、汉为主,包括战国和三国,这是古代桥梁的初步发展阶段。战国时期,单跨和多跨的木、石梁桥已普遍在黄河流域及其他地区建造。坐落在咸阳故城附近的渭水三桥,在古代是很有名的。三桥包括中渭桥、东渭桥和西渭桥,都是多跨木梁木柱桥。秦汉是我国建筑史上一个璀灿夺目的发展阶段,这时不仅发明了人造建筑材料的砖,而且还创造了以砖石结构体系为主题的拱券结构,从而为后来拱桥的出现创造了先决条件。从一些文献和考古资料来看,约在东汉时期,梁桥、浮桥、索桥和拱桥这四大基本桥型已全部形成。

相关文档
最新文档