共聚焦显微镜原理及其应用

共聚焦显微镜原理及其应用
共聚焦显微镜原理及其应用

共聚焦显微镜原理及其应用

传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。

共聚焦显微镜的应用。细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。

1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化

2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析

3.药理学:药物对细胞的作用及其动力学

4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态

5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布

6.微生物学和寄生虫学:细菌、寄生虫形态结构

7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等

8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断

激光共聚焦显微镜在医学领域中的应用:

A.在细胞及分子生物学中的应用

1. 细胞、组织的三维观察和定量测量

2. 活细胞生理信号的动态监测

3. 粘附细胞的分选

4. 细胞激光显微外科和光陷阱功能

5. 光漂白后的荧光恢复

6. 在细胞凋亡研究中的应用

B.在神经科学中的应用

1. 定量荧光测定

2. 细胞内离子的测定

3 神经细胞的形态观察

C.在耳鼻喉科学中的应用

1. 在内耳毛细胞亚细胞结构研究上的应用

2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用

3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用

4. 激光扫描共聚焦显微镜在嗅觉研究中的应用

D.在肿瘤研究中的应用

1. 定量免疫荧光测定

2. 细胞内离子分析

3. 图像分析:肿瘤细胞的二维图像分析

4. 三维重建

E.激光扫描共聚焦显微镜在内分泌领域的应用

1. 细胞内钙离子的测定

2. 免疫荧光定位及免疫细胞化学研究

3. 细胞形态学研究:利用激光扫描共聚焦显微镜

F.在血液病研究中的应用

1. 在血细胞形态及功能研究方面的应用

2. 在细胞凋亡研究中的应用

G.在眼科研究中的应用

1. 利用激光扫描共聚焦显微镜观察组织、细胞结构

2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现

3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态

4. 三维重建

激光共聚焦显微镜的原理与应用范围

激光共聚焦显微镜的原理与应用范围 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。把光学成像的分辨率提高了30%~40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代的研究工具。 1激光扫描共聚焦显微镜(LSCM)的原理 从基本原理上讲,共聚焦显微镜是一种现代化的光学显微镜,它对普通光镜从技术上作了以下几点改进: 1.1用激光做光源因为激光的单色性非常好,光源波束的波长相同,从根本上消除了色差。1.2采用共聚焦技术在物镜的焦平面上放置了一个当中带有小孔的挡板,将焦平面以外的杂散光挡住,消除了球差;并进一步消除了色差 1.3采用点扫描技术将样品分解成二维或三维空间上的无数点,用十分细小的激光束(点光源)逐点逐行扫描成像,再通过微机组合成一个整体平面的或立体的像。而传统的光镜是在场光源下一次成像的,标本上每一点的图像都会受到相邻点的衍射光和散射光的干扰。这两种图像的清晰度和精密度是无法相比的。 1.4用计算机采集和处理光信号,并利用光电倍增管放大信号图 在共聚焦显微镜中,计算机代替了人眼或照相机进行观察、摄像,得到的图像是数字化的,可以在电脑中进行处理,再一次提高图像的清晰度。而且利用了光电倍增管,可以将很微弱的信号放大,灵敏度大大提高。由于综合利用了以上技术。可以说LSCM是显微镜制作技术、光电技术、计算机技术的完美结合,是现代技术发展的必然产物。 2LSCM在生物医学研究中的应用 目前,一台配置完备的LSCM在功能上已经完全能够取代以往的任何一种光学显微镜,它相当于多种制作精良的常用光学显微镜的有机组合,如倒置光学显微镜、紫外线显微镜、荧光显微镜、暗视野显微镜、相差显微镜(PH)、微分干涉差显微镜(DIC)等,因此被称为万能显微镜,通过它所得到的精细图像可使其他的显微镜图像无比逊色。

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

激光扫描共聚焦显微镜的原理和应用

激光扫描共聚焦显微镜的原理和应用 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM)采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图 二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地

进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 (一)细胞的三维重建 普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。(二)静态结构检测 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡 检测细胞凋亡不同时期细胞形态、细胞凋亡相关蛋白

激光扫描共聚焦显微镜的原理和应用-17954讲解

激光扫描共聚焦显微镜的原理和应用 Tina(2007-10-23 09:40:17 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图

二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 一)细胞的三维重建

普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM 能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM 的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。 二)静态结构检测:原位鉴定细胞或组织内生物大分子、观察细胞及亚细胞形态结构 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡

激光共聚焦显微镜技术1讲解

激光共聚焦显微镜技术 The techniques and applications of Confocal Laser Scanning Microscopy 激光共聚焦显微镜(LSCM)的发展简史 1957年,Marvin Minsky提出了共聚焦显微镜技术的某些基本原理,获得了美国的专利。1978年,阿姆斯特丹大学的G.J.Brakenhoff首次展示了改善了分辨率的共焦显微镜。 1985年,Wijnaendtsvan Resandt推出了第一台对荧光标记的材料进行光切的共焦显微镜 激光共聚焦显微镜(LSCM)的发展简史 ?80年代末,各家公司都推出了商品化的共焦显微镜,英国的Bio-Rad公司的MRC系列,德国Leica公司的TCS系列,Zeiss公司的LSM系列等。 ?近二十年来,从滤片型到光谱型,人们对共焦高分辨率,采集图像快速,技术的改进及应用开发不断进行,出现了很多新的技术。如双光子,FCS,FLIM ,STED等。 共焦显微镜的优点 人眼分辨率:0.2mm 光学显微镜分辨率:0.25μm 电子显微镜分辨率:0.2nm 共焦显微镜分辨率:μm 共焦显微镜的优点 ?电子显微镜的缺陷: 1.只能观察固定样品 2.样品制备过程(固定、包埋、切片)造成的假象 ?荧光显微镜的缺陷: 1.可以观察活细胞或组织,但细胞或组织内结构高度重叠。 2.荧光具有强散射性,造成图像实际清晰度的大大下降。 3.荧光漂白很快,使荧光图像的拍照有困难。 4.如果荧光滤片选配不当,多荧光标记样品图像的采集很困难,且很难抑制光谱交叉。 共焦显微镜的优点 ?共焦显微镜与传统显微镜的区别 1.抑制图像的模糊,获得清晰的图像 激光扫描共焦显微镜技术 ?共焦显微镜与传统显微镜的区别

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院 2008级物理学 200801071293 黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。

激光共聚焦原理

激光共聚焦显微镜的成像原理 什么是荧光? 荧光是当以某一波长的光线照射一 个物质(原子/分子)的时候,该物质(原 子/分子)吸收了光线能量的一部分并且 发射出另一种低能量的光线。图中示意的 光线里蓝色(较高能量光线)为入射光线, 绿色(较低能量光线)为反射光线。 什么是分光镜? 分光镜是可以把不同波长的光线区分开来的光学装置。 分光镜可以起到使特定的光线可以通过,特定光线反射的作用。 荧光显微镜是如何工作的? 我们假定入射光线是紫色的 (较高能量光线),反射光线是红 色的(较低能量光线)。显微镜系 统使用了一种特殊的分光镜,(更恰 当地说一个“区分两种颜色的镜 片”)。这个镜片反射低于特定波长 的光线,并且可以通过高于特定波 长的光线。因此你的眼睛只能看到 这些由荧光染料反射出来的光线 (红色光线),而不是看到入射的 紫色光线。紫色和红色的光栅位于分光镜后,作为一种特殊的过滤装置,来保证其他颜色的光线传到了不正确的方向。

关于共聚焦显微镜 想象下在显微镜中有一些 镜片组,由镜片组一个焦点发出 的光线延光路发送到另一个焦 点。这表现为图中的蓝色光线。 红色光线表示式样上的其他点发出的光线,这些点并不在镜片组的焦点上,因此这些点就不能通过镜片组在另一边的焦点上成像。(这里的需要注意的是,红色的光线和蓝色的光线是为了区分式样上的不同点,并不是为了表示他们的波长不同。)这样,蓝色光和红色光成像的点就不相同。这里我们只希望得到位于镜片组焦点上发出光线成的像。如果我们在镜片组的另一边放置一个带有针孔的隔挡,这个孔正好在蓝色点成像的位置,那么所有从蓝色点发出的光线都可以通过这个针孔。并且,由红色点发出的大部分光线是不能通过这个针孔的。这就解决了荧光显微镜的一个缺陷。通常来说式样都是完全被照亮的,因此式样上的每一个点都会同时发出荧光。当然,成像最清晰,也就是亮度最高的点是在物镜焦点上的点,但是其他点的光一样会对成像结果产生影响。增加一个针孔就解决了这个问题,因为式样位于物镜焦点上的点会在针孔位置成像,这样对点是共轭的。针孔的位置就是镜片组的位置,这就是共聚焦针孔。 那么共聚焦显微 镜是怎么工作 的? 激光一般被用作光源,一边产生 高强度的光照。图中,蓝色线表示激 光光线,它被分光镜反射。两个可以 驱动带有扫描功能的镜片,会侦测到 激光器发射的光,而被式样反射的光线是不会被侦测的。焦点位置点的反射光通过分光镜在针孔位置成像,并且通过针孔的光线会被放大。这里如果扫描速度足够快,人眼看到的就是一副运动的画面。

激光共聚焦显微镜原理

激光共聚焦显微镜原理 激光共聚焦扫描显微技术(Confocal laser scanning microscopy)是一种高分辨率的显微成像技术。普通的荧光光学显微镜在对较厚的标本(例如细胞)进行观察时,来自观察点邻近区域的荧光会对结构的分辨率形成较大的干扰。共聚焦显微技术的关键点在于,每次只对空间上的一个点(焦点)进行成像,再通过计算机控制的一点一点的扫描形成标本的二维或者三维图象。在此过程中,来自焦点以外的光信号不会对图像形成干扰,从而大大提高了显微图象的清晰度和细节分辨能力。 图1. 共聚焦显微镜简化原理图 图1是一般共聚焦显微镜的工作原理示意图。用于激发荧光的激光束(Laser)透过入射小孔(light source pinhole)被二向色镜(Dichroic mirror)反射,通过显微物镜(Objective lens)汇聚后入射于待观察的标本(specimen)内部焦点(focal point)处。激光照射所产生的荧光(fluorescence light)和少量反射激光一起,被物镜重新收集后送往二向色镜。其中携带图像信息的荧光由于波长比较长,直接通过二向色镜并透过出射小孔(Detection pinhole)到达光电探测器(Detector)(通常是光电倍增管(PMT)或是雪崩光电二极管(APD)),变成电信号后送入计算机。而由于二向色镜的分光作用,残余的激光则被二向色镜反射,不会被探测到。

图2. 探测针孔的作用示意图 图2解释了出射小孔所起到的作用:只有焦平面上的点所发出的光才能透过出射小孔;焦平面以外的点所发出的光线在出射小孔平面是离焦的,绝大部分无法通过中心的小孔。因此,焦平面上的观察目标点呈现亮色,而非观察点则作为背景呈现黑色,反差增加,图像清晰。在成像过程中,出射小孔的位置始终与显微物镜的焦点(focal point)是一一对应的关系(共轭conjugate),因而被称为共聚焦(con-focal)显微技术。共聚焦显微技术是由美国科学家马文?闵斯基(Marvin Minsky)发明的;他于1957年就为该技术申请了专利。但是直到八十年代后期,由于激光研究的长足进步,才使得激光共聚焦扫描显微技术(CLSM)成为了一种成熟的技术。 图3. 激光共聚焦显微镜原理框图 当今的激光共聚焦显微镜已经发展为一种结合了激光技术,显微光学,自动控制和图像处理等多种尖端科研成果的高技术工具。是现代微观研究领域不可缺少的利器之一。Nikon秉承“信赖与创造”的一贯企业理念,正在为业界提供世界领先水平的共聚焦显微镜系统产品。

激光共聚焦显微镜与普通显微镜成像原理及区别

激光扫描共聚焦显微镜采用激光作为光源, 有效地除去了非聚焦平面的信息, 提高了微观形貌的清晰度和分辨率。其与计算机软件结合可以实现深度方向的光学切片观察, 再将这些扫描得到的信息通过软件算法以及叠加和重组, 可以获得材料的微观三维形貌, 因此激光共聚焦显微镜具有快速、无损、制样简单等优点。那么激光共聚焦显微镜的原理又是怎样的呢? 它采用激光点光源照射样品, 从发射器发出的光经过光路后在聚焦平面上形成一个大小分明的光点,它沿着原照射光路到达分光镜并且该点发出的光被物镜收集,分光镜将收集来的光直接反馈给探测器。光点通过前方探测器设有的探测针孔等一系列的透镜, 最终同时聚焦于探测针孔, 这样来自聚焦平面的光可以会聚在探测孔之内, 而来自聚焦平面上方或下方的散射光都被挡在探测孔之外而不能成像, 从而提高了焦平面的分辨率。激光共聚焦显微镜逐点扫描样品, 探测针孔后的光电倍增管也逐点获得对应光点的共聚焦图像, 转为数字信号传输到计算机上, 最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。转为数字信号传输到计算机上, 最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。此外激光共聚焦显微镜还可以对样品进行逐层光学切片扫描, 得到高度方向每一层的图像信息, 传回计算机软件叠加处理后可以得到三维形貌图。它成像清晰、精确、最大的优点在于能对材料进行深层形貌的观察。可以对样品进行断层扫描观察和成像, 进行无损观察和三维形貌分析。 激光共聚焦显微镜可用来观察样品表面亚微米级别的三维轮廓形貌, 也可以测量多种微几何尺寸, 像晶粒度、体积、膜深、膜厚、深度、长宽、线粗糙度、面粗糙度等。激光共

聚焦相比于其他测量手段有其独特的优势, 它提高了图片的清晰度, 有很好的景深, 提高了分辨率, 可以进行无接触的三维轮廓测试。在金属材料研发方面还经常用到光学显微镜和扫描电子显微镜。光学显微镜是一种二维的形态学工具, 有效分辨率较低, 分辨率的景深较小, 也不能观察纵向方向的三维形态。而扫描电镜在样品的制备方面比较复杂, 有时还会引起样品的破坏, 对于扫描的面积和材料的表面高度都有所限制, 同时它也不能测量面积、体积、深度等信息。在钢铁材料的生产和开发过程中, 众多的环节需要关注表面形貌, 采用激光共聚焦显微镜技术进行相应检测, 不仅可以获得媲美SEM的显微图像, 同时还能够进行快速、无损测量, 加之其较低的引入和维护成本,更符合目前行业成本控制的需求。本文将举例说明激光共聚焦显微镜在金属研究领域的典型应用。 激光共聚焦显微镜由于其优于光学显微镜的清晰度和分辨率, 使其在金相组织观察方面有独特的优势。试验样品为海洋平台用钢, 将样品进行磨制、抛光处理, 并用腐蚀溶液腐蚀, 要求观察并测量基体上粒状贝氏体的形态和尺寸。相比于普通光学显微镜, 激光共聚焦显微镜清晰度好, 分辨率高。激光作为光源, 它的单色性非常好, 光束的波长相同, 从根本上消除了色差。共聚焦显微镜中在物镜的焦平面上放置了一个带有针孔的挡板, 将焦平面以外的杂散光挡住, 从而消除了球差。同时激光共聚焦显微镜采取的点扫描技术和计算机采集和处理信号也进一步提高了图像的清晰度。

金相显微镜的基本原理、构造及使用

5.2 金相显微镜的基本原理、构造及使用 金相显微镜可用来鉴别和分析各种金属和合金的组织结构,广泛应用在工厂或实验室进行铸件质量的鉴定、原材料的检验或对材料处理后金相组织的研究分 析等工作。还可用于半导体检测、电路封装、精密模具、生物材料等检验与测量。【实验目的】 1.了解金相显微镜的基本原理、基本结构和使用方法。 2.掌握仔细阅读显微镜使用说明书并进行正确操作的方法。 【实验原理】 显微镜的基本放大作用由焦距很短的物镜和焦距较大的目镜来完成的,物体位于物镜的前焦点外但很靠近焦点位置,物体经过物镜形成倒立的放大实像,这个像位于目镜的物方焦距内但很靠近焦点位置,作为目镜的物体,目镜将物镜放大的实像再放大成虚像,位于观察者的明视距离(距人眼250mm)处,供眼睛观察。光路图见“2.4光学基本仪器”中的图2-? 为了减少球面像差、色像差和像域弯曲等像差,金相显微镜的物镜和目镜都是由透镜组构成的复杂光学系统。显微镜的成像质量在很大程度上取决于物镜的 质量,因此物镜的构造尤为复杂,根据对各种像差的校正程度不同,物镜可分为消色差物镜、复消色差物镜和平视场物镜等三大类。近年来,由于采用计算机技术,物镜的设计和制造都有了很大改进。 实际上,一方面,金相显微镜所观察的显微组织,往往几何尺寸很小,小至 可与光波波长相比较,此时不能再近似地把光线看成直线传播,而要考虑衍射的影响。另一方面,显微镜中的光线总是部分相干的,因此显微镜的成像过程是个比较复杂的衍射相干过程。此外,由于衍射等因素的影响,显微镜的分辨能力和放大能力都受到一定限制,目前金相显微镜可观察的最小尺寸一般是0.2μm左右,有效放大倍数最大为1500~1600倍。 金相显微镜总的放大倍数为物镜与目镜放大倍数的乘积。放大倍数用符号“Х”表示,例如物镜放大倍数为20Х,目镜放大倍数为10Х,则显微镜的放大倍数为200Х。通常物镜、目镜的放大倍数都刻在镜体上,在使用显微镜观察试 样时,应根据其组织的粗细情况,选择适当的放大倍数,以细节部分能观察得清晰为准。 金相显微镜最常见的有正置、倒置和卧式三大类。本实验使用的是正置金相显微镜为例,光学系统结构图如图5-2-1所示。

激光扫描共聚焦显微镜及其应用讲解

激光扫描共聚焦显微镜及其应用 激光扫描共聚焦显微镜(Laserscanningconfocalmicroscope,LSCM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察和检测。目前,激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像 激光扫描共聚焦显微镜(Laser scanning confocal microscope, LSCM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察和检测。目前,激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像分析等实用研究手段,结合其他相关生物技术,在形态学、生理学、免疫学、遗传学等分子细胞生物学领域得到广泛应用。 激光共聚焦显微镜的原理 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。 主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。 通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具。 主要功能 1、图像处理功能 2、细胞生物学功能应用范围:(1)定量荧光测定;(2)定量共焦图像分析;(3)光学切片及三维重组;(4)动态观察;(5)荧光漂白恢复研究;(6)质膜流动性研究;(7)蛋白质相互作用研究;(8)激光显微外科及“光陷阱”研究;(9)光活化技术研究。 (编辑:文静)

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

X荧光光谱仪的原理结构及应用

X荧光光谱仪的原理结构及应用 【摘要】X荧光分析是一种快速、无损、多元素同时测定的分析技术,已广泛应用于材料、冶金、地质、生物医学、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,可为相关生产企业提供一种可行的、低成本的、及时的检测、筛选和控制有害元素含量的有效途径。本文就X荧光光谱仪的工作原理及其应用做简单阐述。 【关键词】X荧光;光谱仪;原理;应用 一、X荧光的基本原理: 当一束高能粒子与原子相互作用时,如果其能量大于或等于原子某一轨道电子的结合能,将该轨道电子逐出,对应的形成一个空穴,使原子处于激发状态。此后在很短时间内,由于激发态不稳定,外层电子向空穴跃迁使原子恢复到平衡态,以降低原子能级。当较外层的电子跃迁(符合量子力学理论)至内层空穴所释放的能量以辐射的形式放出,便产生了X荧光。X荧光的能量与入射的能量无关,它只等于原子两能级之间的能量差。由于能量差完全由该元素原子的壳层电子能级决定,故称之为该元素的特征X射线,也称荧光X射线或X荧光。 X荧光光谱法就是由X射线光管发生的一次X射线激发样品,试样可以被激发出各种波长的特征X射线荧光,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析的方法。该方法是一种非破坏性的仪器分析方法,常用的有能量色散型和波长色散型两种类型。广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。下面我以波长色散型X射线光谱仪为例讲一下它的原理及构造。 二、X荧光光谱仪的原理与仪器构造: 使用X荧光光谱法的仪器叫X射线荧光光谱仪。X荧光光谱仪是一种相对测量仪器,它是通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,才能得到准确分析结果的测量。建立正确的数学模型必须依靠一组好的标样,代表性好,有一定的跨度范围,有准确的结果。 1、激发光源—X射线管 X光管可以分成端窗和侧窗二种,但是近代X光荧光光谱仪几乎都只采用端窗一种类型,因为它能接近试样安放,有利于提高测定灵敏度。 如图:管体内为高度真空。管内有阳极,阴极,灯丝,冷却水管,X射线出射窗(铍窗);尾部有高压电缆接头,冷却水接口和灯丝电缆;头部为X射线出射窗口。

光学显微镜工作原理

光学显微镜工作原理 1. 1. 引言 2. 2. 显微镜基本原理 3. 3. 显微镜图像质量 4. 4. 显微技术的类型 5. 5. 荧光显微技术 6. 6. 光学显微镜的组成部件 7.7. 了解更多信息 8.8. 阅读所有物理学类文章 自十六世纪末发明以来,光学显微镜加深了我们对基础生物 学、生物医学研究、医疗诊断和材料科学的认识。光学显微 镜最多可将物体放大1000倍,以展现其微观细节。如今,这 项技术已远远超出罗伯特·虎克和列文虎克(Antoni van Leeuwenhoek)所发明的第一台显微镜的水平。人类研发的特 殊技术和光学设备可以揭示出活细胞的结构和生化机能。显 微镜甚至已进入数字时代,利用电荷耦合器件(CCD)和数码 相机来捕捉图像。然而,这些高级显微镜的基本原理却与您 生平第一节生物课上用过的学生显微镜非常相似。 光学显微镜的工作原理与折射望远镜极为相似,仅有一些细微的差别。下面让我们简单地了解一下望远镜的工作原理。 望远镜要从昏暗、遥远的物体上采集大量光线,因此需要巨大的物镜,以尽可能多采集一些光线并使物体看起来更加明亮。物镜很大,因而物体的图像会出现在一段距离之外的焦点位置,这就是为何望远镜比显微镜长得多的原因。望远镜的目镜随后放大图像,使物体就像在您眼前一样。 洋葱皮细胞(200倍) 光学显微镜工作原理

普通学生 光学显微镜的示意图,显示各个部件和光路 与望远镜相反,显微镜必须从距离很近、范围极小、厚度极薄且明亮清晰的样本上采集光线。因此显微镜不需要巨大的物镜。相反,显微镜的物镜很小,而且呈球形,这就意味着显微镜两侧的焦距都要短得多。物镜将物体的图像对焦在显微镜镜筒内的不远处。随后图像由第二个透镜放大,这个透镜称为接目镜或目镜,使物体如同在您眼前一般。 望远镜和显微镜之间另一个主要区别在于,显微镜带有光源和聚光器。聚光器是一种透镜系统,用于将光源的光线聚焦到样本上的一个微小而明亮的点,即物镜检查的同一区域。 显微镜与望远镜之间还有一个不同之处:后者配有固定物镜和可换目镜,而前者配有可换物镜和固定目镜。通过更换物镜(从相对扁平、低放大倍数的物镜到较圆、高放大倍数的物镜),显微镜可以观察越来越微小的区域——采光不是显微镜物镜的主要任务,但却是望远镜的。 本文后半部分将详细讨论显微镜的组成部件。 制作简易显微镜 您可以用放大镜和纸片制作简易显微镜: 1. 准备两片放大镜和一张印有图像的纸。 2. 将一片放大镜固定在纸张上方不远处。印刷图像看起来变 大了一点。 3. 将另一个放大镜放在您的眼睛和第一个放大镜之间。 4. 上下移动第二个放大镜,直到印刷图像清晰为止。您会发 现印刷图像要比在第一个放大镜中看到的图像更大。 此外,您还可以制作一个类似针孔相机的简易针孔显微镜。 显微镜图像质量 使用显微镜观察样本时,您所看到的图像质量将在以下几方面进行评估:

显微镜的基本光学原理及重要技术参数

显微镜的基本光学原理及重要光学技术参数 第一章:显微镜简史 随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。 显微镜是从十五世纪开始发展起来。从简单的放大镜的基础上设计出来的单透镜显微镜,到1847年德国蔡司研制的结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于金属材料,生物学,化工等领域。 第二章显微镜的基本光学原理 一.折射和折射率 光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。 二.透镜的性能 透镜是组成显微镜光学系统的最基本的光学元件,物镜、目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。 当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称“焦点”,通过交点并垂直光轴的平面,称“焦平面”。焦点有两个,在物方空间的焦点,称“物方焦点”,该处的焦平面,称“物方焦平面”;反之,在像方空间的焦点,称“像方焦点”,该处的焦平面,称“像方焦平面”。 光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。 三.影响成像的关键因素—像差 由于客观条件,任何光学系统都不能生成理论上理想的像,各种像差的存在影响了成像质量。下面分别简要介绍各种像差。 1.色差(Chromatic aberration) 色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色差。白光由红橙黄绿青蓝紫七种组成,各种光的波长不同,所以在通过透镜时的折射率也不同,这样物方一个点,在像方则可能形成一个色斑。光学系统最主要的功能就是消色差。 色差一般有位置色差,放大率色差。位置色差使像在任何位置观察都带有色斑或晕环,使像

共聚焦显微镜

共聚焦显微镜 从一个点光源发射的探测光通过透镜聚焦到被观测物体上,如果物体恰在焦点上,那么反射光通过原透镜应当汇聚回到光源,这就是所谓的共聚焦,简称共焦。共焦显微镜[confocallaserscanningmicroscope(clsm或lscm)]在反射光的光路上加上了一块半反半透镜(dichroicmirror),将已经通过透镜的反射光折向其它方向,在其焦点上有一个带有针孔(pinhole)的挡板,小孔就位于焦点处,挡板后面是一个光电倍增管 (photomultipliertube,pmt)。可以想像,探测光焦点前后的反射光通过这一套共焦系统,必不能聚焦到小孔上,会被挡板挡住。于是光度计测量的就是焦点处的反射光强度。其意义是:通过移动透镜系统可以对一个半透明的物体进行三维扫描。 激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有

划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了 30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如ca2+、ph值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和ph值变化研究(ratio),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(fish),细胞骨架研究,基因定位研究,原位实时pcr产物分析,荧光漂白恢复研究(frap),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分

光学显微镜的原理及构造

光学显微镜的原理及构造 显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand)显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base)底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator)透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch)这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。 5. 电源开关(mains switch)与亮度调节旋钮(brightness control)电源开关用来接通或切断显微镜所需用的交流电源。电源开关旋钮也可调节照明光源的亮度,使所观察的视域可随时获得适当的亮度,可调范围为3-12V。作显微照相时,可根据曝光以及彩色底片色温的要求来调节灯光的亮度。当准备关掉电源之前,应先将亮度调节旋钮调到最小。

激光扫描共聚焦显微镜在生命科学中的应用

激光扫描共聚焦显微镜在生命科学中的应用 实验目的与要求 1. 掌握激光扫描共聚焦显微镜的成像基本原理及其在生命科学中的应用。 一、激光扫描共聚焦显微镜的成像基本原理 1.普通荧光显微镜的不足 使用荧光物质标记细胞中的特定成分或结构,不仅图像与对比度增强,而且由于许多荧光显微镜的光源使用短波长的紫外光,大大提高了分辩率(δ=0.61 λ/ NA )。但当所观察的荧光标本稍厚时,普通荧光显微镜不仅接收焦平面上的光量,而且来自焦平面上方或下方的散射荧光也被物镜接收,这些来自焦平面以外的荧光使观察到的图像反差和分辨率大大降低(即焦平面以外的荧光结构模糊、发虚,原因是大多数生物学标本是层次区别的重叠结构)。 Laser Scanning Confocal Microscope 2. 共聚焦扫描显微镜的成像原理 采用点光源照射标本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到由双向色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。两者的几何尺寸一致,约100-200nm;相对于焦平面上的光点,两者是共轭的,即光点通过一系列的透镜,最终可同时聚焦于照明针孔和探测针孔。这样,来自焦平面的光,可以会聚在探测孔范围之内,而来自焦平面上方或下方的散射光都被挡在探测孔之外而不能成像。以激光逐点扫描样品,探测针孔后的光电倍增管也逐点获得对应光点的共聚焦图像,转为数字信号传输至计算机,最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。 Confocal Principle

每一幅焦平面图像实际上是标本的光学横切面,这个光学横短面总是有一定厚度的,又称为光学薄片。由于焦点处的光强远大于非焦点处的光强,而且非焦平面光被针孔滤去,因此共聚焦系统的景深近似为零,沿Z轴方向的扫描可以实现光学断层扫描,形成待观察样品聚焦光斑处二维的光学切片。把X-Y平面(焦平面)扫描与Z轴(光轴)扫描相结合,通过累加连续层次的二维图像,经过专门的计算机软件处理,可以获得样品的三维图像。 LSCM的基本特点 观察方式:以荧光为主 光源:激光(紫外、可见光、近红外) 照明方式:点照明、逐点扫描 成像方式:共聚焦、逐点成像 输出:实时观测,数字化图像,可以进行图像处理和定量分析多重染色样品的观察 3. 共聚焦扫描显微镜在生命科学研究中的应用 细胞结构、蛋白质(如受体、抗原、抗体、酶、细胞 骨架蛋白等基因表达产物)、DNA、RNA等 细胞膜流动性(荧光光漂白恢复技术) 细胞内氧自由基活性 细胞内钙离子浓度变化 膜电位

相关文档
最新文档