低通滤波器幅频特性

低通滤波器幅频特性
低通滤波器幅频特性

close all;

clear all;

A=[1, -0.9]; B=[0.05, 0.05];

x1n=[1 1 1 1 1 1 1 1 zeros(1, 50)];

x2n=ones(1, 128);

hn=impz(B, A, 58);

%subplot(2,2,1);y='h(n)';tstem(hn, y);

% subplot(2,2,1);y='x2(n)';tstem(x2n, x); subplot(2,2,1);y='h(n)';stem(hn);

title('(a) 系统单位脉冲响应h(n)')

y1n=filter(B, A, x1n);

subplot(2,2, 2); y='y1(n)'; stem(y1n);

title('(b) 系统对R8(n)的响应y1(n)')

y2n=filter(B, A, x2n);

subplot(2, 2, 4); y='y2(n)'; stem(y2n);

title('(c) 系统对u(n)的响应y2(n)')

x1n=[1 1 1 1 1 1 1 1 ];

h1n=[ones(1,10) zeros(1,10)];

h2n=[1 2.5 2.5 1 zeros(1,10)];

y21n=conv(h1n, x1n);

y22n=conv(h2n, x1n);

figure(2)

subplot(2, 2, 1); y='h1(n)'; stem(h1n);

title('(d) 系统单位脉冲响应h1(n)') subplot(2,2, 2); y='y21(n)';stem(y21n);

title('(e) h1(n)与R8(n)的卷积y21(n)') subplot(2, 2, 3);y='h2(n)';stem(h2n);

title('(f) 系统单位脉冲响应h2(n)') subplot(2, 2, 4);y='y22(n)';stem(y22n);

title('(g) h2(n)与R8(n)的卷积y22(n)')

un=ones(1, 256);

n=0: 255;

xsin=sin(0.014*n)+sin(0.4*n);

A=[1, -1.8237, 0.9801];

B=[1/100.49, 0,-1/100.49];

y31n=filter(B,A,un);

y32n=filter(B,A,xsin);

figure(3)

subplot(2,1,1); y='y31(n)'; stem(y31n)

title('(h)谐振器对u(n)的响应y31(n)') subplot(2,1, 2); y='y32(n)'; stem(y32n);

title('(i) 谐振器对正弦信号的响应y32(n)')

% clear all;close all

x1n=[ones(1,4)];%产生矩阵序列R4 M=8; xa=1:(M/2); xb=(M/2):-1:1;

x2n=[xa,xb];

subplot(2,2,3);stem(x2n);

x3n=[xb,xa];

X1k8=fft(x1n,8);

X1k16=fft(x1n,16);

X2k8=fft(x2n,8);

X2k16=fft(x2n,16);

X3k8=fft(x3n,8);

X3k16=fft(x3n,16);

subplot(2,2,1);mstem(abs(X1k8)); title('(1a) 8点DFT[x_1(n)]'); xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X1k8))])

% axis([0,8,0,4])

subplot(2,2,2);mstem(X1k16);

title('(1b) 16点DFT[x_1(n)]'); xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X1k16))])

figure(2)

subplot(2,2,1);mstem(X2k8);

title('(2a) 8点DFT[x_2(n)]'); xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X2k8))]) subplot(2,2,2);mstem(X2k16);

title('(2b) 16点DFT[x_2(n)]'); xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X2k16))])

subplot(2,2,3);mstem(X3k8);

title('(3a) 8点DFT[x_3(n)]'); xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X3k8))]) subplot(2,2,4);mstem(X3k16);

title('(3b) 16点DFT[x_3(n)]'); xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X3k16))])

%实验内容2

N=8;n=[0:N-1];

x4n=cos(pi*n/4);

x5n=cos(pi*n/4)+cos(pi*n/8);

X4k8=fft(x4n,8);

X5k8=fft(x5n,8);

N=16;n=[0:N-1];

x4n=cos(pi*n/4);

x5n=cos(pi*n/4)+cos(pi*n/8);

X4k16=fft(x4n,16);

X5k16=fft(x5n,16);

figure(3)

subplot(2,2,1);mstem(X4k8);

title('(4a) 8点DFT[x_4(n)]');

xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X4k8))])

subplot(2,2,2);mstem(X4k16);

title('(4b) 16点DFT[x_4(n)]');

xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X4k16))])

subplot(2,2,3);mstem(X5k8);

title('(5a) 8点DFT[x_5(n)]');

xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X5k8))])

subplot(2,2,4);mstem(X5k16);

title('(5b) 16点DFT[x_5(n)]');

xlabel('ω/π');ylabel('幅度');

axis([0,2,0,1.2*max(abs(X5k16))])

%实验内容3

figure(4)

Fs=64;T=1/Fs;

N=16;n=[0:N-1];

X6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n* T);

X6k16=fft(X6nT,16);

X6k16=fftshift(X6k16);

Tp=N*T;F=1/Tp;

k=-N/2:N/2-1;fk=k*F;

subplot(3,1,1);stem(fk,abs(X6k16),'.');

box on

title('(6a)16点|DFT[x_6(nT)]|');

xlabel('f(Hz)'); ylabel('幅度'); axis( [-N*F/2-1,N*F/2-1, 0,1.2*max(abs(X6k16))] ) N=32;n=[0:N-1];

X6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n* T);

X6k32=fft(X6nT);

X6k32=fftshift(X6k32);

Tp=N*T;F=1/Tp;

k=-N/2:N/2-1;fk=k*F;

subplot(3,1,2);stem(fk,abs(X6k32),'.');

box on

title('(6a)16点|DFT[x_6(nT)]|');

xlabel('f(Hz)'); ylabel('幅度');

axis( [-N*F/2-1,N*F/2-1, 0,1.2*max(abs(X6k32))] ) N=64;n=0:N-1;%FFT的变换区间N=64

x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n* T);

%对x6(t)64点采样

X6k64=fft(x6nT);%计算x6nT的64点DF

X6k64=fftshift(X6k64);%将零频率移到频谱中心Tp=N*T;F=1/Tp;%频率分辨率F

k=-N/2: N/2-1;fk=k*F;

%产生16点DFT对应的采样点频率(以零频率为中心)

subplot(3,1,3);stem(fk,abs(X6k64),'.');

box on%绘制8点DFT的幅频特性图

title('(6a) 64点|DFT[x_6(nT)]|');

xlabel('f(Hz)');ylabel('幅度');

axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))])

clear all;close all;

Fs=10000; T=1/Fs;

st=mstg;

fp=280;fs=450;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1; rs=60; [N,wp]=ellipord(wp,ws,rp,rs);

[B,A]=ellip(N,rp,rs,wp);

y1t=filter(B,A,st);

figure(2);subplot(3,1,1);

myplot(B,A);

yt='y_1(t)';subplot(3,1,2);tplot(y1t,T,yt);

fp1=440; fpu=560; fs1=275; fsu=900;

wp=[2*fp1/Fs,2*fpu/Fs];

ws=[2*fs1/Fs,2*fsu/Fs]; rp=0.1,rs=60;

[N,wp]=ellipord(wp,ws,rp,rs);

[B,A]=ellip(N,rp,rs,wp);

y2t=filter(B,A,st);

figure(3);subplot(3,1,1);

myplot(B,A);

yt='y_2(t)';subplot(3,1,2);tplot(y2t,T,yt);

fp=890; fs=600; wp=2*fp/Fs; ws=2*fs/Fs; rp=0.1; rs=60;

[N,wp]=ellipord(wp,ws,rp,rs);

[B,A]=ellip(N,rp,rs,wp,'high');

y3t=filter(B,A,st);

figure(4);subplot(3,1,1);

myplot(B,A);

yt='y_3(t)';subplot(3,1,2);tplot(y3t,T,yt);

clear all;close all;

N=1000;xt=xtg(N);

fp=120; fs=150;Rp=0.2;As=60;Fs=1000;

wc=(fp+fs)/Fs;

B=2*pi*(fs-fp)/Fs;

Nb=ceil(11*pi/B);

hn=fir1(Nb-1,wc,blackman(Nb));

Hw=abs(fft(hn,1024));

ywt=fftfilt(hn,xt,N);

f=[0:1023]*Fs/1024;

figure(2)

subplot(2,1,1)

plot(f,20*log10(Hw/max(Hw)));grid;title('(a) 低通滤波器幅频特性')

axis([0,Fs/2,-120,20]);

xlabel('f/Hz');ylabel('幅度')

t=[0:N-1]/Fs;Tp=N/Fs;

subplot(2,1,2)

plot(t,ywt);grid;

axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_w(t)') ;

title('(b) 滤除噪声后的信号波形')

fb=[fp,fs];m=[1,0];

dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As /20)];

[Ne,fo,mo,W]=remezord(fb,m,dev,Fs);

hn=remez(Ne,fo,mo,W);

Hw=abs(fft(hn,1024));

yet=fftfilt(hn,xt,N);

figure(3);subplot(2,1,1)

f=[0:1023]*Fs/1024;

plot(f,20*log10(Hw/max(Hw)));grid;title('(c) 低通滤波器幅频特性')

axis([0,Fs/2,-80,10]);

xlabel('f/Hz');ylabel('幅度')

subplot(2,1,2);plot(t,yet);grid;

axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_e(t)'); title('(d) 滤除噪声后的信号波形')

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

滤波器设计的实验报告

实验三滤波器设计 一、实验目的: 1、熟悉Labview的软件操作环境; 2、了解VI设计的方法和步骤,学会简单的虚拟仪器的设计; 3、熟悉创建、调试VI; 4、利用Labview制作一个滤波器,实现低通、高通、带通、带阻等基本滤波功能,并调节截止频率实现滤波效果。 二、实验要求: 1、可正弦实现低通、高通、带通、带阻等基本滤波功能,并图形显示滤波前后波形; 2、可调节每种滤波器的上限截止频率或者下限截止频率; 3、给出每种滤波器的幅频特性; 三、设计原理: 1、利用LABVIEW中的数字IIR、FIR数字滤波器实现数字滤波功能,参数可调;

2、将两路不同频率的信号先叠加,然后通过滤波,将一路信号滤除,而保留有用信号,Hz f Hz f 100,2021==; 3、叠加即将两个信号相加,用到一个数学公式; 4、信号进入case 结构,结构中有两路分支,每路分支均有一个滤波模块,其中一个为IIR 滤波器,另一个为FIR 滤波器,通过按钮可选择IIR 或是FIR.每个滤波模块都可通过外部按钮对其参数进行调整,各个过程的波形都用波形图显示出来; 5、将IIR 、FIR 滤波器的“滤波信息”接线端用控件按名称解除捆绑接入波形图,观察波形的幅度和相位; 6、用一个while 循环实现不重新启动既可以改参数。 四、设计流程: 1、前面板的设计:

2、程序框图的设计: 五、实验结果: 1、低通滤波功能:将100Hz的信号滤除,保留20Hz的信号 用IIR巴特沃斯滤波器,将低截止频率设置为25Hz。

用FIR滤波器,拓扑类型选择Windowed FIR,将最低通带设置为50。 用IIR巴特沃斯滤波器,将低截止频率设置为90Hz。

matlab仿真一阶低通滤波器幅频特性和相频特性

freqs 模拟滤波器的频率响应 语法: h = freqs(b,a,w) [h,w] = freqs(b,a) [h,w] = freqs(b,a,f) freqs(b,a) 描述: freqs返回一个模拟滤波器的H(jw)的复频域响应(拉普拉斯格式) 请给出分子b和分母a h = freqs(b, a, w) 根据系数向量计算返回模拟滤波器的复频域响应。freqs计算在复平面虚轴上的频率响应h,角频率w确定了输入的实向量,因此必须包含至少一个频率点。 [h, w] = freqs(b, a) 自动挑选200个频率点来计算频率响应h [h, w] = freqs(b, a, f) 挑选f个频率点来计算频率响应h 例子: 找到并画出下面传递函数的频率响应 Matlab代码: a = [1 0.4 1]; b = [0.2 0.3 1]; w = logspace(-1, 1);

logspace功能:生成从10的a次方到10的b次方之间按对数等分的n个元素的行向量。n如果省略,则默认值为50。 freqs(b, a, w); You can also create the plot with: h = freqs(b,a,w); mag = abs(h); phase = angle(h); subplot(2,1,1), loglog(w,mag) subplot(2,1,2), semilogx(w,phase) To convert to hertz, decibels, and degrees, use: f = w/(2*pi); mag = 20*log10(mag); phase = phase*180/pi; 算法: freqs evaluates the polynomials at each frequency point, then divides the numerator response by the denominator response: s = i*w; h = polyval(b,s)./polyval(a,s)

四种滤波器的幅频特性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本 次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1. 低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10K Ω,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+=+12V , Vcc-=-12V ,低通滤波器的传递函数20 02 2 )(ω αωω++= s s K s H p , ,其中 2 221102 12100 1111; 1;1C R K R R C C C R R R R K K f f p -+???? ??+= = + ==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2, ()( ) 2 2 2202 2 25/2425/78.1)(ωωω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时,)(ωj H 减小,;w 趋 近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV

范围10~6kHz 输出不失真 绘出的幅频特性图如下: 2、高通滤波器 其电路图如下: 其中R1=R2=R=10K,C1=C2=0.01uF,Ro=0.8R=8K 高通的传递函数为20 02 2 )(ω αω++= s s s K s H p ,()() 2 220 2 2 )(ωαωω ω ωω+-= p K j H , 1121 2 021******** ; 1 ; 1C R K C C R C C R R R R K K f f p -+???? ??+= = +==αωω带入数值 后,Kp =1.8, W=0时 )(ωj H =0;w<4800rad/s 时)(ωj H 增加;w 趋近于无穷时,)(ωj H 保持不变。 对于不同的α,滤波器的幅频特性也不相同 绘制的幅频特性图如下: 3带通滤波器 其电路图如下所示: 其中R1=R2=R3=R=10K,C1=C2=0.01uF ,Ro=8K , 带通的传递函数为 2 02 0)/()/()(ω ωω++= s Q s s Q K s H p ,()H j ω; ()1 223131102 13212 101 213 1211111; ; 111C R K C R C R C R Q C C R R R R R R R K R R C C K K f f f p -+++=+= ??????-+???? ??++=-ωω

二阶高通滤波器的设计

模拟电路课程设计报告设计课题:二阶高通滤波器的设计 专业班级:电信本 学生姓名: 学号:69 指导教师: 设计时间:1月3日

题目:二阶高通滤波器的设计 一、设计任务与要求 ① 分别用压控电压源和无限增益多路反馈二种方法设计电路; ② 截止频率f c =200Hz ; ③ 增益A V =2; ④ 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 二、方案设计与论证 二阶高通滤波器是容许高频信号通过、但减弱(或减少)频率低于截止频率信号通过的滤波器。高通滤波器有综合滤波功能,它可以滤掉若干次高次谐波,并可减少滤波回路数。对于不同滤波器而言,每个频率的信号的减弱程度不同。其在音频应用中也使用低音消除滤波器或者噪声滤波器。本设计为分别使用压控电压源和无限增益多路反馈两种方法设计二阶高通滤波器。二者电路都是基于芯片ua741设计而成。将信号源接入电路板后,调整函数信号发生器的频率,通过观察示波器可以看到信号放大了2倍。现在工厂对于谐波的治理,应用最多的仍然是高压无源滤波器,高压无源滤波器有多种接线方式,其中单调谐滤波器及二阶高通滤波器使用最为广泛,无源滤波器具有结构简单、设备投资较少、运行可靠性较高、运行费用较低等优点, 2.1设计一、用压控电压源设计二阶高通滤波电路 与LPF 有对偶性,将LPF 的电阻和电容互换,就可得一阶HPF 、简单二阶HPF 、压控电压源二阶HPF 电路采用压控电压源二阶高通滤波电路。 电路如图2-1所示,参数计算为: 通带增益: 3 4 1R R Aup + = Aup 表示二阶高通滤波器的通带电压放大倍数 截止频率: RC f π210=

巴特沃斯数字低通滤波器要点说明

目录 1.题目........................................................ .................................. .2 2.要求........................................................ (2) 3.设计原理........................................................ . (2) 3.1 数字滤波器基本概念......................................................... (2) 3.2 数字滤波器工作原理......................................................... (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法......................................................... .. (4) 3.5实验所用MATLAB函数说

明 (5) 4.设计思路........................................................ .. (6) 5、实验内容........................................................ . (6) 5.1实验程序......................................................... . (6) 5.2实验结果分析......................................................... . (10) 6.心得体会........................................................ . (10) 7.参考文献........................................................ . (10) 一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。用此信号验证

滤波器幅频特性的测试

实验一 1-1 滤波器幅频特性的测试 一.实验目的 1.了解无源和有源滤波器的工作原理及应用。 2.掌握滤波器幅频特性的测试方法。 二.实验原理 滤波器是一种选频装置,可以使某给定频率范围内的信号通过而对该频率范围以外的信号极大地衰减。 1.RC 无源低通滤波器 RC 无源低通滤波器原理如图1-1所示。这种滤波器是典型的一阶RC 低通滤波器,它的电路简单,抗干扰性强,有较好的低频性能,构成的组件是标准电阻、电容,容易实现。其传递函数为 =)(s H 1 1 )()(+= s s u s u i o τ (1-1) 式中:τ=RC 。 低通滤波器频率特性为 ωτ ωj j H += 11 )( (1-2) 图1-1 RC 低通滤波器 其幅频特性 )(ωA 为 2 )(11)(ωτω+= A (1-3) 低通滤波器的截止频率为 RC f c π21 = (1-4) 图1-2 一阶有源低通滤波器 2.RC 有源低通滤波器 RC 有源低通滤波器原理如图1-2所示。它是将一阶RC 低通滤波网络接入运算放大器输入端构成的。运算放大器在这里起隔离负载影响、提高增益和带负载能力的作用。有源低通滤波器的传递函数为 1 )()()(+= = s K s u s u s H i o τ (1-5) 式中:1 1R R K F + =(R 1、R F 参数可参考图1-2,也可自选)。 频率特性为 ωτ ωj K j H += 1)( (1-6) R

式(1-5)与式(1-1)相似,只是增益不同。 3.幅频特性的测试 本实验是对以上两种低通滤波器进行幅频特性测试。滤波器的幅频特性采用稳态正弦激励试验的办法求得。对滤波器输入正弦信号x(t)=x0sinωt,在其输出达到稳态后测量输出和输入的幅值比。这样可得到该输入信号频率ω下滤波器的传输特性。逐次改变输入信号的频率,即可得到幅频特性曲线。 三.实验仪器和设备 1.低频信号发生器一台 2.毫伏表一台 3.直流稳压电源一台 4.RC无源滤波器接线板一块 5.有源低通滤波器线路板一块 四.实验步骤 1.将RC滤波器接线板低通滤波器部分的R值调到适当的位置。将低频信号发生器输出端接入RC低通滤波器输入端,双路毫伏表中的一路接低通滤波器的输入端,另一路接输出端。 2.由信号发生器输出一定幅度的正弦信号电压。先检查低频信号发生器幅值调节旋钮,使之在最小(逆时针旋转到底)位置,输出信号频率调到20Hz,然后逐渐调大信号电压使监测毫伏表指示约1伏,记下滤波器输入和输出的信号电压值。 3.不断由小到大改变滤波器输入信号频率,每改变一次信号频率,待毫伏表读数稳定了以后读取一组滤波器输入和输出信号电压值,记录到原始数据记录纸上。 4.将信号发生器幅值调节旋钮调到最小,按图1-3连接测试系统。考虑到有源低通滤波器具有放大作用,注意监测滤波器输出信号的毫伏表测量档位要比监测输入信号的相应加大。 图1-3 5.重复实验步骤2、3。 五.实验数据处理 1.用对数坐标纸绘出RC无源低通滤波器和有源低通滤波器的幅频特性曲线。 2.比较两种滤波器的特性,分析有源滤波器的优点。 六.思考题 1.若要能自动绘出滤波器的幅频特性曲线,实验系统如何设计?试绘出仪器组合框图,并作简要说明。 2.滤波器的建立时间T e如何测定?

高通滤波器设计报告

目录 一、设计项目----------------------------------------------------------------------------------------2 FIR滤波器设计 二、设计目的-----------------------------------------------------------------------------------------2 三、设计任务----------------------------------------------------------------------------------------2 任务简介 四、设计原理----------------------------------------------------------------------------------------3(1)FIR的原理和参数生成公式 (2)用MATLAB计算滤波系数 (3)程序的自编函数及其功能 五、设计方案----------------------------------------------------------------------------------------5 六、设计代码及相关截图---------------------------------------------------------------------------6 七、设计结果----------------------------------------------------------------------------------------9 八、设计结论--------------------------------------------------------------------------------------11 九、设计心得-----------------------------------------------------------------------------------------11

有源高通滤波器电路设计(100Hz截止频率)

长沙学院课程设计说明书 题目有源高通滤波器电路设计系(部) 电子与通信工程系 专业(班级) 电气工程及其自动化姓名 学号 指导教师 起止日期

模拟电子技术课程设计任务书 系(部):电子与通信工程系专业:电气工程及其自动化指导教师:

长沙学院课程设计鉴定表

目录 摘要 (5) 1.电路设计 (6) 1.1.电路元件及参数的选择 (6) 1.2.电路原理图绘制 (6) 2.电路的仿真 (7) 2.1.使用Multisim9仿真波特图示仪 (7) 2.2.使用Multisim9仿真示波器 (7) 2.2.1.输入信号频率小于截止频率时的仿真 (7) 2.2.2.输入信号频率等于截止频率时的仿真 (8) 2.2.3.输入信号频率大于截止频率时的仿真 (8) 参考文献 (9) 设计总结 (9)

摘要 滤波器是一种能使有用信号通过而大幅抑制无用信号的电子装置。常用来进行信号处理、数据传输和抑制噪声等。以往这种滤波电路主要采用无源R、L和C组成,20世纪60年代以来,集成运放获得了迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压和输入阻抗均很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但是,集成运放的带宽有限,所以目前有源滤波电路的工作频率难以做的很高,以及难于对功率信号进行 滤波,这是它的不足之处。]1[在实际电子系统中,有源滤波器运用广泛,输入信号往往是含有多种频率成 分的复杂信号,可能还会混入各种噪声、干扰及其它无用频率的信号,因此需要设法将有用频率信号挑选出来、将无用信号频率抑制掉。完成此任务需要具有选频功能的电路。本文主要内容是设计一个能阻挡低频信号、输出高频信号的有源高通滤波电路,以及利用Multisim9对电路进行仿真。本电路所用到的运算放大器LM741EN,它的管脚1和5为调零端,管脚2为运放反相输入端,管脚3为同相输入端,管脚6为输出端,管脚7为正电源端,管脚4为负电源端,管脚8为空端。Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 关键词:滤波器运算放大器有源滤波电路有源高通滤波电路Multisim 电路仿真

简单易用的RC低通滤波器设计

低通滤波器 1、电路的组成 所谓的低通滤波器就是允许低频信号通过,而将高频信号衰减的电路,RC低通滤波器电路的组成如图3-17所示。 2、电压放大倍数 在电子技术中,将电路输出电压与输入电压的比定义为电路的电压放大倍数,或称为传递函数,用符号A u来表示,在这里A u为复数,即 令,则 (3-19) 的模和幅角为 (3-20) (3-21)

式3-19称为RC低通电路的频响特性,式3-20称为RC低通电路的幅频特性,式3-21称为RC低通电路的相频特性。在电子电路中,描述电路幅频特性和相频特性的单位通常用对数传输单位分贝。 3、对数传输单位分贝(dB)的定义 在电信号的传输过程中,为了估计线路对信号传输的有效性,经常要计算的值。式中的P0和P i 分别为线路输出端和输入端信号的功率。当多级线路相串联时,总的的值为: 对上式取对数可简化计算,利用对数来描述的,被定义为对数传输单位贝尔(B)。即 (3-22) 贝尔的单位太大了,在实际上通常用贝尔的十分之一为计量单位,称为分贝(dB)。即,1B=10dB。 因为,所以,对于等电阻的一段网络,贝尔也可用输出电压和输入电压的比来定义。即 (3-23) 当电压放大倍数用dB做单位来计量时,常称为增益。根据增益的概念,我们通常将对信号电压的放大作用是100倍的电路,说成电路的增益是40dB,电压放大作用是1000倍的电路,说成电路的增益是60dB,当输出电压小于输入电压时,电路增益的分贝数是负值。例-20dB说明输入信号被电路衰减了10倍。 4.低通滤波器的波特图 利用对数传输单位,可将低通滤波器的幅频特性写成

(3-24) 下面分几种情况来讨论低通滤波的幅频特性: (1)当f等于通带截止频率f P时 当f=f P时,式3-24变成 (3-25) 由上式可得通带截止频率f P的物理意义是:因低通电路的增益随频率的增大而下降,当低通电路的增益下降了3dB时所对应的频率就是通带截止频率f P。若不用增益来表示,也可以说,当电路的放大倍数下降到原来的0.707时所对应的频率。对于低通滤波器,该频率通常又称为上限截止频率,用符号f H来表示。根据f P的定义可得f H的表达式为: (3-26) (2)当f>10f P时 当f>10f P时,式3-24中的项比10大,公式中的1可忽略,式3-24的结果为 (3-27) 3-27式说明频率每增加10倍,增益下降20dB,说明该电路对高频信号有很强的衰减作用,在幅频特性曲线上,3-27式称为-20dB/十倍频线。 (3)当f<0.1f P时 当f<0.1f P时,式3-24中的项比0.1小,可忽略,式3-24的结果为0dB。说明该电路对低频信号没有任何的衰减作用,低频信号可以很顺利的通过该电路,所以该电路称为低通滤波器。 根据上面讨论的结果所画的幅频特性曲线称为波特图,RC低通滤波器的波特图如图3-18所示。

简单二阶有源低通滤波器电路及幅频特性

简单二阶有源低通滤波器电路及幅频特性 为了使输出电压在高频段以更快的速率下降,以改善滤波效果,再加一节RC o (1)通带增益 当f=0时,各电容器可视为开路,通带内的增益为 低通滤波环节,称为二阶有源滤波电路。它比一阶低通滤波器的滤波效果更好二阶LPF的电路图如图6所示,幅频特性曲线如图7所示。 1- (2)二阶低通有源滤波器传递函数根据图8-2.06可以写出

丄“盘斗丄〕 俯二一礎 通常有,联立求解以上三式,可得滤波器的传递函数 臥)—九… (3)通带截止频率 将s 换成j 3,令3 0 = 2n f o=1/(RC)可得 当f=fp时,上式分母的模 ="丿厶 I Vo Z 与理想的二阶波特图相比,在超过fO以后,幅频特性以-40 dB/dec的速率下降,比一阶的下降快。但在通带截止频率fp -fO之间幅频特性下降的还不够快。 摘要设计一种压控电压源型二阶有源低通滤波电路,并利用MultisimIO仿真软件对电路的频率特性、特征参量等进行了仿真分析,仿真结果与理论设计一致,为有源滤波器的电路设计提供了EDA手段和依据。 关键词二阶有源低通滤波器;电路设计自动化;仿真分析;MultisimIO 滤波器是一种使用信号通过而同时抑制无用频率信号的电子装置,在信息处理、数据传送和抑制干扰等自动控制、通信及其它电子系统中应用广泛。滤波一般可分为有源滤波和无源滤波,有源滤波可以使幅频特性比较陡峭,而无源滤波设计简单易行,但幅频特性不如有源滤波器,而且体积较大。从滤波器阶数可分为一阶和高阶,阶数越高,幅频特性越陡峭。高阶滤波器通常可由一阶和二阶滤波器级联而成。采用集成运放构成的RC有源滤波器具有输入阻抗高,输出阻抗低,可提供一定增益,截止频率可调等特点。压控电压源型二阶低通滤波电路是有源滤波电路的重要一种,适合作为多级放大器的级联。本文根据实际要求设计一种压控电压源型二阶有源低通滤波电路,采用EDA仿真软件Multisim1O对压控电压源型二阶有源低通滤波电路进行仿真分析、调试,从而实现电路的优化设计。 1设计分析 1.1二阶有源滤波器的典型结构 二阶有源滤波器的典型结构如图1所示。其中,丫1?丫5为导纳,考虑到UP=UN

四种滤波器的幅频特性教程文件

四种滤波器的幅频特 性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1.低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10KΩ,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+= +12V,

Vcc-=-12V ,低通滤波器的传递函数20 02 2 )( ω αωω++=s s K s H p , ,其中 2 221102 121001111; 1; 1C R K R R C C C R R R R K K f f p -+???? ??+== +==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2, ()( ) 2 2 2202 2 25/2425/78.1)(ωωω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时, )(ωj H 减小,;w 趋近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV 频率f (Hz ) 输出V (v ) 频率f (Hz ) 输出V (v ) 10 1.965 2200 0.756 30 1.965 2300 0.698 50 1.960 2400 0.650 100 1.950 2500 0.596 200 1.945 2600 0.548

低通滤波器设计实验报告

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K ? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1=1.286 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?=31.847KHz 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得: 通过对给定参数指标的地滤波器的仿真设计,一方面学会了在

五数字滤波器幅频特性的测试

实验三 低通、高通滤波器的幅频特性 一、实验目的 ㈠ 进一步熟悉DSP 实验系统的结构、组成及使用方法。 ㈡ 了解数字低通、高通滤波器的特点,学习数字滤波器幅频特性的测量方法。 ㈢ 观察数字滤波器频响特性的周期延拓性。 二、实验原理 ㈠ 用DSP 实验系统实现数字滤波器 一个线性时不变离散系统,或者说一个数字系统可以用系统函数来表示: ∑∑=-=--= N i i i N i i i z a z b z H 1 01)(

也可以用差分方程表示: ∑∑==-+-= N i i N i i i n y a i n x b n y 1 )()()( 由以上两个公式中,当i a 至少有一个不为0时,表达的是一个IIR 数字滤波器;当i a 全都为0时,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器i a 全都为0时的一个特例。 通常,我们把FIR 滤波器的系统函数表示为 H Z h n Z n N n ()()= =--∑01 其差分方程表示为 y n h i x n i i N ()()()= -=-∑0 1 例如:已知一个用双线性变换法设计的三阶低通IIR 数字滤波器,采样频率F s =4KHz,其3dB 截止频率为1KHz,它的传递函数 2 3 21333121)(----++++=z z z z z H 为了用数字信号处理实验系统实现这个滤波器,我们对上式还需进行处理,将其化成一 般表示式 2 32123213333.0116667.05.05.016667.03 1161212161)(--------++++=++++=z z z z z z z z z H 由上式可知,传递函数的各系数为 16667.00=b 5.01=b 5.02=b 16667 .03=b 01=a 3333.02-=a 03=a 相应的差分方程为 ) 2(3333.0)3(16667.0)2(5.0)1(5.0)(16667.0)3()2()1()3()2()1()()(3213210---+-+-+=-+-+-+-+-+-+=n y n x n x n x n x n y a n y a n y a n x b n x b n x b n x b n y 将以上差分方程的计算过程及采样频率Fs 、电路阶数N =3编写成TMS320Cxx 执行程序,输入实验系统,即可实现这个IIR 数字低通滤波器。图7-5-1为实现IIR 数字滤波器的DSP 汇编程序流程图。 ㈡.数字滤波器幅频特性的测量 任一电信网络幅频特性的测量均可采用两种方法:逐点描绘法和扫频测量法。

DSP高通滤波器课程设计报告

D S P课程设计报告 题目:FIR高通滤波器设计 姓名 学号 教学院系 专业年级 指导教师

DSP课程设计 目录 一、设计题目 (1) 二、设计目标 (1) 三、算法研究与参数计算 (1) 1、FIR的原理和参数生成公式 (1) 2、利用MATLAB计算滤波系数 (1) 3、输入信号参数计算 (2) 四、编写源程序 (3) 五、调试过程 (4) 1、调试前准备 (5) 2、MATLAB的使用 (5) 3、编写及编译程序 (5) 4、设置断点和探针 (6) 5、打开观察窗口 (6) 六、实验结果及分析 (6) 1、输入信号的时域波形和频域波形 (6) 2、输出信号的时域波形和频域波形 (7) 七、设计心得 (8)

1 一、设计题目 FIR 高通滤波器设计 二、设计目标 设计一个FIR 高通滤波器,通带边界频率为6000Hz ,采样频率为20000Hz 。FIR 滤波器的设计用MA TLAB 窗函数法进行。 三、算法研究与参数计算 1、FIR 的原理和参数生成公式 图3-1 2、利用MATLAB 计算滤波系数 在MATLAB 界面输入图3-2所示程序,可得到滤波系数并生成INC 文件。 图 3-2

DSP 课程设计 2 输入freqz (y ,1,512),MATLAB 中显示高通滤波器的滤波特性曲线。如图3-3所示。 图3-3 3、输入信号参数计算 MATLAB 中输入图3-4中所示程序,包含两种频率成分的正弦信号,一种信号频率1000Hz ,一种信号6000Hz 。 图3-4 其频谱特性曲线如图3-5。 图3-5

FIR高通滤波器设计 四、编写源程序 参考资料,编写汇编语言源程序: HIGHPASS .set 1 ;if you want to use ,please set the value to 1 .global start,fir .mmregs COFF_FIR_START: .sect "coff_fir" .copy "0126.inc" K_FIR_BFFR .set 64 d_data_buffer .usect "fir_bfr",64 FIR_DP .usect "fir_vars",0 d_filin .usect "fir_vars",1 output .usect "fir_vars",1 input .usect "fir_vars",1 d_filout .usect "fir_vars",100h stacksize .set 256 stack .usect "fir_vars",stacksize .asg AR4,FIR_DATA_P .asg AR6,INBUF_P .asg AR7,OUTBUF_P .asg AR3,OUTBUF .asg AR2,INBUF .sect "fir_prog" nop start: stm #stack+stacksize,SP LD #FIR_DP,DP STM #d_data_buffer,FIR_DATA_P RPTZ A,#K_FIR_BFFR-1 STL A,*FIR_DATA_P+ STM #d_filin,INBUF_P 3

DSP课程设计-FIR高通滤波器设计

FIR高通滤波器设计南京师范大学物科院

从实现方法方面考虑,将滤波器分为两种,一种是IIR滤波器,另一种是FIR 滤波器。 FIRDF的最大优点是可以实现线性相位滤波。而IIRDF主要对幅频特性进行逼近,相频特性会存在不同程度的非线性。我们知道,无失真传输与滤波处理的条件是,在信号的有效频谱范围内系统幅频响应应为常数,相频响应为频率的线性函数。另外,FIR是全零点滤波器,硬件和软件实现结构简单,不用考虑稳定性问题。所以,FIRDF是一种很重要的滤波器,在数字信号处理领域得到广泛应用。 FIRDF设计方法主要分为两类:第一类是基于逼近理想滤波器特性的方法,包括窗函数法、频率采样法和等波纹最佳逼近法;第二类是最优设计法。其中窗函数计法的基本思想是用FIRDF逼近希望的滤波特性。本次设计主要采用窗函数设计法,对理想滤波器进行逼近,从而实现高通滤波器的设计。 在MATLAB软件中,有一系列函数用于设计滤波器,应用时十分方便。因此,在本次设计中,滤波器的设计主要采用MATLAB软件,编写适当的程序,得到滤波器的单位脉冲响应。 本设计对滤波器的硬件仿真主要使用CCS软件,通过对滤波器的硬件仿真,可以较为真实的看出滤波器的滤波效果。 关键字:高通、FIRDF、线性相位、Hanning窗、MATLAB、CCS

1.设计目标 产生一个多频信号,设计一个高通滤波器消除其中的低频成分,通过CCS的graph view 波形和频谱显示,并和MATLAB计算结果比较 2.设计原理 2.1数字滤波器 数字滤波器(digital filter)是由数字乘法器、加法器和延时单元组成的一种装置。其功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。数字滤波器广泛用于数字信号处理中,如电视、VCD、音响等。 按照滤波电路的工作频带为其命名:设截止频率为fp,频率低于fp的信号可以通过,高于fp的信号被衰减的电路称为低通滤波器,频率高于fp的信号可以通过,低于fp的信号被衰减的电路称为高通滤波器;而带通吗,就是频率介于低频段截止频率和高频段截止频率的信号可以通过的电路。 2.2高通滤波器 高通滤波器是容许高频信号通过、但减弱(或减少)频率低于截止频率信号通过的滤波器。对于不同滤波器而言,每个频率的信号的减弱程度不同。它有时被称为低频剪切滤波器;在音频应用中也使用低音消除滤波器或者噪声滤波器。高通滤波器与低通滤波器特性恰恰相反。这样的滤波器能够把高频率的声音引导至专用高音喇叭(tweeter),并阻止可能干擾或者损害喇叭的低音信号。使用线圈而不是电容的低通滤波器也可以同时把低频信号引导至低音喇叭(woofer)。高通和低通滤波器也用于数字图像处理中在频域中进行变换。 2.3高通滤波器的分析 2.3.1高通滤波器的时域分析 在时域,信号经过系统的响应y (n)体现为激励x(n)跟系统单位抽样响应h(n)的卷积和y(n)=(n)×h(n)=ΣN–1m=0h(m)x(n-m)[223] 。对于长度为N 的FIR系统, h(n)可以看成一个长度为N 点的固定窗口,而x(n)则看成一个队列以齐步走的方 式穿过h(n)窗口,每走一步,位于窗口中的x(n)部分的点跟h(n)的对应点的值相乘 (即加权)再求和,所得结果构成此时系统的响应值y(n), x(n)队列每走一步就得到一 个响应值y(n),即y(n)是h(n)对位于其窗口中的x(n)的加权求和。高通滤波要求h(n) 窗口具有波形锐化作用,即利用h(n)窗口加权和使得变化快的(即高频)正弦分量保 留(理想高通)或衰减幅度小(实际高通) ,而变化缓慢(即低频)的正弦分量正负抵消 (理想高通)或衰减幅度大(实际高通) 。 设

相关文档
最新文档