钢结构项目转换层节点与H型钢桁架连接处焊接质量解决方法及措施

钢结构项目转换层节点与H型钢桁架连接处焊接质量解决方法及措施
钢结构项目转换层节点与H型钢桁架连接处焊接质量解决方法及措施

钢结构梯形屋架课程设计计算书(绝对完整)

第一章:设计资料 某单跨单层厂房,跨度L=24m,长度54m,柱距6m,厂房内无吊车、无振动设备,屋架铰接于混凝土柱上,屋面采用1.5*6.0m太空轻质大型屋面板。钢材采用Q235-BF,焊条采用E43型,手工焊。柱网布置如图2.1所示,杆件容许长度比:屋架压杆【λ】=150 屋架拉杆【λ】=350。 第二章:结构形式与布置 2.1 柱网布置 图2.1 柱网布置图 2.2屋架形式及几何尺寸 由于采用大型屋面板和油毡防水屋面,故选用平坡梯形钢屋架,未考虑起拱时的上弦坡度i=1/10。屋架跨度l=24m,每端支座缩进0.15m,计算跨度l0=l-2*0.15m=23.7m;端部高度取H0=2m,中部高度H =3.2m;起拱按f=l0/500,取50mm,起拱后的上弦坡度为1/9.6。 配合大型屋面板尺寸(1.5*6m),采用钢屋架间距B=6m,上弦节间尺寸1.5m。选用屋架的杆件布置和尺寸如施工图所示。

图2.2 屋架的杆件尺寸 2.3支撑布置 由于房屋较短,仅在房屋两端5.5m开间内布置上、下弦横向水平支撑以及两端和中央垂直支撑,不设纵向水平支撑。中间各屋架用系杆联系,上下弦各在两端和中央设3道系杆,其中上弦屋脊处与下弦支座共三道为刚性系杆。所有屋架采用统一规格,但因支撑孔和支撑连接板的不同分为三个编号:中部6榀为WJ1a ,设6道系杆的连接板,端部第2榀为WJ1b,需另加横向水平支撑的的连接螺栓孔和支撑横杆连接板;端部榀(共两榀)为WJ1c。 图2.3 上弦平面

12 1 2 1---1 2---2 图2.3下弦平面与剖面 第三章:荷载计算及杆件内力计算 3.1屋架荷载计算 表3.1 屋架荷载计算表 3.2屋架杆件内力系数 屋架上弦左半跨单位节点荷载作用下的杆件内力系数经计算如图所示。屋架上弦左半跨单位节点荷载、右半跨单位节点荷载、全跨单位节点荷载作用下的屋架左半跨杆件的内力

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N/mm 2 。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN/m 2 (2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

大型钢混转换桁架施工工法

大型钢混转换桁架施工工法 1、前言随着施工技术的发展,高层建筑因其建筑功用,出现越来越多下部大跨度空间设计,为解决上部结构的荷载合理传递问题,钢结构转换桁架在高层建筑中的运用逐渐推广开来。钢桁架自身重量大、安装高度高、危险性大,安装质量要求高,影响同期各专业施工,占据施工关键线路,郑州报业大厦工程项目钢桁架施工采用地面拼装、整体吊装的施工方案,利用液压同步提升施工,保证了工程质量、降低了施工风险、节约了工期。结合工程实践,将大型钢混转换桁架施工工艺编制成企业工法,为宝冶集团在后期类似的高层施工中提供借鉴和参考。 2、工法特点 2、1 钢结构主要的拼装、焊接及油漆等工作在地面上完成,施工效率高,施工质量易于保证。 2、2 钢结构的施工作业集中在地面,对其它专业的施工影响较小,且能够多作业面平行施工,有利于项目总工期控制。 2、3 钢结构的附属次结构件等在地面完成安装,可减少高空吊装工作量,缩短安装施工周期。 2、4 通过钢结构单元的整体提升,将高空作业量降至最少,加之液压提升作业绝对时间较短,能够有效保证空中钢结构安装的总体工期。

2、5 采用“超大型构件液压同步提升施工技术”吊装钢结构,技术成熟,吊装过程的安全有保证;液压提升系统的提升器锚具不仅具有逆向运动自锁性,提高吊装过程安全性,而且系统本身具有毫米级的微调功能,能够实现空中精确定位。 2、6 提升上下吊点等主要临时结构利用自身结构设置,加之液压同步提升动荷载极小的优点,可以使提升临时施焊量降至最少,有利于节约施工成本。 3、适用范围本工法适用于核心筒框架剪力墙结构的高层建筑中,下部存在大跨度空间,上部结构荷载需要有合理传力系统的结构施工。 4、工艺原理钢桁架在其正下方的首层楼面上采取卧拼的方式拼装为整体,同时利用结构已安装完成的钢骨结构设置提升平台,提升平台上布置两台液压提升器,在桁架上弦与上吊点对应的位置安装下吊点临时吊具,上下吊点通过专用钢绞线和专用底锚连接,利用液压同步提升系统将钢桁架翻身立直后,再继续提升至设计安装标高,完成钢桁架安装。 5、工艺流程及操作要点 5、1 工艺流程钢柱钢梁安装桁架正式提升提升至设计标高补充杆件桁架地面整体拼装桁架翻身预提升钢结构涂装补漆高强螺栓安装施工钢结构焊接 5、2 操作要点

钢结构安装方案-管桁架

钢结构安装方案 管桁架结构安装工法 黑龙江省安装工程公司黄宝龙(国家注册二级建造师) 一、前言 随着科学技术的发展和社会进步,如今各体育场馆、展厅、机场等一般被设计成为钢桁架结构,大跨度空间结构蓬勃发展,跨度越来越大,造型越来越新颖、别致,绿色环保、节约能源,施工期限短,对于安装施工提出的技术要求也越来越高。由我黑龙江省安装工程公司承包的七台河市新兴区木制品创业服务中心工程,42米、36米管桁架结构,由于跨度、重量及安装高度都比较大,且地处内庭,地面承载力无法承受吊车吊装时所产生的冲击力,无法采用常规方法进行安装。结合今年多种施工方案的分析和研究,最终确定了现场拼装,高空滑移到位的施工方法。该管桁架采用无缝钢管及高频焊管通过焊接球连接而成,两栋厂房共39榀,单榀最重约8吨,跨度为42米、36米,安装高度为12米。 二、工法特点 (一)、大跨度桁架体系直接就位在设计位置,支座安装精度易于保证。 (二)、对起重设备、牵引设备要求不高,可用小型起重机或卷扬机,甚至不用。而且只需搭设局部的拼装支架,如建筑物端部有平台可利用,可不搭设脚手架。 (三)、可充分利用桁架下部的楼面或地面结构,降低了结构的安装高度,同时不需要大量的脚手架及脚手架搭拆人员,降低了设备投入成本(四)、采用该工艺使屋盖钢结构的吊装、组对、焊接、测量校正、油漆等工序都可在同一胎架上重复进行,即可提高屋盖的安装质量、改善施工操作条件,又可以增加施工过程中的安全性。 三、适用范围 (一)复杂支承条件的大跨度单跨、多跨空间桁架或网架结构 (二)建筑平面为矩形、梯形或多边形等平面。

(三)支承情况可为周边简支、或点支承与周边支承相结合等情况。 (四)当建筑平面为矩形时滑轨可设在两边圈梁上,实行两点牵引。 (五)当跨度较大时,可在中间增设滑轨,实行三点或四点牵引,这是网架不必因分条后加大网架挠度,或者当跨度较大时,也可采用加反梁办法解决。 (六)现场狭窄、山区等地区施工;也适用于跨越施工;如车间屋盖的更换、轧钢、机械等厂房内设备基础、设备与屋面结构平行施工。 四、工艺原理 (一)、结构直接就位在设计位置,垂直起重设备和胎架沿屋盖结构组装方向单向移动,通过滑移胎架和行走吊机完成屋盖结构的安装。 (二)、将屋盖钢结构按照榀数和网格数分成若干单元,单元可在胎架移走后形成稳定的受力体系,在满足此条件下尽量减少每单元桁架及网格数,但不得少于两榀桁架或两个网格。 (三)、各单元按照吊车的起重能力又分为若干段。 (四)、沿桁架垂直方向设置行走式塔吊和胎架滑移的轨道。 (五)、根据单元的划分制作满足所有单元组装的可搭拆胎架,胎架需要连接成一个整体,通过手动葫芦牵拉将胎架移动到桁架单元的设计位置。 (六)、吊机行走至组装单元就近位置,顺次将需要的分段吊装至滑移胎架上,拼装焊接成单元后,拆除滑移胎架支撑,将组装单元直接落放在设计支座位置。 (七)、以手拉葫芦为动力源,通过滑轮组将胎架沿轨道空载滑移至下一组装单元位置,通过调节、修改形成下一单元的组装胎架,与楼面或地面做临时固定。塔吊行走至本组装单元就近位置拉点处牵拉进行等标高滑移,待滑移单元滑移到设计位置后,拆除滑移轨道,固定支座。如此逐单元拼装,分片滑移,直至完成整个屋盖的施工。概括起来该工法为:高空分片组装、单元整体滑移、累积就位的施工工艺。 五、施工工艺流程及操作要点

转换层钢管柱和转换钢桁架的吊装方

转换层钢管柱和转换钢桁架吊 装 XX 工程公司 年月日

一、工程概况 二、施工部署 三、主要施工施工方法及主要技术措施 四、施工平面布置图、平台搭设示意图 五、施工进度计划 六、主要施工管理措施 确保工期的保证措施 安全生产保证措施 文明施工保证措施 七、主要施工机具使用计划 八、主要材料使用计划 九、主要劳动力计划 十、安全事故应急救援措施目录 四)消防、保卫措施五)环境保护措施六)成品保护措施

、工程概况 本工程位于广州市**西路,为两栋塔楼工程,待建的A塔楼52层,建筑面积约6 万平方米;B塔楼36层,建筑面积约3万平方米,两栋塔楼均为写字楼。裙楼为6层 (临边有1.5m高的砼壁女儿墙),面积约5.6万平方米,以商场为主,已建成并投入使 用; 本工程A塔楼建筑高度为222.20米,B塔楼建筑高度为161.10米。 塔楼结构为钢筋混凝土结构,其中7层为结构转换层,已建裙楼结构为钢管混凝 土结构,通过转换层结构上部结构转换为为钢筋混凝土结构。A塔7层层高5.5米, 标准层结构开间为4.50米;B塔7层层高5米,标准层结构开间为4.00米。 转换层采用钢管混凝土结构和钢结构作为上下弦杆。钢结构内充填混凝土。 本方案主要为7层转换层钢管柱和转换钢桁架的吊装方案。 转换层钢管柱和转换层转换桁架的构件重量见下表: 1.转换层钢管柱 本工程共有三十一条柱采用钢管砼柱作主要承重结构,具体各根钢管柱实际数 2 .转换层转换桁架 A、B塔楼分别在七层楼面设置转换层,转换层设有转换桁架,根据设计图纸, A、B塔楼上弦杆有关参数如下表: 构件编号构件所在塔楼构件长度构件重量(kN)

大型钢混转换桁架施工工法

大型钢混转换桁架施工工法 工法编号: 编制单位:上海宝冶集团郑州分公司 编制人: 1?前言 随着施工技术的发展,高层建筑因其建筑功用,出现越来越多下部大跨度空间设计,为解决 上部结构的荷载合理传递问题,钢结构转换桁架在高层建筑中的运用逐渐推广开来。 钢桁架自身重量大、安装高度高、危险性大,安装质量要求高,影响同期各专业施工,占据施工关键线路, 郑州报业大厦工程项目钢桁架施工采用地面拼装、整体吊装的施工方案,利用液压同步提升施工,保证了工程质 量、降低了施工风险、节约了工期。 结合工程实践,将大型钢混转换桁架施工工艺编制成企业工法,为宝冶集团在后期类似的高 层施工中提供借鉴和参考。 2?工法特点 钢结构主要的拼装、焊接及油漆等工作在地面上完成,施工效率高,施工质量易于保证。 钢结构的施工作业集中在地面,对其它专业的施工影响较小,且能够多作业面平行施工,有利于项目总工 期控制。 钢结构的附属次结构件等在地面完成安装,可减少高空吊装工作量,缩短安装施工周期。 通过钢结构单元的整体提升,将高空作业量降至最少,加之液压提升作业绝对时间较短, 能够有效保证空中钢结构安装的总体工期。 采用“超大型构件液压同步提升施工技术”吊装钢结构,技术成熟,吊装过程的安全有保证;液压提升系 统的提升器锚具不仅具有逆向运动自锁性,提高吊装过程安全性,而且系统本身具有毫米级的微调功能,能够实现 空中精确定位。 提升上下吊点等主要临时结构利用自身结构设置,加之液压同步提升动荷载极小的优点, 可以使提升临时施焊量降至最少,有利于节约施工成本。 3.适用范围 本工法适用于核心筒框架剪力墙结构的高层建筑中,下部存在大跨度空间,上部结构荷载需要有合理传力系统的结构施工。 4.工艺原理 钢桁架在其正下方的首层楼面上采取卧拼的方式拼装为整体,同时利用结构已安装完成的钢

钢桁架桥计算书-毕业设计之欧阳歌谷创编

目录 欧阳歌谷(2021.02.01)1.设计资料1 1.1基本资料1 1.2构件截面尺寸1 1.3单元编号4 1.4荷载5 2.内力计算7 2.1荷载组合7 2.2内力9 3.主桁杆件设计11 3.1验算内容11 3.2截面几何特征计算11 3.3刚度验算15 3.4强度验算16 3.5疲劳强度验算16 3.6总体稳定验算17 3.7局部稳定验算18 4.挠度及预拱度验算19 4.1挠度验算19

4.2预拱度19 5.节点应力验算20 5.1节点板撕破强度检算20 5.2节点板中心竖直截面的法向应力验算21 5.3腹杆与弦杆间节点板水平截面的剪应力检算22 6.课程设计心得23

1.设计资料 1.1基本资料 (1)设计规范 《公路桥涵设计通用规范》(JTG D60-2004); 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86); (2)工程概况 该桥为48m下承式公路简支钢桁架梁桥,共8个节间,节间长度为6m,主桁高10m,主桁中心距为7.00m,纵梁中心距为3m,桥面布置2行车道,行车道宽度为7m。 (3)选用材料 主桁杆件材料采用A3钢材。 (4)活载等级 采用公路I级荷载。 1.2构件截面尺寸 各构件截面对照图

各构件截面尺寸统计情况见表1-1: 表1-1 构件截面尺寸统计表 编号名称类型 截面 形状 H B1 (B) tw tf1(tf ) B2tf2C 1下弦杆E0E2用户H型0.460.460.010.0120.4 6 0.012 2下弦杆E2E4用户H型0.460.460.0120.020.4 6 0.02 3上弦杆A1A3用户H型0.460.460.0120.020.4 6 0.02 4上弦杆A3A3用户H型0.460.460.020.0240.4 6 0.024 5斜杆E0A1用户H型0.460.60.0120.020.60.02 6斜杆A1E2用户H型0.460.440.010.0120.4 4 0.012 7斜杆E2A3用户H型0.460.460.010.0160.4 6 0.016 8斜杆A3E4用户H型0.460.440.010.0120.4 4 0.012 9竖杆用户H型0.460.260.010.0120.2 6 0.012 10横梁用户H型 1.290.240.0120.0240.2 4 0.024 11纵梁用户H型 1.290.240.010.0160.2 4 0.016 12下平联用户T型0.160.180.010.01 13桥门架上下横撑和短 斜撑 用户双角0.080.1250.010.01 0.0 1 14桥门架长斜撑用户双角0.10.160.010.010.0

钢结构屋架设计计算书Word 文档

1.设计资料 某车间厂房总长度约为108米,跨度为18m。车间设有两台30吨中级工作制吊车。车间无腐蚀性的介质。该车间为单跨双坡封闭式厂房,屋架采用三角形豪式钢屋架。屋面坡度为1:3,屋架间距为6m,屋架下弦标高为9米,其两端铰支于钢筋混凝土柱上,上柱截面尺寸为 ,混泥土强度等级为C20。屋面采用彩色压型钢屋板加保温层屋面,C型檩条,檩距为1.5~2.1米。结构的重要度系数为,屋面的恒荷载的标准值为。屋面 的活荷载为,雪荷载为,不考虑积灰荷载、风荷载,不考虑全跨荷载积雪不均匀分布状况。屋架采用Q235B,焊条采用E43型。 2.屋架形式及几何尺寸 屋架形式及几何尺寸如图檩条支承于屋架上弦节点。屋架坡角为,檩距为 1.866m。 图1 屋架形式和几何尺寸 3.支撑的布置 上、下弦横向水平支撑设置在厂房两端和中部的同一柱间,并在相应开间的屋架跨中设置垂直支撑,在其余开间的屋架上弦跨中设置一道通长的刚性细杆,下弦跨中设置一道通长的柔性细杆。在下弦两端设纵向水平支撑。支撑的布置见图2。

图2 支撑的布置图 4.檩条布置 檩条设置在屋架上弦的每个节点上,间距1.866m。因屋架间距为6m,所以在檩条跨中设一道直拉条。在屋脊和屋檐分别设置斜拉条和撑杆。

5.荷载标准值 上弦节点恒荷载标准值 上弦节点雪荷载标准值 由檩条传给屋架上弦节点的恒荷载如图3 图3 上弦节点恒荷载由檩条传给屋架上弦节点的雪荷载如图4 图4 上弦节点雪荷载6.内力组合 内力组合见表—1 杆件名称杆件编 号 恒荷载及雪荷载半跨雪荷载内力组合最不利 荷载 (kN)内力 系数 恒载 内力 (kN) 雪载 内力 (kN) 内力 系数 半跨雪 载内力 (kN) 1.2恒+ 1.4雪 (kN) 1.2恒+ 1.4半跨 雪(kN)123452+32+5 上弦杆1-2-14.23-75.56 -52.94 -10.28-38.24 -164.78 -144.21 -164.78 2-3-12.65-67.17 -47.06 -8.7-32.36 -146.49 -125.92 -146.49 3-4-11.07-58.78 -41.18 -7.11-26.45 -128.19 -107.57 -128.19 4-5-9.49-50.39 -35.30 -5.53-20.57 -109.89 -89.27 -109.89 5-6-7.91-42.00 -29.43 -3.95-14.69 -91.60 -70.97 -91.60 下弦杆1-713.571.69 50.22 9.7536.27 156.33 136.8 156.33 7-813.571.69 50.22 9.7536.27 156.33 136.8 156.33 8-91263.72 44.64 8.2530.69 138.96 119.43 138.96 9-1010.555.76 39.06 6.7525.11 121.59 102.06 121.59 10-11947.79 33.48 5.2519.53 104.22 84.69 104.22

钢结构节点图

钢结构节点图 Document number:PBGCG-0857-BTDO-0089-PTT1998

门式刚架横梁与立柱连接节点,可采用端板竖放、平放和斜放三种形式(图、b 、c )。斜梁与刚架柱连接节点的受拉侧,宜采用端板外伸式,与斜梁端板连接的柱的翼缘部位应与端板等厚度;斜梁拼接时宜使端板与构件外边缘垂直 (图),应采用外伸式连接,并使翼缘内外螺栓群中心与翼缘中心重合或接近。 屋面梁与摇摆柱连接节点应设计成铰接节点,采用端板横放的顶接连接方式(图)。 屋面梁与混凝土柱采用锚栓连接(图),该连接节点应为铰接节点,锚栓及底板设计同铰接柱脚。 吊车梁承受动力荷载,其构造和连接节点须满足以下规定: 4 吊车梁与制动梁的连接,可采用高强度摩擦型螺栓连接或焊接。吊车梁与刚架上柱的 (a) 端板竖放 (b)端板平放 (c)端板斜放 (d)斜梁拼接 图 刚架连接节点 图 屋面梁和混凝土柱连接节点 (a) (b) (a) (b) (c) 图 屋面梁和摇摆柱连接节点

连接处宜设长圆孔(图);吊车梁与牛腿处垫板采用焊接连接(图);吊车梁之间应采用高强螺栓连接。 用于支承吊车梁的牛腿可做成等截面,当也可做成变截面(图);柱在牛腿上下翼缘的相应位置处应设置横向加劲肋;为保证传力均匀,在牛腿上翼缘吊车梁支座处应设置垫板,垫板与牛腿上翼缘连接采用围焊;为避免较大的局部承压应力,在吊车梁支座对应的牛腿腹板处应设置横向加劲肋。 牛腿与柱连接处承受剪力V 和弯矩 GB50017 在设有夹层的结构中,夹层梁与柱可采用刚接,也可采用铰接(图)。当采用刚接连接时,夹层梁翼缘与柱翼缘应采用全熔透焊接,而腹板可采用高强螺栓与柱 图 吊车梁连接节点 (a) 吊车梁与上柱连接 (b) 吊车梁与牛腿连接 图 牛腿节点 (a)等截面牛腿 (b)变截面牛腿

桁架设计计算书

云南大学城建学院 钢结构设计原理课程设计计算书 指导教师:秦云 学生姓名:裴博玉 班级:2011级生物技术 学号:20111070036 设计时间:2014.7.25—2014.7.30 2014.8.5 —2014.8.8

桁架设计 1.设计资料 某厂房总长度108m,跨度可根据自己的情况从21m和24m两种情况中选用(同等情况下,前者的评分将较后者低5分),纵向柱距6m。厂房建筑采用封闭结合; 1.结构形式:钢筋混凝土柱,梯形钢屋架。柱的混凝土强度等级为C30,屋面坡度i=L/10; L为屋架跨度。地区计算温度高于-200C,无侵蚀性介质,地震设防烈度为8度,屋架下弦标高为18m;厂房内桥式吊车为2台50/10t(中级工作制),锻锤为2台5t。 2. 屋架形式及荷载:屋架形式、几何尺寸及内力系数(节点荷载P=1.0作用下杆件的 内力)如附图所示。屋架采用的钢材、焊条为:学号为单号的同学用Q235B钢,焊条为E43型;双号的同学用Q345A钢,焊条为E50型。 3.屋盖结构及荷载 无檩体系:采用1.5×6.0m预应力混凝土屋板(保证三点焊接,考虑屋面板能起到系杆的作用) 荷载:①屋架及支撑自重:按经验公式q=0.12+0.011L,L为屋架跨度,以m为 单位,q为屋架及支撑自重,以kN/m2为单位; ②屋面活荷载:施工活荷载标准值为0.7kN/m2,雪荷载的基本雪压标准 值为S0=0.35KN/m2,施工活荷载与雪荷载不同时考虑,而是取两者的 较大值;积灰荷载0.5kN/m2。 ③屋面各构造层的荷载标准值: 三毡四油(上铺绿豆砂)防水层0.40kKN/m2 水泥砂浆找平层0.50kN/m2 保温层0.80kN/m2 一毡二油隔气层0.05KN/m2 水泥砂浆找平层0.40kN/m2

超高层桁架转换层钢结构施工技术探讨

超高层桁架转换层钢结构施工技术探讨 发表时间:2018-08-13T17:15:35.593Z 来源:《电力设备》2018年第12期作者:高宇战发辉吕敬 [导读] 摘要:超高层建筑的规模和数量在我国越来越多,据相关数据分析到2020年我国超高层建筑的数量将超过1300座,这说明超高层建筑相关建筑技术已经越来越成熟。 (中建八局东北公司辽宁大连 116000) 摘要:超高层建筑的规模和数量在我国越来越多,据相关数据分析到2020年我国超高层建筑的数量将超过1300座,这说明超高层建筑相关建筑技术已经越来越成熟。但是随着对超高层建筑功能性、结构复杂性以及外形美观性越来越高的要求,超高层建筑的建筑难度也逐渐变大。目前超高层桁架转换层钢结构施工技术逐渐应用起来,成为承担上部结构荷载,平衡整个结构主塔楼核心筒与外框结构受力的主要结构形式,是超高层建筑的一个关键性的受力部位。同时该技术也是钢结构在施工和设计过程中的一个难点,对其进行详细的分析探讨是非常必要的。 关键词:超高层建筑;桁架转换层;钢结构;难点 1 超高层建筑钢结构桁架转换层施工技术原理 因为超高层建筑的结构高度较高,转换梁的截面面积较大等特点适合使用钢结构桁架转换层施工技术进行施工作业。在具体的施工过程中转换层的安装需要同时使用大型汽车吊和塔吊设备配合完成。这就要求施工人员具有一定的机械操作技术。在吊装之后施工人员通过一些纠偏及抗变形措施对钢结构进行安装接焊作业,并使用一些措施进行综合处理来抵挡构建物自重而引起的挠曲变形。此外为了能够最大程度的减少人工操作所带来的施工误差,可以通过使用平行检测验收方法进行焊接裂缝的检测,以便能够切实保障钢结构桁架安装质量。因此在超高层建筑工程中使用钢结构桁架转换层施工技术能够有效地促进工程顺利进行,并提升施工质量。图1为钢结构桁架示意图。 图1 钢结构桁架示意图 2 超高层建筑钢结构桁架转换层施工工艺 在施工前安装地脚螺栓,对螺栓验收合格之后并处理好钢筋混凝土基础面之后就可以进行钢结构桁架施工作业。 2.1 建立测量控制网 (1)测放基准点:建立测量的控制网需要提前进行基准点的测放。基准点是通过总包进行移交工作。在施工之前将测量控制点布置在钢结构上面,这些测量控制点一般都是永久性的水平基准点桩和长期性的坐标桩。如果想让这些桩避免在施工过程中受到破坏需要增设一些保护装置进行保护。测量单位可以在进行测量或放线过程中通过使用这些基准点进行对结构轴线的布置。这些基准点就相当于为结构设定了一些坐标,能够有效的防止钢结构在安装过程中出现偏差。 (2)建立平面控制网:测量基准点在设定完成之后与需要布设的控制网进行数据分析,在数据符合之后进行测放钢结构平面控制网。平面控制网的布设需要与现场的实际情况相协调,综合所有的影响因素进行布设。①建立标高控制网。标高控制网可以作为结构标高起始基准的依据;②建立平面控制网。在进行建立标高控制网之前先对该控制网中的数据与超高层建筑物轴线点进行整合,以便减少测放误差。在具体的施工作业中会将内控法应用于地上桁架钢结构转换层,也就是将两个举行控制网建立在超高层建筑物楼层内部或首层; ③将建立起来的控制网的垂直传递进行测量工作。具体的施工方法就是把长宽均为30公分的预留洞布设在超高层建筑首层以上的控制点的位置,把激光板放在洞口处,这样测量工作就可以通过激光铅锤仪来完成。 2.2 安装钢架结构 (1)钢架结构的安装顺序:主要的安装顺序是从主到次、从上到下、从柱到梁。例如在吊装每层柱梁具体的施工操作中,可以先安装一个标准的框架,然后在框架内部向外拓展,拓展顺序是按节间依次进行。 (2)设置钢柱吊点:为了有效地防止钢构件出现变形,钢柱吊点的设置需要综合考虑到吊装工作的稳定性及简便性。吊点的位置适宜在钢柱的顶部,并通过吊装孔预留在提前布置的临时连接板上面。吊装前在钢柱的吊钩上面布置四根强度足够高的单绳,此外还要在钢柱的底部放上一些木头做铺垫,预防在起吊的过程中出现地面或钢柱与地面之间的摩擦而产生的损伤。 (3)安装第一层钢柱:钢柱的下部需要铺设每组不超过四块的垫块,促使钢柱底部与基础面紧密接触。钢柱就位之后通过双层螺栓进行加固,再在钢柱内部浇筑混凝土。 2.3 安装钢结构桁架转换层钢梁 (1)吊装前的准备工作:为保证钢结构表面干净整洁,需要先将钢梁的表面进行去污处理,将表面的杂物清除干净,然后再去除表面的浮锈。在进行吊装前还要把螺栓包裹好,把连接板与钢结构连接好,把钢结构梁的方向进行标注,避免安装时出现误差。 (2)设置钢结构梁的起吊点:提高钢结构吊装速度的措施之一就是提前在钢结构梁上面布设起吊点。起吊点的布置可以高效地将安装效率大幅度提升。 (3)对钢结构梁进行就位及固定:钢结构梁的安装过程中先进行初步的就位固定,然后再通过精密的计算进行调整,最后用螺丝进行

钢结构课设计算书

1.设计资料 (1)某地一金工车间,长96m ,跨度27m ,柱距6m ,采用梯形钢屋架,1.56m ?预应力钢筋混 凝土大型屋面板,上铺珍珠岩保温层,设计地点哈尔滨地区,保温层厚度为100mm,容重34/kN m ,采用封闭结合,卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级为C20(抗压设计强度fc=10N/mm 2),车间内设有两台30/5t 中级工作制桥式 吊车,轨顶标高18.5m,柱顶标高27m 。屋面荷载标准值为2 0.5kN /m ,雪荷载标准值20.5kN /m ,积灰荷载标准值为0.5kN/m 2。桁架采用梯形钢桁架,其两端铰支于钢筋混凝土柱上,上柱截面尺寸为400400?。钢材采用Q235-B ,焊条采用E43型,手工焊。 (2) 屋架计算跨度 0l 270.15226.7m =-?= (3) 跨中及端部高度: 桁架的中间高度 h=3.340m 在26.7m 的两端高度 0h 2.006m = 在27.0m 轴线处两端高度 0h 1.990m = 桁架跨中起拱 l/500≈55mm 屋架高跨比3340/270001/8≈在经济范围(1/6~1/10)内,为使屋架上弦只受节 点荷载,腹杆体系采用人字形式。 2. 结构形式及几何尺寸如图1所示,支撑布置如图2所示 图1 桁架形式及几何尺寸 根据厂房长度(96m>60m ),跨度及荷载情况,设置三道上下弦水平支撑如图:

桁架及桁架上弦支撑布置 桁架下弦支撑布置图 垂直支撑 垂直支撑

图2:桁架支撑布置图 符号说明:SC —上弦支撑;XC —下弦支撑;CC —垂直支撑;GG —刚性系杆;LG —柔性系杆 3. 荷载计算 2 ,等于雪荷载,故取屋面活荷载计算。沿屋面斜面分布的永久荷载应乘以 1/cos 1.005α=,换算为沿水平投影面分布的荷载。桁架沿水平投影面积分布的支撑)按经验公式w P 0.120.011l =+?计算,跨度单位为m 。 标准永久荷载: 预应力混凝土大型屋面板 22 1.005 1.4kN / 1.407/m kN m ?= 三毡四油防水层 22 1.0050.35kN /0.352/m kN m ?= 20mm 厚找平层 32 1.0050.02m 20kN /0.402/m kN m ??= 80mm 厚珍珠岩制品保温层 32 1.0050.08m 4kN /0.322/m kN m ??= 桁架和支撑重 22 0.120.1127kN/m 0.417kN/m +?= ——————————————————————— 总计 2 2.900kN/m 标准可变荷载: 屋面活荷载 2 0.5kN /m 积灰荷载 2 0.3kN /m ——————————————————————— 总计 2 0.8kN /m 桁架设计时,应考虑以下三种荷载组合: (1) 全跨永久荷载+全跨可变荷载 (按永久荷载为控制的组合)全跨节点荷载设计值 222F kN m kN m kN m 1.5643.05kN m m =???????=(1.35 2.900/+1.40.70.5/+1.40.90.3/) (由可变荷载为主控制的组合)全跨节点荷载设计值为: '2F 1.2 2.900 1.40.5 1.40.90.3 1.56m 41.02kN =?+?+????=() (2) 全跨永久荷载+半跨可变荷载 全跨节点永久荷载设计值: 对结构不利时: 21.1F 1.35 2.900/ 1.5635.235kN kN m m m =???=(永久荷载控制) 2 1.2F 1.2 2.900/ 1.5631.32kN kN m m m =???=(可变荷载控制) 对结构有利时: 2 1.0 2.900/ 1.5626.10kN kN m m m ???= 半跨可变荷载设计值: 2.1F 1.4 1.567.81kN =?????=(0.70.5+0.90.3)(永久荷载控制) 2.2F 1.4 1.569.70kN =????=(0.5+0.90.3)(可变荷载控制) (3) 全跨桁架包括支撑+半跨屋面板自重+半跨屋面活荷载(按可变荷载为主的组合) 全跨节点桁架自重设计值 对结构不利时: 3.1F 1.20.417 1.56 4.50kN =???= 对结构有利时: 3.2F 1.00.417 1.56 3.75kN =???= 半跨节点屋面板自重及活荷载设计值 4F kN =????(1.2 1.407+1.40.5)1.56=21.50 (1)、(2)为使用阶段荷载情况,(3)为施工阶段荷载。

钢结构课程设计梯形桁架跨度24米

一、基本资料 1.课程设计题目 某车间梯形钢屋架结构设计 2.设计资料 1、车间柱网布置图(L ×240m ),柱距6m 。 2、屋架支承于钢筋混凝土柱顶(砼等级为C20),采用梯形钢屋架。 3、屋面采用1.5×6m 的预应力钢筋混凝土大型屋面板(屋面板不考虑作为 支撑用)。 3.设计要求 1)屋架自重=(120+11L )N/m2; 2)屋面基本荷载表: 2. 依檐口高度:III :H 0=2.0m 3. 屋架坡度i :1/11 4. 厂房跨度L=24m 二、屋架形式、尺寸、材料选择及支撑布置 本题为无檩屋盖方案,i=1/11,采用梯形屋架。屋架计算跨度为L 0=L-300=23700mm ,端部高度取H 0=2000mm ,中部高度取H=3100mm,屋架杆件几何长度见附图1(跨中起拱按L/500考虑)。根据计算温度和荷载性质,钢材选用Q235-B 。焊条采用E43型,手工焊。根据车间长度、屋架跨度和荷载情况,设置上、下、弦横向水平支撑、垂直支撑和系杆。 屋架支撑布置如图:

符号说明:SC :上弦支撑; XC :下弦支撑; CC :垂直支撑 GG :刚性系杆; LG :柔性系杆 桁架及桁架上弦支撑布置 桁架及桁架下弦支撑布置 垂直支撑 1-1 垂直支撑 2-2

三、荷载和内力计算 1、荷载计算: 恒荷载 预应力混凝土大型屋面板(含灌缝) 1.4KN/m 2 防水层 0.35 KN/m 2 找平层(20mm 厚) 0.4KN/m 2 支撑重量 0.38 KN/m 2 管道自重 0.1KN/m 2 保温层(8cm 厚) 0.5KN/m 2 恒载总和 3.13KN/m 2 活荷载 活荷载 0.5KN/m 2 积灰荷载 0.6KN/m 2 荷载总和 1.1KN/m 2 2、荷载组合: 永久荷载荷载分项系数:G γ=1.2:;屋面荷载荷载分项系数1Q γ=1.4;组合系数:1ψ=0.7;积灰荷载分项系数:2Q γ=1.4,2ψ=0.9 1)节点荷载设计值 d F =(3.13×1.2+1.4×0.5+1.4×0.9×0.6)×1.5×6=46.9KN 2)考虑以下三种荷载组合 (1)全跨永久荷载+全跨可变荷载(按永久荷载效应控制的组合) 全跨节点荷载设计值: F =(3.13×1.2+1.10×1.4)×1.5×6=47.66KN (2)全跨永久荷载+半跨可变荷载 全跨节点永久荷载 1F =3.13×1.5×6×1.2=33.80KN 半跨可变荷载: 2F =1.10×1.5×6×1.4=13.86KN (3)全跨屋架包括支撑自重+半跨屋面板自重+半跨屋面活荷载 全跨节点屋架自重设计值: 3F =0.38×1.2×1.5×6==4.10KN 半跨节点屋面板自重及活荷载设计值: 4F =(1.4×1.35+0.5×1.4)×1.5×6=23.31KN 四、内力计算

30m跨度普通钢桁架设计计算书

钢结构设计计算书 姓名: 班级: 学号: 指导教师:

一、设计资料: 1.结构形式: 某厂房总长度108m,跨度为24m,纵向柱距6m,厂房建筑采用封闭结合。采用钢筋混凝土柱,梯形钢屋架,柱的混凝土强度等级为C30,上柱截面400mm×400mm,屋面坡度i=1/10。地区计算温度高于-200C,无侵蚀性介质,地震设防烈度为8度,屋架下弦标高为18m;厂房内桥式吊车为2台50/10t(中级工作制),锻锤为2台5t。 2. 屋架形式及荷载:屋架形式、几何尺寸及内力系数(节点荷载P=1.0作用下杆件的内力)如附图所示。屋架采用的钢材为Q345A钢,焊条为E50型。 3.屋盖结构及荷载标准值(水平投影面计) 无檩体系:采用1.5×6.0m预应力混凝土屋面板,屋架铰支于钢筋混凝土柱上。 荷载: ①屋架及支撑自重:按经验公式q=0.12+0.011L,L为屋架跨度,以m为单位,q为屋架及支撑自 重,以可kN/m2为单位; ②屋面活荷载:施工活荷载标准值为0.7kN/m2,雪荷载的基本雪压标准值为S0=0.35kN/m2,施工 活荷载与雪荷载不同时考虑,而是取两者的较大值。 积灰荷载标准值:0.5kN/m2。 ③屋面各构造层的荷载标准值: 三毡四油(上铺绿豆砂)防水层 0.40kN/m2 水泥砂浆找平层 0.50kN/m2 保温层 0.80kN/m2 一毡二油隔气层 0.05kN/m2 水泥砂浆找平层 0.40kN/m2 预应力混凝土屋面板 1.50kN/m2 ④桁架计算跨度: 02420.1523.7 l=-?=m

跨中及端部高度: 桁架的中间高度: 3.490 h=m 在23.7m的两端高度: 02.005 h=m 在30m轴线处的端部高度: 01.990 h=m 桁架跨中起拱50mm 二、结构形式与布置图: 桁架形式及几何尺寸如图1所示: 图1 桁架形式及几何尺寸桁架支撑布置图如图2所示:

钢结构管桁架工程量计算

浅谈工程量清单模式下钢结构工程中钢管的造价审核 近年来,我国经济有了突飞猛进的发展,随着经济的发展带来了建筑业的空前繁荣,一些大跨度、超高层建筑应运而生。建筑物中运用钢结构种类越来越多,目前世界上最高、最大的结构采用的都是钢结构,厂房、桥梁、住宅、工厂、仓库、体育馆、展览馆、超市等建筑也越来越广泛地运用钢结构。这也是钢结构自身具备如下良好的特点所决定的: 1?钢结构构件安装方便,受气候影响小; 2?施工过程中无需养护,施工工期短; 3?结构自重轻,抗震性能好; 4?外型美观,美化居住环境,布置灵活,建筑功能高; 5?符合环保和可持续发展要求,污染小,可回收再生。 下面将论述工程量清单模式下钢结构工程的造价审核流程及计算方式。 根据《建设工程工程量清单计价规范(GB50500—2008)》附录A (建筑工程工程量清单项目及计算规则)中第一项(实体项目)的A.6条(金属结构工程)工程量计算规则为:“按设计图示尺寸以质量计算。不扣除孔眼、切边、切肢的质量,焊条、铆钉、螺栓等不另增加质量,不规则或多边形钢板以其外接矩形面积乘以厚度乘以单位理论质量计算。”或“按设计图示尺寸以铺设水平投影面积计算。”(压型钢板楼板)或“按设计图示尺寸以铺挂面积计算。”(压型钢板墙板)< 以面积为计量单位的工程量计算规则比较简单,在此不再赘述。以质量为计量单位的工程量计算规则较为复杂,而其中以圆钢管的工程量计算方式最复杂,下面我将重点论述圆钢管的工程量计算方式。 首先,介绍一下钢结构中圆管的加工步骤:

根据审核后的深化设计,以1:1的比例绘出零件实样,并制作成轻而不易 变形的样板;以样板为依据,在制作完成的钢管上划出实样,再将钢管按照要求 的形状和尺寸进行切割。 《建设工程工程量清单计价规范(GB50500— 2008)》的工程量计算规则主 旨为计 量形成工程验收的实体。目前一定比例的钢结构深化设计图纸所标注的尺 寸为杆件的轴线相交尺寸,但副管并未伸入至主管内,仅冠至主管表面进行焊接, 束 If fSJ* Tack weldng 清管 Pipe gjggj 叩 外輝 tiulsicte wdding 10声波桧测 Rpe 曲 sonic tes^ig J (光检验 恼bi

钢结构普通钢桁架设计要点

普通钢桁架设计 第一章.设计资料 1.1设计一房屋跨度为24m 的钢屋架,房屋平面尺寸为2454m m ?,地区雪压20.7kN m ,基本风压为20.45kN m ,分项系数为1.4,冬季室外计算温度为0 20C -,不考虑地震设防。 1.2钢材选用235Q BF -,焊条采用43E 型,手工焊;上弦坡度110i =,端部高度02H m =,每端支座缩进0.15m ,下弦起拱50mm 。 1.3荷载 恒荷载标准值: SBS 沥青改性卷材 0.352kN m 20mm 厚水泥砂浆找平层 0.42kN m 150mm 厚加气混凝土保温层 0.42kN m 1.5?6m 大型屋面板和灌缝 1.62kN m 吊顶 0.42kN m 屋架支撑自重为0.12+0.011L 0 0.3842kN m 活荷载标准值: 雪荷载 0.72 kN m 屋面活荷载 0.642kN m 注:雪荷载和屋面活荷载(二者取大值) 第二章.设计步骤 2.1确定屋架的形式和几何尺寸,确定节点尺寸以及计算各杆件长度;绘制屋架的几何尺寸图; 2.2屋架杆件的内力组合;荷载组合,计算在单位力作用左半跨的杆件内力系数;并绘制内力系 数图; 2.3杆件截面选择,按轴心受力构件(拉或压)进行设计; 2.4焊缝计算,焊缝在轴心力作用下的强度计算; 2.5节点设计,根据节点板的几何尺寸,计算焊缝的实际长度,根据计算焊缝的实际长度绘制节 点图; 2.6绘制屋架施工图。 第三章.设计内容 3.1杆件尺寸 桁架计算跨度: 02420.1523.7l m =-?= 跨中及端部高度 桁架的中间高度: 3.2h m = 在23.7m 的两端高度: 2.015h m = 在24m 轴线处端部高度: 2.0h m = 桁架跨中起拱50mm (500L ≈)。

钢结构屋架设计计算书

钢结构屋架设计计算书

1.设计资料 某车间厂房总长度约为108米,跨度为18m。车间设有两台30吨中级工作制吊车。车间无腐蚀性的介质。该车间为单跨双坡封闭式厂房,屋架采用三角形豪式钢屋架。屋面坡度为1:3,屋架间距为6m,屋架下弦标高为9米,其两端铰支于钢筋混凝土柱上,上柱截面尺寸为 ,混泥土强度等级为C20。屋面采用彩色压型钢屋板加保温层屋面,C型檩条,檩距为1.5~2.1米。结构的重要度系数为,屋面的恒荷载的标准值为。 屋面的活荷载为,雪荷载为,不考虑积灰荷载、风荷载,不考虑全跨荷载积雪不均匀分布状况。屋架采用Q235B,焊条采用E43型。 2.屋架形式及几何尺寸 屋架形式及几何尺寸如图檩条支承于屋架上弦节点。屋架坡角为,檩距为1.866m。 图1 屋架形式和几何尺寸 3.支撑的布置 上、下弦横向水平支撑设置在厂房两端和中部的同一柱间,并在相应开间的屋架跨中设置垂直支撑,在其余开间的屋架上弦跨中设置一道通长的刚性细杆,下弦跨中设置一道通长的柔性细杆。在下弦两端设纵向水平支撑。支撑的布置见图2。 图2 支撑的布置图

4.檩条布置 檩条设置在屋架上弦的每个节点上,间距1.866m。因屋架间距为6m,所以在檩条跨中设一道直拉条。在屋脊和屋檐分别设置斜拉条和撑杆。 5.荷载标准值 上弦节点恒荷载标准值 上弦节点雪荷载标准值 由檩条传给屋架上弦节点的恒荷载如图3 图3 上弦节点恒荷载 由檩条传给屋架上弦节点的雪荷载如图4

图4 上弦节点雪荷载 6.内力组合 内力组合见表—1

7.截面的选择 屋架杆件的选择验算表表-2 8.节点设计 8.1杆件焊缝尺寸的计算 8.2 形心距离的确定 屋架各杆件的角钢背面的距离如图表-4,表中为杆件重心线至角钢背面的距离。 屋架各杆件的角钢背面的距离表-4

桁架交叉腹杆节点设计的探讨

桁架交叉腹杆节点设计的探讨 摘要:港口钢结构桁架栈桥,若跨度大,荷载大,为满足其强 度和刚度要求,桁架腹杆须设计成为交叉腹杆。桁架交叉腹杆节点为腹杆重要传力点,节点构造的合理与否直接影响到腹杆截面的选取及整个桁架的设计。本文结合某码头工程52m跨堤桁架栈桥,借助有限元软件,探讨交叉腹杆节点的设计,通过分析结果提出了合理的建议,供设计参考。 关键词:桁架;交叉腹杆;节点应力;强度理论 abstract: port steel structure truss bridge, if span, the load is big, to meet the strength and rigidity requirement, truss web members must be designed as cross web members. truss cross web members node is the web members the important points, joint structure reasonable or not directly affect the selection of abdominal stem section and the whole truss design. combined with a harbor engineering 52 m across the causeway bridge truss, of finite element software, this paper discusses the design of cross abdomen stem node, through the analysis result puts forward reasonable suggestions for design reference. keywords: truss; cross web members; node stress; strength theory 中图分类号:tu323.4文献标识码:a文章编号:

相关文档
最新文档