高炉本体

高炉本体
高炉本体

3.2 高炉炉衬

优化高炉炉型

我国炼铁工作者历来重视高炉炉型设计,通过研究总结高炉破损机理和高炉反应机理,优化高炉炉型设计的基本理念已经形成。

(1)加深死铁层深度

实践证实,高炉炉缸炉底“象脚状”的异常侵蚀,主要是由于铁水渗透到碳砖中,使碳砖脆化变质,再加之炉缸内铁水环流的冲刷作用而形成的。加深死铁层深度,是抑制炉缸“象脚状”异常侵蚀的有效措施。死铁层加深以后,避免了死料柱直接沉降在炉底上,加大了死料柱与炉底之间的铁流通道,提高了炉缸透液性,减免了铁水环流,延长了炉缸底部寿命。理论研究和实践表明,死铁层深度一般为炉缸直径的15%~20%。

(2)适当加高炉缸高度

高炉在大喷煤操作条件下,炉缸风口回旋区结构将发生变化。适当加高炉缸高度,不仅有利于煤粉在风口前的燃烧,而且还可以增加炉缸容积,以满足高效化生产条件下的渣铁存储,减少在强化冶炼条件下出现炉缸“憋风”的可能性。近年我国已建成或在建的大型高炉都有炉缸高度增加的趋势,高炉炉缸容积为有效容积的16%~18%。

(3)加深铁口深度

铁口是高炉渣铁排放的通道,铁口区的维护十分重要。研究表明,适当加深铁口深度,对于抑制铁口区周围炉缸内衬的侵蚀具有显著作用,铁口深度一般为炉缸半径的45%左右。这样可以减轻出铁时在铁口区附近形成的铁水涡流,延长铁口区炉缸内衬的寿命。

(4)降低炉腹角

降低炉腹角有利于炉腹煤气的顺畅排升,从而减少炉腹热流冲击,而且还有助于在炉腹区域形成比较稳定的保护性渣皮,保护冷却器长期工作。现代大型高炉的炉腹角一般在800以下,本钢1号高炉2600(上标)炉腹角已降低到75.370。

3.3 炉体冷却方式

长寿炉缸炉底的关键是必须采用高质量的碳砖并辅之合理的冷却。通过技术引进和消化吸收,我国大型高炉炉缸炉底内衬设计结构和耐火材料应用已达到国际先进水平。以美国UCAR公司为代表的“导热法”(热压炭砖法)炉缸设计体系已在本钢、首钢、宝钢、包钢、湘钢等企业的大型高炉上得到成功应用;以法国SAVOIE公司为代表的“耐火材料法”(陶瓷杯法)炉缸设计体系在首钢、梅山、宝钢、鞍钢等企业的大型高炉上也得到了推广应用。日本大块炭砖——综合炉底技术在宝钢、武钢等企业的大型高炉上也取得了长寿实绩。“导热法”和“耐火材料法”这两种看来似乎截然不同的设计体系其技术原理的实质却是一致的。即通过控制1150℃等温线在炉缸炉底的分布,使炭砖尽量避开800~1100℃脆变温度区间。导热法采用高导热、抗铁水渗透性能优异的热压小块炭砖,通过合理的冷却,使炭砖热面能够形成一层保护性渣皮或铁壳,并将1150℃等温线阻滞在其中,使炭砖得到有效的保护,免受铁水渗透、冲刷等破坏。陶瓷杯法则是在大块炭砖的热面采用低导热的陶瓷质材料,形成一个杯状的陶瓷内衬,即所谓“陶瓷杯”,其目的是将1150℃等温线控制在陶瓷层中。这两种技术体系都必须采用

16

具有高导热性且抗铁水渗透性能优异的炭砖。将两种设计组合在一起不失为一种合理的选择,首钢1号高炉2536(上标)采用热压炭砖——陶瓷杯组合炉缸内衬技术,至今已安全运行10年,预计高炉炉缸炉底寿命可以达到15年。随着微孔炭砖、超微孔炭砖的相继问世,大块炭砖综合炉底技术得到进一步发展,但采用此种结构的炉缸炉底须长期进行护炉操作。另一种值得关注的现象是高炉炉底和炉缸壁厚度都呈减薄趋势,个别大型高炉的炉底厚度已经减薄到2400mm,首钢首秦公司1号高炉1200(上标)炉缸采用热压炭砖,其炉缸厚度仅为800mm。

1、铜冷却壁

20世纪70年代末期,德国GHH公司和蒂森公司合作率先在高炉上应用了铜冷却壁,取得令人满意的效果。高炉铜冷却壁具有高导热、抗热震、耐高热流冲击和长寿命等优越性能,越来越多的应用于国内外大型高炉的关键部位,为高炉高效长寿起到了重要作用。

我国对铜冷却壁的研究始于20世纪90年代中期。广东汕头华兴冶金备件有限公司和首钢合作,于2000年1月设计研制出2块铜,应用了该公司提供的120块铜冷却壁,这是我国高炉正式使用铜冷却壁,并安装冷却壁技术已经实现国产化。据不完全统计,目前我国用国产铜冷却已在首钢2号高炉1726(上标)上试用,取得了显著的应用效果。2002年3月首钢2号高炉技术壁,标志着铜冷却有20余座大型高炉采用了国产铜冷却壁。

采用铜冷却壁的技术原理是依靠铜冷却壁优异的导热性、抗热震性和耐高热流冲击性,在其热面能够形成比较稳定的保护性渣皮。即使渣皮瞬间脱落,也能在其热面迅速地形成新的渣皮保护冷却壁,这种特性是其他常规冷却器所不能比拟的。实践证明,铜冷却壁是一种无过热冷却器,使用寿命可以达到20~30年。铜冷却壁在首钢、武钢、本钢、鞍钢、攀钢、湘钢等企业的大型高炉上已经得到了应用。

目前,我国已经研制出多种不同形式的铜冷却壁,有轧制铜板钻孔铜冷却壁、铜管铸造铜冷却壁、Ni-Cu合金管铸造铜冷却壁、铸造坯锻压钻孔铜冷却壁和连铸铜冷却壁等。轧制铜板钻孔铜冷却壁由于结构致密、组织缺陷少、冷却效率高,其应用范围最为广泛。

铜冷却壁是高炉长寿的关键技术之一,铜冷却壁的应用使高炉在不中修的条件下,寿命达到15~20年成为可能。铜冷却壁应使用在高炉热负荷最大的区域,即炉腹、炉腰和炉身下部,该区域是高炉异常破损严重且造成高炉短寿的关键部位,在此区域使用铜冷却壁对于延长高炉寿命具有重要作用。此外,在高炉炉缸(特别是铁口区)使用铜冷却壁也将会取得良好的应用效果。进一步优化铜冷却壁结构,降低造价是我国铜冷却壁技术发展的重要课题。

2、软水密闭循环冷却技术

高炉冷却系统对于高炉正常生产和长寿至关重要。20世纪80年代末期,我国高炉开始采用软水密闭循环冷却技术,经过不断地改进和完善,软水密闭循环冷却技术已日趋完善,并成为我国大型高炉冷却系统的主流发展模式。

软水密闭循环冷却技术使冷却水质得到极大改善,解决了冷却水管结垢的致命问题,为高效冷却器充分发挥作用提供了技术保障。该系统运行安全可靠,动力消耗低,补水量小,维护简便。

17

近年来,我国高炉软水密闭循环冷却技术进行了许多优化和改进:①根据冷却器的工作特点,分系统强化冷却,单独供水;②根据高炉不同部位的热负荷情况,在垂直方向上分段冷却,如炉缸、炉底设计为一个冷却单元,炉腹、炉腰和炉身下部设为一个冷却单元;③为便于系统操作和检漏,采用圆周分区冷却方式,在高炉圆周方向分为4个冷却区间;④软水串联冷却,软水经炉底、冷却壁后,分流一部分升压在冷却风口、热水阀等。这种串联冷却系统具有占地小、投资抵、动力消耗低的特点,在武钢1号高炉2200(上标)上已经得到应用。

3、薄壁内衬,砖壁一体化

高炉炉体破损机理的研究,使人们更加清楚地了解了高炉内衬和冷却器的工作条件。现代传热学理论的研究和运用,已将人们从传统的思维困惑中解脱出来,形成现代高炉长寿设计的基本理念,薄壁内衬技术就是在此条件下应运而生。所谓薄壁内衬就是对高炉内衬和冷却壁进行优化组合,形成砖壁一体化结构,解决炉腹、炉腰和炉身下部高热负荷区的短寿问题,使其寿命与高炉炉缸、炉底的寿命同步。

我国已有数座大型高炉采用了砖壁一体化的薄壁内衬技术。冷却壁取消了凸台,消除了冷却壁最薄弱的部位,而且冷却壁热面全部采用耐火材料保护,即所谓全覆盖镶砖冷却壁。这种砖壁一体化的冷却壁是在第四代冷却壁的基础上优化演变而来的,其内衬厚度仅为150~250mm。大型高炉炉腹、炉腰、炉身下部采用铜冷却壁,炉身中部也采用此种结构,炉身上部设2~3段C型光面水冷壁,这应是一种配置合理的长寿炉体结构。

4、耐火材料

高炉各个部位由于所处环境不同,选择的耐火材料也不同。炉底和炉缸受高温,化学侵蚀,静压和冲刷作用选用陶瓷杯炉底炉缸,本实用新型涉及一种高炉炉缸炉底内衬结构,特别适用于1000m3级以上高炉炉缸炉底内衬。本实用新型将导热法和耐火材料法溶为一体,采用热压炭砖-陶瓷杯组合炉缸炉底内衬结构,炉底满铺大块炭砖,其上部中心区域砌筑莫石砖,周边区域砌筑热压炭砖;炉缸壁内侧由棕刚玉预制块,外侧由热压炭砖及大块炭砖构成,该炉缸炉底组合内衬能够满足高炉长寿的要求,其寿命达到或超过15年,经济效益显著。陶瓷杯炉底缸有高的荷重软化温度和较强的抗侵蚀性能和低导热性,使高温等温线集中在刚玉和莫来石炉衬中,炭砖的高导热性又可将热量很快传出去,达到保护炉底的目的。炉腹受强烈的热力作用,还有料柱压力和崩料和作料时的冲击力,采用炭质内衬。炉腰和炉身中下部受高温煤气流冲刷和热冲击,化学侵蚀,要选用导热性好,高温耐磨,抗侵蚀性能好的耐火材料,选用烧成铝炭砖并加强冷却。炉身上部受炉料的冲击磨损,粉尘的冲刷和金属蒸气侵蚀,采用高铝砖。炉喉采用炉喉钢砖。

5、自动检测与控制

自动检测是高炉长寿不可缺少的技术措施。炉缸炉底温度在线监控已成为监控炉缸炉底侵蚀状态的重要手段,也是建立炉缸炉底内衬侵蚀数学模式所必要的条件。炉腹、炉腰、炉身下部区域,温度、压力的检测为高炉操作者随时掌控炉况提供了有效的参考。通过对冷却水流量、温度、压力的检测。可以计算得出热流强度、热负荷等参数,而且还可以监控冷却系统的运行状况。炉喉固定测温、炉顶摄像、煤气在线自动分析、炉衬测厚等技术的应用使高炉长寿又得到了进一

18

步的保障。我国宝钢、武钢、首钢、本钢、湘钢的大型高炉还引进了人工智能高炉冶炼专家系统,为延长高炉寿命创造了有利条件。

6、炉体维护技术

用含钛物料护炉,是由于在高温条件下还原生成TiC、TiN或Ti(C、N)等高熔点化合物,沉积在炉缸炉底,对其形成保护层。我国高炉已成功应用了含钛物料护炉技术,钒钛矿、含钛球团矿等护炉剂在高炉长寿实践中都取得了很好的效果,采用风口喷吹含钛物料护炉是延长高炉寿命的主要技术措施,但由于采用炉缸炉底内衬结构不同,开始护炉的时间也存在差异。首钢3号高炉连续工作10年尚未进行护炉操作,这也从某种程度上证实了热压炭砖技术体系的合理性。

我国高炉炉体快速修补技术已经得到推广应用。炉尘遥控喷补、压浆等炉衬修补技术已成为现阶段延长高炉风口以上区域寿命的重要技术措施。微型冷却器、冷却壁水管再造等冷却壁修复技术也日渐成熟。

3.4 冷却系统

1、高炉供水量,水压计算

1)高炉炉体冷却水带出热量估算

)×1000000

Q=(0.12n+0.0045V

u

=(0.12×26+0.0045×2305.5)×1000000

=13494750 Kcal/hj

2)高炉热负荷计算

取平均水温差ΔT=7℃

表3-1 炉体各部分水温允许范围(℃)

3)水压确定

表3-2 各部分给水压力

4)炉体供水的水质和水温

表3-3 水质和水温

5)冷却壁配管直径与流速

19

表3-4 各部分的管径与流速

2、炉体检测

为确保高炉生产稳定、顺行、安全、长寿,必须设置可靠的监测装置,包括炉体温度监测,炉衬耐材厚度监测,冷却元件、冷却介质的温度监测;冷却水流量、压力监测;炉身压力与压力差监测;炉内料面监测系统。

3.5 高炉钢结构及高炉基础

1、高炉钢结构

高炉钢结构包括:炉壳、支柱和框架、炉腰托盘、炉顶平台、斜桥、热风炉及其送风系统管道、除尘器及其煤气系统管道以及走梯、过桥、平台等。高炉钢结构是保证高炉正常冶炼的重要设施。设计高炉钢机构应考虑的主要因素是:1)高炉是庞大的竖炉,设备层层叠叠,钢结构设计必须考虑各种设备安装、检修、更换的可能性;要考虑到大型设备的运进运出,吊上吊下,临时停放等可能性和方便;

2)高炉亦是高温高压反应器某些钢结构构件应具有高温强度、耐磨性和可靠的密封性;

3)运动装置运动轨迹周围,应留下有足够的净空尺寸,并且要考虑到安装允许的误差和受力变形等因素;

4)对于支撑构件,要认真分析载荷条件,做强度计算。主要载荷包括:工作中的静载荷、动载荷、事故载荷(例如崩料、坐料引起的载荷),检修、安装时的附加载荷,以及外载荷(风载、地震等);

5)露天钢结构,扬尘点附近钢结构,应避免积尘积水;

6)合理设置走梯、过桥和平台,方便操作,安全可靠。

(1)高炉本体钢结构

设计高炉本体钢结构,主要是解决炉顶载荷、炉身载荷传递到炉基的方式方法,并且要解决炉壳密封等。多年实践的结果,目前高炉本体钢结构有大框架和炉缸支柱式、炉缸炉身支柱式、炉身框架式、自主式。本设计采用炉缸炉身支柱式。

炉顶框架、上料系统、作用在炉体框架上,传递至基础;装料设备和煤气上升管等载荷,由炉壳传递至基础。煤气上升管和炉顶平台亦装有座圈和托座。由于取消了炉缸支柱,风口平台宽敞,炉前操作方便。

(2)炉壳

炉壳一般由钢板制成,上至炉顶封板,下部坐落在高炉基础之上,是不等截面的圆筒体,它起着固定冷却设备,保证高炉砌体牢固的作用,还承受着传递上部的载荷和高温高压。因此,炉壳必须有一定强度。

20

炉壳外形与炉衬和冷却设备配置要适应。存在着转折点,转折点有减弱强度的作用。由于冷却设备,炉壳需要开孔。折点和开孔应避免在同一截面。炉缸下部折点应在铁口旷以下100mm 以下,炉腹折点应在风口大套法兰边缘以上大于100mm 处。炉壳开口处需补焊加强板,从这一点考虑,应采用插入式冷却板对炉壳强度损伤大,而冷却壁则小。

表3-5 高炉炉壳厚度

(3)炉体框架

炉体框架由四根支柱组成,上至炉顶平台,下至高炉基础,与高炉中心成对称布置,在风口平台以上部分采用钢结构,有“工”字断面,也有圆形断面,圆筒内灌以混泥土。风口平台以下部分可以是钢结构,也可以采用钢筋混泥土结构。

(4)热风围管

为了不影响炉前作业,热风围管都采用吊挂式。

1)热风围管的直径由下式计算:

v=s m /1813833

2423.140042863=?? d f =m 77.114.32184=??ω

2)风口直径,根据风速计算:

d=4pv/(24×13833×3.14×N ·ω)=0.026m

2、高炉基础

高炉基础是高炉下部的承重结构,它的作用是将高炉全部载荷均匀地传递到地基。高炉基础由埋在地下的基座和地面上的基墩组成。

对高炉基础的要求:

1)高炉基础应把高炉全部载荷均匀地传给地基,不发生沉陷和不均匀的沉陷。高炉基础下沉引起高炉钢结构变形,管路破裂;不均匀下沉将引起高炉倾斜,破坏炉顶正常布料,严重时不能正常生产。高炉总体设计,对基础的下沉量和倾斜率都有严格要求。

2)具有一定的耐热能力。一般混泥土只能在150℃以下工作,250℃便有开裂,400℃时失去强度,钢筋混泥土700℃时失去强度。过去由于没有耐热混泥土基墩和风冷炉底设施;炉底破坏损到一定程度后,常引起基础破坏,甚至爆炸。采用风冷和水冷炉底及耐热基墩后,可以保证高炉基础很好工作。

基墩断面为圆形,直径与炉底相同,高度一般为2.5~3.0,设计上还可以利用基墩高度调节铁口标高。

21

3)基座

基座直径:d=mm A 2040014

.34 基座厚度由所承受的力矩计算,结合水文地质条件和冰冻线综合情况确定。高炉基础一般应建在S 允大于0.2Mp 的土质上,如果过小,基础面积将过大,厚度也增加,使基础过于庞大。故S 允小于0.2Mp 时应对基础加以处理,视土层厚度,处理方法有垫层,打桩,沉箱等。

高炉本体设计

高炉炼铁综合计算及高炉本体设计

目录 前言3 摘要错误!未定义书签。 第一章高炉炼铁综合计算4 原始条件4 工艺计算6 配料计算6 物料平衡10 热平衡计算15 热平衡表18 m的高炉本体设计 19第二章有效容积12753 技术经济指标确定19 高炉内型尺寸计算19 炉衬材质及厚度22 炉底衬砖的设计22 炉腹、炉腰及炉身下部的砌筑22 炉身上部和炉喉砌筑23 高炉冷却 23 冷却的目的和意义24 高炉冷却介质 24 冷却设备 24 炉体钢结构25 炉体钢结构25 炉壳25 高炉基础25 结论错误!未定义书签。 谢辞26 参考文献 27

前言 高炉炼铁是以铁矿石(天然富矿、烧结矿、球团矿)为原料,以焦炭、煤粉、重油、天然气等为燃料和还原剂,以石灰石等为熔剂,在高炉内通过燃料燃烧、氧化物中铁元素的还原以及非铁氧化物造渣等一系列复杂的物理化学过程获得生铁。其主要副产品有高炉炉渣和高炉煤气。 为实现优质、低耗、高产和延长炉龄,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。现代化高炉已成为高度机械化、自动化和大型化的一种综合生产装置。高炉车间的设计也必须满足高炉生产的经济技术指标,以期达到最佳的生产效果。 摘要: 高炉炼铁的历史悠久,炼铁技术日臻成熟,是当今主要的炼铁方式。高炉作为炼铁工艺的主体设备,其结构的合理性对炼铁的工艺操作、生产技术指标以及自身的寿命都有十分重要的影响。根据攀枝花钒钛磁铁矿的高炉冶炼特点,通过进行配料计算和物料平衡计算,设计了1700m3高炉本体。设计过程除考虑通常的高炉设计方案外,还考虑了攀枝花钒钛磁铁矿多年高炉冶炼的一些生产实践经验。采用碳砖加高铝砖综合炉底、全碳砖炉缸;冷却设备的设计为水冷炉底、炉缸和炉底采用三段光面冷却壁、炉身采用镶砖冷却壁;高炉钢结构采用炉体框架式结构,最后采用CAD绘制出高炉本体图。 关键词: 高炉炼铁;综合计算,高炉本体设计

炼铁高炉本体安全要求(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 炼铁高炉本体安全要求(新版)

炼铁高炉本体安全要求(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1高炉内衬耐火材料、填料、泥浆等,应符合设计要求,且不得低于国家标准的有关规定。 2风口平台应有一定的坡度,并考虑排水要求,宽度应满足生产和检修的需要,上面应铺设耐火材料。 3炉基周围应保持清洁干燥,不应积水和堆积废料。炉基水槽应保持畅通。 4风口、渣口及水套,应牢固、严密,不应泄漏煤气;进出水管,应有固定支撑;风口二套,渣口二、三套,也应有各自的固定支撑。 5高炉应安装环绕炉身的检修平台,平台与炉壳之间应留有间隙,检修平台之间宜设两个走梯。走梯不应设在渣口、铁口上方。 6为防止停电时断水,高炉应有事故供水设施。 7冷却件安装之前,应用直径为水管内径0.75~0.8倍的球进行通球试验,然后按设计要求进行水压试验,同时以0.75kg的木锤敲击。经10min的水压试验无渗漏现象,压力降不大于3%,方可使用。

《安全教育》之炼铁高炉本体作业安全知识

炼铁高炉本体作业安全知识 1、上炉顶有什么安全要求? 答:二人以上,带好煤气报警器,注意风向,填写煤气区域作业单。 2、开氧气阀门有什么要求? 答:手套、手禁油,缓慢开启。 3、冷排有什么要求? 答:防止断水、煤气泄漏,定期检查清污,防腐、防碰撞、防着火。 4、进入喷煤中还磨、除尘箱、升温炉内有何要求? 答:可靠切断煤气,停电挂牌,先检测氧气含量,防煤气中毒,、氮气窒息。 5、喷煤升温炉点火有什么要求? 答:炉内负压,先点火,后送气。 6、煤气有哪些危害? 答:燃烧、爆炸和中毒。 7、高炉煤气的特性? 答:剧毒、易燃、易爆、无色、无味。 8、带煤气作业时多少米以内禁止一切炎源? 答:40m以内。 9、在煤气管道上动火时,必须先取得什么?并做好防护措施才可进行?答:在煤气管道上动火时,必须先取得动火许可证。 10、煤气中毒事故抢救工作中进入煤气危险区域抢救,必须戴什么?答:必须戴空气(氧气)呼吸器、防毒面具。 11、热风炉烘炉时,煤气压力低怎么操作? 答:迅速停烧切断煤气。

12、热风炉烟道温度一般控制在多少度以下? 答:一般控制在350℃以下,最高不超过400℃。 13、热风炉烟道阀或废气阀未关严就开冷风小门,风从烟道跑走,造成高炉风压风量波动,甚至影响高炉顺行,怎么操作处理? 答:当开冷风阀小门后,高炉风压下降多面不回升时,应立即关冷风阀小门,停止送风,待检查好后再送风。 14、燃烧阀未关或未关严就开冷风阀小门,造成热风大量从燃烧阀跑出,烧坏金属燃烧器,此时煤气阀不严泄漏煤气还会生爆炸,怎么处理? 答:开冷风阀小门后若发现燃烧阀处跑风,应立即关冷风阀门停止往炉内送风。15、换炉停止燃烧时,若先停助燃风机,后关煤气阀,会造成一部分未燃烧的煤气进入热风炉,容易造成爆炸气体,怎样处理? 答:一定要严格执行先关煤气,后关助燃风气规定。 16、用热风炉倒流时,如果冷风阀未关严,高炉煤气倒流过来有使煤气进入冷风总管而发生爆炸的可能,怎样处理? 答:关热风阀停止倒流,先通过烟道将煤气抽走。 17、休风时,风压降到零而没有关热风阀,冷风阀使煤气倒流到冷风总管时,怎样处理? 答:应立即关热风阀,打开烟道阀,将煤气抽走。 18、到煤气区域作业的人员应配备什麽? 答:便携式一氧化碳报警仪 19、高炉休风或坐料应遵守哪些规定? 答:(1)应事先同燃气煤气主管部门氧气鼓风热风和喷吹等单位联系征得燃气部门同意方可休风或坐料。 (2)炉顶及除尘器应通入足够的蒸汽或氮气切断煤气关切断阀之后炉顶除尘器和煤气管道均应保持正压炉顶放散阀应保持全开。 (3)长期休风应进行炉顶点火并保持长明火长期休风或检修除尘器煤气管道应用蒸汽或氮气驱赶残余煤气。

高炉安全操作规程完整

炼铁分厂各岗位安全操作规程

1围 本表准规定了炼铁分厂安全生产的技术要求 本表准适用于炼铁分厂生产和设备检修。 2安全管理 2.1炼铁分厂建立健全安全管理制度、完善安全生产责任制。 厂长对本厂的安全生产负全面责任,各车间(工段)主要负责人对本车间(工段)的安全生产负责。 2.2炼铁分厂设置安全生产管理机构 并且配备专职安全生产管理员,负责管理本部门的安全生产工作。 2.3炼铁分厂根据GB622的有关规定,配备煤气监测、防护设施、器具及人员。 2.4炼铁分厂建立健全安全生产岗位责任制和岗位安全技术操作规程,严格执行交接班制度。 2.5炼铁分厂认真执行安全检查制度,对查出的问题提出整改措施,并限期整改。 2.6炼铁厂长应具备相应安全生产知识和管理能力。 2.7应定期对职工进行安全生产和劳动保护教育,普及安全知识和安全法规,加强业务技术培训。职工经考试合格方可上岗。 新工人进厂,首先接受分厂、车间、班组三级安全教育,经考试合格后由熟练工带领工作至少三个月,熟悉本工种操作技术并考试合格方可独立工作。

调换工种和脱岗三个月以上重新上岗的人员,应首先进行岗位安全培训,并经考试合格方可上岗。 外来参观或学习人员,要接受必要的安全教育,并由专人带领。 2.8特种作业人员和要害岗位、重要设备与设施的作业人员,均经专门的安全教育和培训,并经考试合格,取得操作,方可上岗。上述人员的培训、考试、发证及复审,应按国家有关规定执行。 2.9采用新工艺、新技术、新设备,应制定相应的安全技术措施;对有关生产人员,进行专门安全技术培训,并经考试合格方可上岗。 2.10炼铁分厂要求职工正确佩戴和使用劳动防护用品。 2.11炼铁分厂应对厂房、机电设备进行定期检查、维护和清扫,要害岗位的设备,实行操作牌制度。 2.12炼铁厂要建立火灾、爆炸、触电和毒物逸散等重大事故的应急救援预案,并配备必要的器材与设施,定期演练。 2.13安全装置和防护设施,不得擅自拆除。 2.14炼铁厂发生伤亡或其它重大事故时,厂长或其代理人应立即到现场组织指挥抢救,并采取有效措施,防止事故扩大。 发生伤亡事故,应按国家有关规定报告和处理。 事故发生后,应及时调查分析,查清事故原因,并提出防止同类事故发生的措施。 3炼铁分厂各岗位安全操作规程 3.1高炉工长安全操作规程 3.1.1 危险源 3.1.1.1 一级危险源 未按规定穿戴好劳动保护用品; 更换风、渣口时未戴好面罩; 接触高温工器具未戴手套; 风口镜片缺损; 监视出铁热辐射; 监视出铁渣铁喷溅、站位不当; 值班室操作配电盘和操作开关漏电; 在运行的电葫芦下走动; 高空擦玻璃; 开关炉顶人孔操作开关人孔盖站位不当。 3.1.1.2 二级危险源

高炉设计的基础概念

高炉炉型概述 高炉炉型的发展 高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。 高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。 近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。 /D即高径比缩小,大型随着炉容的扩大,炉型的变化出现以下特征:高炉的H U 高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,

高炉外网煤气管道施工施工方案

目录 一、工程概况 (2) 二、编制依据及执行规范、标准 (3) 三、施工部署 (3) 四、施工组织机构及岗位职责 (6) 五、方案工艺流程 (9) 六、主要施工方法 (9) 七、安装质量保证措施 (18) 八、安全措施 (20) 九、临时施工用电安全措施 (23) 十、雨季施工措施 (23) 十一、文明施工措施 (24)

1 一、工程概况工程名称:河北敬业集团2*1260高炉液压系统 设计单位:安阳钢铁集团设计院 工程工期:2011年7月10日~2011年8月25日 工程内容: (1)高炉常压供水泵组 (2)风口小套供水泵组 (3)高炉净环低压供水泵组 (4)鼓风机站供水泵组 (5)事故水塔供水泵组 (6) 高炉常压事故供水柴油机泵组 (7)事故供水柴油机泵组 (8)过滤器及加药装置 工程特点:本循环水泵站负责11、12、13#高炉三座高炉及热风炉供水,室内设备、管道众多。大小水泵合计38台,加药装置2套、过滤器15套,大小管道2200余米,管径从DN150至DN1800。目前循环水泵站因土建施工缓慢,无法全部交予我方,初步具备施工条件的只有泵站南区,北区需要7月25日才能完全交给我方,且土建单位

现在还在施工,施工中存在交叉作业情况,施工作业面狭窄,给工程施工带来极2 大困难。目前循环水泵水泵已经进场,其他设备业主答复7月15日才能进场完毕,以上种种原因,给我单位施工带来极大困难,导致我单位需投入大量人力、机械,昼夜施工才能最大限度的保证工期节点及高炉顺利投产。 二、编制依据及执行规范、标准 1.循环水泵站图纸 60-0801S1 2.《建筑给水排水及采暖工程施工质量验收规范》 GB50242—2002 3. 《钢结构工程施工质量验收规范》 GB50205—2010 4.《工业金属管道工程施工及验收规范》 GB50235-2011 5.《机械设备安装工程施工验收规范》 GB50231-98 6.《压缩机、风机、泵安装工程施工及验收规范》GB50275-98 7、《建设工程施工现场供用电安全规程》 GB50194-93 8、《涂装前钢材表面锈蚀等级和除锈等级》GB8923-88 9、《机械设备安装工程施工及验收通用规范》GB50231-98 三、施工部署 1、总体施工部署 因高炉工程投产日期日益临近,根据现场条件及土建施工情况,决定不得土建全部交接,带设备基础施工完毕后,我单位立即进场安装设备及管道,若循环水泵站天车能够进场,则使用天车安装,如不能,

炼铁高炉本体安全要求通用版

操作规程编号:YTO-FS-PD857 炼铁高炉本体安全要求通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

炼铁高炉本体安全要求通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 高炉内衬耐火材料、填料、泥浆等,应符合设计要求,且不得低于国家标准的有关规定。 2 风口平台应有一定的坡度,并考虑排水要求,宽度应满足生产和检修的需要,上面应铺设耐火材料。 3 炉基周围应保持清洁干燥,不应积水和堆积废料。炉基水槽应保持畅通。 4 风口、渣口及水套,应牢固、严密,不应泄漏煤气;进出水管,应有固定支撑;风口二套,渣口二、三套,也应有各自的固定支撑。 5 高炉应安装环绕炉身的检修平台,平台与炉壳之间应留有间隙,检修平台之间宜设两个走梯。走梯不应设在渣口、铁口上方。 6 为防止停电时断水,高炉应有事故供水设施。 7 冷却件安装之前,应用直径为水管内径0.75~0.8倍的球进行通球试验,然后按设计要求进行水压试验,同时以0.75kg的木锤敲击。经10min的水压试验无渗漏现象,压力降不大于3%,方可使用。

高炉设计的基础概念

文献综述 高炉炉型概述 高炉炉型的发展 高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。 高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。 近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。随着炉容的扩大,炉型的变化出现以下特征:高炉的H U/D即高径比缩小,大型高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,炉喉直径d1与炉缸直径d之比在~之间。从而炉型能够充分发挥炉身的间接还原作用,使高炉节约焦炭,降低消耗,减少二氧化碳排放,能够使钢铁企业降低生产成本。 高炉炉龄及其影响因素

高炉施工方案

目录 一、工程概况 二、管理目标 三、资源准备 四、编制依据 五、工程进度计划 六、工序流程图 七、施工方法及主要技术措施 八、质量控制措施 九、安全控制措施 十、相关文件及记录清单

一、工程概况 安阳市新普钢铁有限公司493M3高炉工程,其建设地点位于安阳市殷都区北蒙工业园。高炉有效容积380M3,筑炉工程主要施工任务有高炉本体、热风炉、热风管道等内衬耐火材料的砌筑。 整个高炉筑炉施工工艺复杂,技术要求较高,且正值高温雨季,其影响工期进度的不确定因素较多,筑炉工程预计有效期110天。 其主要耐材砌筑工作量如下:高炉本体T;一座热风炉 T,四座共计T以及热风管道等内衬耐火材料的砌筑。 二、管理目标 根据公司管理方针和管理目标,并针对本工程特点,特制定如下质量、环境、职业健康安全管理目标: 1、质量目标: A、分项工程质量一次交验合格率75%; B、工程质量合格率100%; C、严重质量事故为零。 2、环境目标: A、施工废水、固体废物定点排放,分类管理; B、最大限度地节约水、电。 3、职业健康安全目标: A、重伤及其以上事故为零; B、陷患整改率100%; C、安全教育培训率100%; D、特殊工种持证上岗率100. 三、资源准备 (一)技术准备

1、组织图纸学习和专业图纸会审,进行技术交底等。 2、制订详细的施工作业计划。 3、对新材料、新工艺的性能做充分的熟悉和掌握。 4、对不定形耐火材料,提前了解性能、凝固时间、强度等技术指标,并制定施工方法和施工技术措施。 (二)材料准备 1、工程开工前,按材料计划表核实,甲方所供材料到货种类、数量,并把所缺材料的数量、种类及时上报给主管部门,以便及时上报给主管部门,以便及时采取措施,保证材料按时供应。 2、工程开工后,由甲方负责把筑炉材料按照施工的先后顺序依次送到施工现场50M以内。由于材料采用集装箱包装,为保证筑炉施工的正常顺利进行。需再用5T叉车运至施工进料口装车处。 3、由于此次施工是在高温雨季进行,为保证肆筑质量,加快施工进度,进入现场的耐火材料,要做好防潮、防雨淋措施。 (三)热风炉筑炉施工准备 1、热风炉施工,应在炉壳安装完毕,各层平台安装完毕后,经检查验收合格后开始砌筑。 2、平整场地,施工现场做到“水、电、路”三通,搭设和泥棚、卷扬机棚等临时设施。 3、炉体中心线垂设及炉篦子检查验收。 4、燃烧器、热风出口等模具制作所用木板材均属一次性摊销,结算进无法收回,所用木板材约需13M3,应由甲方提供。 5、每套(4座)热风炉立设龙门架一台,搭设脚手架及各层平台,切割进料孔。 6、各种筑炉用设备、机具进入现场,各种耐火材料按施工顺序分批进

炼铁高炉本体安全要求示范文本

炼铁高炉本体安全要求示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

炼铁高炉本体安全要求示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 高炉内衬耐火材料、填料、泥浆等,应符合设计要 求,且不得低于国家标准的有关规定。 2 风口平台应有一定的坡度,并考虑排水要求,宽度 应满足生产和检修的需要,上面应铺设耐火材料。 3 炉基周围应保持清洁干燥,不应积水和堆积废料。 炉基水槽应保持畅通。 4 风口、渣口及水套,应牢固、严密,不应泄漏煤 气;进出水管,应有固定支撑;风口二套,渣口二、三 套,也应有各自的固定支撑。 5 高炉应安装环绕炉身的检修平台,平台与炉壳之间 应留有间隙,检修平台之间宜设两个走梯。走梯不应设在 渣口、铁口上方。

6 为防止停电时断水,高炉应有事故供水设施。 7 冷却件安装之前,应用直径为水管内径0.75~0.8倍的球进行通球试验,然后按设计要求进行水压试验,同时以0.75kg的木锤敲击。经10min的水压试验无渗漏现象,压力降不大于3%,方可使用。 8 炉体冷却系统,应按长寿、安全的要求设计,保证各部位冷却强度足够,分部位按不同水压供水,冷却器管道或空腔的流速及流量适宜。并应满足下列要求:——冷却水压力比热风压力至少大0.05MPa; ——总管测压点的水压,比该点到最上一层冷却器的水压应至少大0.1MPa; ——高炉风口、渣口水压油设计确定; ——供水分配管应保留足够的备用水头,供高炉后期生产及冷却器由双联(多联)改为单联时使用; ——应制定因冷却水压降低,高炉减风或休风后的具

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

高炉钢结构设计

高炉钢结构设计 (steel structure design of blast furnace) 炼铁高炉专用钢结构的设计。高炉钢结构设计主要内容包括高炉本体和炉顶、上料系统、热风炉系统、粗煤气除尘系统、出铁场和辅助设施钢结构的设计,做好系统间整体配合联系、进行结构的材料选择和采取安全防护措施。高炉系统钢结构见图1。 设计时要进行结构形式的选择,构件强度稳定性、变形的计算和合理的构造处理,以保证结构安全使用与经济合理。设计应按《钢结构设计规范》及其它有关规范规定进行。对于地震区的高炉钢结构,其抗震设计要求还要符合抗震设计规范规定。 高炉钢结构的大部分是高炉生产设备的主要组成部分,其特点是:(1)种类繁多,形式特殊。有多层空间框架的炉体框架、多折点壳体的炉壳、异形壳体组成的热风炉壳、圆或椭圆形筒壳的通廊等。(2)结构尺寸及构件断面较大。如:5000m3 左右高炉全高可达120m,炉壳直径为20m,炉壳厚度可达90~120mm,炉体框架箱形柱的断面尺寸达2.0m×4.0m。(3)钢材用量多,如5000m3 高炉,包括运输、动力、管线在内钢结构用量近9万t。(4)工作条件较苛刻。如:炉体及周围结构受高温影响及水气锈蚀作用,热风炉外壳上部有时受晶间应力腐蚀开裂作用,上料料车卷扬机的作业率高达80%,壳体构件还要承受煤气爆炸等事故性内压力和砖衬被侵蚀后高炉外壳局部温度过热的作用。(5)各系统间结构穿插交错,荷载辗转传递。要控制其变形,使其相互协调。 高炉本体和炉顶钢结构高炉本体结构形式主要有自立式和非自立式两种(图2),也有介于两者之间的过渡形式。自立式高炉包括高炉外壳、炉体框架和炉顶刚架。炉壳独自承受炉内有关全部竖向荷载,而在炉周设炉体框架支承上部设备及平台。大中型高炉多用此种形式。非自立式高炉在炉壳下部设托圈和炉缸支柱,以支持炉内荷载,且多不设炉体框架,而将炉身平台及炉顶刚架支承在炉壳上,小型高炉多用此种形式。

高炉基础混凝土施工方案

#####高炉工程 施工方案 编制: ## 批准: ## 编制日期;##

目录 1.编制依据 2.工程概况 3.施工部署及施工准备 4.施工工艺 5.施工技术措施 6.质量要求 7.安全文明施工及成品保护措施 8.施工进度计划 9.附图及附表 1编制依据 1.1高炉基础施工图。 1.2现行技术标准、规范、规程。 1.3本公司的资源情况及现场的实际情况 1.4本单位施工生产中总结、验证的施工方法 1.5已建成同类工程的施工经验。 2工程概况及特点 2.4工程概况:***********************************高炉基础基底标高-4.5 米,基础顶面标高 3.35米;由四部分组成,其中第一部分为长方体平面尺寸33.4×33.4米,高2.9米,第二部分为梯形体下平面尺寸33.4×33.4米,上平面尺寸17.6×17.6米,高1.2米,第三部分为长方体平面尺寸17.6×17.6米,高1.4米,第四部分为圆柱体直径10.6米,2.35米。基础下设100mm混凝土垫

层,混凝土垫层强度等级C15。 工程设计高炉基础混凝土强度等级为C25,混凝土总量4738m3,其中上部1.35m范围采用C25耐热混凝土,耐热温度350℃,耐热混凝土量122m3;基 双向。 目前,仅到高炉基础施工图,本方案为高炉基础部分施工方案。 2.5工程特点: 2.5.1 高炉基础混凝土工程量大,整体性要求高,中间不得留设施工缝。 2.5.2 高炉基础上部1.35米范围为C25耐热混凝土,耐热温度350℃,耐热混凝土工程量122m3。 2.5.3 基础施工按大体积混凝土组织施工。 3施工布署及施工准备 3. 1本工程施工由###################################################施工,下设施工安全部、技术质量部、物资供应部、计划经营部、办公室等职能部门。在华冶公司的统一领导下,严格按照公司质量程序文件指导施工,严格按项目法进行组织管理,确保工程符合合同要求,并按期交付使用。 项目部组织机构图详见附表1示。 3.1技术准备 3.1.1各岗位管理人员认真学习相关规范和图纸; 3.1.2技术部编制大体积混凝土方案; 3.1.3召开技术交底会议,就大体积混凝土施工技术要求对工长交底,使其施工前作好充分准备。

高炉本体危险性因素(通用版)

高炉本体危险性因素(通用版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0847

高炉本体危险性因素(通用版) 高炉内型特征是:矮胖炉型,减少炉腹角和炉身角,加大死铁层深度;高炉有效容积为3200m2;采用立式大构架结构,框架柱间距18m×18m;炉体框架平台由一层炉顶平台、一层炉底平台和五层炉身平台组成,各平台之间设有双向走梯。高炉本体是整个炼铁系统最主要设备,发生事故频率高,事故类型多,在实际生产中为危险重点控制对象。其主要危险有害因素如下: 火灾、爆炸 a.开氧气者在氧气阀门附近抽烟或周围有人动火,可能发生火灾。 b.风口、渣口及水套,密封性不好,引起煤气泄漏,在有火星、火源的情况下,可能发生火灾、爆炸事故。

c.在停电断水情况下,由于事故供水不及时,致使炉内温度过高,发生炉体开裂,引起火灾。 d.炉顶压力过高又无法控制,可能导致,炉体爆炸,并引起火灾。 e.高炉停吹氧气,可能造成火灾、爆炸事故。 f.在高炉休风、检修、停电、停水情况下,由于误操作,可能发生火灾爆炸事故。 中毒 a.挖炉缸作业时,如通风不良,炉缸内煤气浓度过高,可能造成煤气中毒事故。 b.换风口及二套时,由于煤气泄漏,如不加强防护,可能造成煤气中毒事故。 c.在炉体清理作业中,由于残留煤气,如通风不良,无恰当防护措施,可能发生煤气中毒事故。 d.在高炉休风、检修、停电、停水情况下,由于误操作,可能发生火灾爆炸事故。

高炉大修施工方案

1#高炉大修工程 施工方案 编制 审核 批准 施工单位:**************************

目录 一.工程概况 (1) 二.编制依据 (1) 三.施工进度计划 (2) 四.施工现场管理 (2) 五.施工准备 (5) 六.施工方案 (5) 七.技术要求 (21) 八.安全专项方案 (24) 九.质量管理与质量保证措施 (28) 十.文明施工管理 (30) 十一.机具计划 (33) 十二.人力计划 (34) 十三.安保体系图 (35) 十四.组织机构图 (36)

一.工程概况 工程名称: ********************************。 工程地点:*********************************。 1#高炉大修工程工期紧,工程量大,各工种穿插作业多,针对本工程特编制此方案。 主要项目有: 1.原有炉砖、冷却壁、冷却板、炉喉钢砖更换。 2.热风围管、热风支管管路内砖拆除砌筑。 3.第五、六段炉皮更换。 4.炉底碳砖、炉缸微孔刚玉砖、炉身炉腹耐火砖砌筑。 5.炉顶气密箱拆除返厂修理、安装。 6.热风阀更换、管路补焊、局部更换。 二.编制依据 1.《工业金属管道工程施工规范》 GB50235-2010 2.《现场设备、工业管道焊接工程施工及验收规范》GB50236-2011 3.《炼铁机械设备安装工程施工及验收规范》GB50372-2006. 4.《工业炉砌筑工程施工及验收规范》GB50211-2004 5.《钢结构工程施工质量验收规范》GB50205-2001 6.施工图纸。 7.设备安装说明书。

炼铁安全规程

炼铁安全规程 目次 前言 1 围 2 规性引用文件 3 术语和定义 4 安全管理 5 厂址选择和厂区布置 6 一般规定 7 供上料系统 8 炉顶设备 8.1 一般规定 8.2 钟式炉顶 8.3 无料钟炉顶 9 高炉主体构造和操作 9.1 高炉本体安全要求 9.2 操作安全要求 10 喷吹煤粉 10.1 一般规定 10.2 烟煤及混合煤喷吹 10.3 氧煤喷吹 11 富氧鼓风 12 热风炉和荒煤气系统

12.1 热风炉 12.2 荒煤气系统 13 炉前出铁场和炉台构筑物 14 渣、铁处理 14.1 一般规定 14.2 摆动溜嘴操作安全要求14.3 渣、铁罐使用安全要求14.4 水冲渣安全要求 14.5 转鼓渣过滤系统的安全要求 14.6 倾翻渣罐安全要求 15 铸铁机 16 碾泥机 17 通讯、信号、仪表和计算机 18 电气、起重设备 19 设备检修 19.1 一般规定 19.2 炉体检修 19.3 炉顶设备检修 19.4 热风炉检修 19.5 除尘器检修 1 19.6 摆动溜嘴检修 19.7 铁水罐检修 前言

本标准是依据国家有关法律法规的要求,在充分考虑炼铁生产工艺的特点(除存在通常的机械、电气、运输、起重等方面的危险因素外,还存在易燃易爆和有毒有害气体、高温热源、金属液体、尘毒、放射源等方面的危险、有害因素)的基础上编制而成。 本标准对炼铁安全生产问题作出了规定。 本标准由国家安全生产监督管理局提出并归口。 本标准起草单位:安全环保研究院、钢铁设计研究总院、钢铁(集团)公司。 本标准主要起草人:舒军、晓飞、马丽仙、万成略、吴声彪、薛智章、改怡、怀远、聂岸、王健林。 1围 本标准规定了炼铁安全生产的技术要求。 本标准适用于炼铁厂的设计、设备制造、施工安装、生产和设备检修。 2 规性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB1576 低压锅炉水质标准 GB4053.1 固定式钢直梯安全技术条件 GB4053.2 固定式斜梯安全技术条件 GB4053.3 固定式工业防护栏杆安全技术条件 GB4053.4 固定式工业钢平台 GB4387 工业企业厂铁路、道路运输安全规程 GB4792 放射卫生防护基本标准

高炉基础施工方案

目录 1、目标管理 2、工程概况 3、施工部署 4、施工进度计划 5、主要施工方法 6、质量保证体系 7、质量、安全保证措施 8、文明施工及环境保护措施 9、附图 10、附高炉基础大体积混凝土技术保障计算书

1 目标管理 1.1质量目标 1.1.1 全部工程质量达到国家工程质量验评标准100%合格, 1.1.2 重大质量事故为零,工程质量优良。 1.2 安全目标 1.2.1 死亡及重伤事故为零; 1.2.2 月负伤率控制在0.25‰以下。 2 工程概况 2.1 业主名称: 廊坊圣驰金属制品有限公司 2.2 工程名称:三期易地改造工程7#1080m3高炉工程 2.3 设计单位:北京中冶设备研究设计总院有限公司 2.4 建设地点:廊坊市洸远金属制品有限公司厂内 2.5 主要结构形式 高炉基础底板外轮廓为长方形,采用桩承台形式,长35.4m,宽21m,基础底标高为-3.5m,其中▽-2.0m ~▽-0.5m为圆台体,下部直径21m,上部直径10.64m,▽-0.5m ~▽4.04m为圆柱体,直径10.64m。高炉基础炉体部分及柱采用C30砼,垫层采用C10砼,耐热砼强度等级为C30(标高▽2.04m ~▽4.04m)。本工程±0.000相当于绝对标高10.930m。 2.6 工程特点 该工程属于廊坊金属制品有限公司三期易地改造7#1080m3高炉工程。基础混凝土量较大,标高▽-3.5m ~▽-2.0m,V1=1115.1 m3;▽-2.0m ~▽-0.5m,V2=305.2 m3;;▽-0.5m ~▽2.04m,V3=225.7m3;▽2.04m ~▽4.04m,V4=177.7m3(耐热混凝土),高炉基础砼总量V=1823.7 m3。该工程是大体积混凝土施工的代表工程,降低水泥水化热和控制温差是本工程的主要技术特点和难点。 3 施工部署 3.1 组织图纸学习、自审与图纸会审,进行细致的设计交底和施工技术交底。

炼铁高炉本体作业安全知识(正式版)

文件编号:TP-AR-L9149 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 炼铁高炉本体作业安全 知识(正式版)

炼铁高炉本体作业安全知识(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1、上炉顶有什么安全要求? 答:二人以上,带好煤气报警器,注意风向,填写煤气区域作业单。 2、开氧气阀门有什么要求? 答:手套、手禁油,缓慢开启。 3、冷排有什么要求? 答:防止断水、煤气泄漏,定期检查清污,防腐、防碰撞、防着火。 4、进入喷煤中还磨、除尘箱、升温炉内有何要求? 答:可靠切断煤气,停电挂牌,先检测氧气含

量,防煤气中毒,、氮气窒息。 5、喷煤升温炉点火有什么要求? 答:炉内负压,先点火,后送气。 6、煤气有哪些危害? 答:燃烧、爆炸和中毒。 7、高炉煤气的特性? 答:剧毒、易燃、易爆、无色、无味。 8、带煤气作业时多少米以内禁止一切炎源? 答:40m以内。 9、在煤气管道上动火时,必须先取得什么?并做好防护措施才可进行? 答:在煤气管道上动火时,必须先取得动火许可证。 10、煤气中毒事故抢救工作中进入煤气危险区域抢救,必须戴什么?

炼铁高炉本体安全要求

炼铁高炉本体安全要求 1高炉内衬耐火材料、填料、泥浆等,应符合设计要求,且不得低于国家标准的有关规定。 2风口平台应有一定的坡度,并考虑排水要求,宽度应满足生产和检修的需要,上面应铺设耐火材料。 3炉基周围应保持清洁干燥,不应积水和堆积废料。炉基水槽应保持畅通。 4风口、渣口及水套,应牢固、严密,不应泄漏煤气;进出水管,应有固定支撑;风口二套,渣口二、三套,也应有各自的固定支 撑。 5高炉应安装环绕炉身的检修平台,平台与炉壳之间应留有间隙,检修平台之间宜设两个走梯。走梯不应设在渣口、铁口上方。 6为防止停电时断水,高炉应有事故供水设施。

7冷却件安装之前,应用直径为水管内径0.75~0.8倍的球进行通球试验,然后按设计要求进行水压试验,同时以0.75kg的木锤敲击。经10min的水压试验无渗漏现象,压力降不大于3%,方可使用。 8炉体冷却系统,应按长寿、安全的要求设计,保证各部位冷却强度足够,分部位按不同水压供水,冷却器管道或空腔的流速及流量适宜。并应满足下列要求: ——冷却水压力比热风压力至少大0.05MPa; ——总管测压点的水压,比该点到最上一层冷却器的水压应至少大0.1MPa; ——高炉风口、渣口水压油设计确定; ——供水分配管应保留足够的备用水头,供高炉后期生产及冷却器由双联(多联)改为单联时使用;

——应制定因冷却水压降低,高炉减风或休风后的具体操作规程。 9热电偶应对整个炉底进行自动、连续测温,其结果应正确显示于中控室(值班室)。采用强制通风冷却炉底时,炉基温度不宜高于250℃;应有备用鼓风机,鼓风机运转情况应显示于高炉中控室。采用水冷却炉底时,炉基温度不宜高于200℃。 10采用汽化冷却时,汽包应安装在冷却器以上足够高的位置,以利循环。汽包的容量,应能在最大热负荷下1h内保证正常生产,而不必另外供水。 11汽包的设计、制作及使用,应遵守下列规定: ——每个汽包应有至少两个安全阀和两个放散管,放散管出口应指向安全区;

高炉施工方案0406

山西通才工贸有限公司淘汰落后设备技术改造工程1580m3高炉炉壳施工方案 编制:年月日审核:年月日批准:年月日 华北冶建工程建设有限公司建邦项目部

目录 1、编制依据 (3) 2、工程概况 (3) 3、施工部署 (3) 4、编制材料计划 (3) 5、工厂制作 (5) 6、结构运输 (12) 7、高炉炉壳拼装 (12) 8、高炉炉壳安装 (22) 9、安全注意事项 (30) 10、措施材料 (34) 11、工机具清单 (35)

1580m3高炉炉壳施工方案 1 编制依据 1.1山西通才工贸有限公司1580m3高炉安装工程合同。 1.2国家及行业现行施工标准、规程、规范及质量验评标准。 1.3钢结构施工设计总说明,《钢结构工程施工质量验收规范》(GBJ50205-2001)、《冶金机械设备安装工程施工及验收规范》(YBJ208-85)、《炼铁工艺炉壳结构技术规范》(GB50567-2010)。 1.4 我公司所能调动的施工技术力量。 1.5 施工现场情况。 2 工程概况: 本施工方案为高炉炉壳的开孔、卷制、拼装、吊装、找正及焊接等内容。 3 施工部署: 在高炉正南方向布置一台250t履带吊为主吊(主要进行高炉炉壳的吊装工作),另配小吊车配合(主要进行高炉炉壳的拼装工作)。在正北方向布置一台150t履带吊作为主吊(主要进行高炉下部框架的吊装工作),另配小车配合。 高炉在安装过程中,一边安装炉壳,一边安装水冷系统,当炉喉钢砖安装完后,炉内开始砌筑,外部则将热风围管整体套上,形成有序地流水作业,同时,在不影响炉体安装的前提下,安装框架和各层平台,进行平行作业,以达到最佳工效。但夜间不进行吊装作业。 4 编制材料计划: 4.1 根据设计施工图纸编制钢材计划,高炉壳体材料定尺订货进料,由于高炉炉壳定尺,需提前订货。 4.2 铸件、锻压件提前评审协作厂家,签订合同,委托加工。 注:炉壳材料订货尺寸以炉壳厚度中径为依据,请业主复核。详见高炉炉壳分带图。

相关文档
最新文档