医用电子直线加速器污染因素、辐射防护及辐射安全管理

医用电子直线加速器污染因素、辐射防护及辐射安全管理
医用电子直线加速器污染因素、辐射防护及辐射安全管理

维普资讯 https://www.360docs.net/doc/b11292061.html,

维普资讯 https://www.360docs.net/doc/b11292061.html,

加速器辐射防护

加速器辐射防护 OCPA2010 王庆斌/IHEP 2010年8月

加速器辐射防护 射线与物质的相作 射线与物质的相互作用 加速器的辐射源 加速器的辐射屏蔽与防护 加速器的辐射监测 加速器的非辐射危害和防护 加速器的安全

一射线与物质的相互作用 射线与物质的相互作用分为 射线与物质的相互作用分为: ?带电粒子与物质的相互作用; ?不带电粒子与物质的相互作用; 带电粒子可以引起物质的电离和激发 ?电离是高速带电粒子在某一壳层电子旁掠过时,由于库仑引力的作用,使电子获得能量而脱离原子核束缚成为自由电子的过程。 ?激发是获得能量的电子,从较低能级跃迁到较高能级的过程。 不带电粒子可以引起物质的电离和激发 ?不带电粒子,中子和光子不能引起物质电离,但它们在与物质作用时会产生次级带电粒子,近而再引起物质的电离,X射线和γ射线 都是光子。

一射线与物质的相互作用(续1) 光子与物质的相互作用有三种机制 光子与物质的相互作用有三种机制: ?光电效应(photoelectric effect):一个光子由于从原子中打出一个轨道电子而损耗掉其全部能量的过程; ?康普顿散射(Compton scattering):光子在自由电子上散射,并给与自由电子以一定的动能。光电效应和康普顿散射二者之间本质上的不同,在由电子以定的动能光电效应和康普顿散射二者之间本质上的不同在 于光电效应中光子完全消失了;而在康普顿散射中光子被保留下来,不过 其能量要比入射光子的能量低。 ?电子对效应(Pair production):光子被核场吸收产生出一对正负电子对。

一射线与物质的相互作用(续2) 中子与物质作用的对象是原子核而不是核外电子 中子与物质作用的对象是原子核,而不是核外电子。 中子与原子核作用的形式有三种: 散 ?弹性散射; ?非弹性散射; ?中子俘获。 快中子在轻介质中主要通过弹性散射损失能量; 损失能量 在重介质中通过非弹性散射损失能量; 中子俘获是中子的能量被原子核吸收后放出一个或几个光子的过程。 中子能量损失的过程称为中子的慢化,在轻介质材料中(如聚乙烯和石蜡)中子的慢化进程被加快,所以用聚乙烯和石蜡屏蔽中子的效果比较好。 比较好

同步辐射原理与应用简介

第十五章 同步辐射原理与应用简介§ 周映雪 张新夷 目 录 1. 前言 2.同步辐射原理 2.1 同步辐射基本原理 2.2 同步辐射装置:电子储存环 2.3 同步辐射装置:光束线、实验站 2.4 第四代同步辐射光源 2.4.1自由电子激光(FEL) 2.4.2能量回收直线加速器(ERL)同步光源 3. 同步辐射应用研究 3.1 概述 3.2 真空紫外(VUV)光谱 3.3 X射线吸收精细结构(XAFS) 3.4 在生命科学中的应用 3.5 同步辐射的工业应用 3.6 第四代同步辐射光源的应用 4.结束语 参考文献 §《发光学与发光材料》(主编:徐叙瑢、苏勉曾)中的第15章:”同步辐射原理与应用 简介”,作者:周映雪、张新夷,出版社:化学工业出版社 材料科学与工程出版中心;出版日期:2004年10月。

1. 前言 同步辐射因具有高亮度、光谱连续、频谱范围宽、高度偏振性、准直性好、有时间结构等一系列优异特性,已成为自X光和激光诞生以来的又一种对科学技术发展和人类社会进步带来革命性影响的重要光源,它的应用可追溯到上世纪六十年代。1947年,美国通用电器公司的一个研究小组在70MeV的同步加速器上做实验时,在环形加速管的管壁,首次迎着电流方向,用一片镜子观测到在电子束轨道面上的亮点,而且发现,随加速管中电子能量的变化,该亮点的发光颜色也不同。后来知道这就是高能电子以接近光速在作弯曲轨道运动时,在电子运动轨道的切线方向产生的一种电磁辐射。图1是当时看到亮点的电子同步加速器的照片,图中的箭头指出亮点所在位置。那时,科学家还没有意识到这种同步辐射其实是一种性能无比优越的光源,高能物理学家抱怨,因为存在电磁辐射,同步加速器中电子能量的增加受到了限制。大约过了二十年的漫长时间,科学家(非高能物理学家)才真正认识到它的用处,但当时还只是少数科学家利用同步辐射光子能量在很大范围内可调,且亮度极高等特性,对固体材料的表面开展光电子能谱的研究。随着同步辐射光源和实验技术的不断发展,越来越多的科学家加入到同步辐射应用研究的行列中来,同步辐射的优异特性得到了充分的展示,尤其是在红外、真空紫外和X射线波段的性能,非其他光源可比,很多以往用普通X光、激光、红外光源等常规光源不能开展的研究工作,有了同步辐射光源后才得以实现。到上世纪九十年代,同步辐射已经在物理学、化学、生命科学、医学、药学、材料科学、信息科学和环境科学等领域,当然也包括发光学的基础和应用基础研究,得到了极为广泛的应用。目前,无论在世界各国的哪一个同步辐射装置上,对生命科学和材料科学的研究都具

医疗机构放射诊疗设备安全防护与质量安全监测方案

医疗机构放射诊疗设备安全防护与质量安全监测方案 一、监测范围 每个试点地区选择15家医院开展放射诊疗设备安全防护与质量安全控制监测工作。其中三级医院5家(包括省肿瘤医院、省人民医院)、二级医院5家(包括2家县人民医院)、一级医院5家(包括2家乡镇卫生院)。监测医院应在试点城市中选择,如监测设备数量达不到要求,可适当扩大监测医院范围。 二、监测内容 (一)放射治疗设备安全防护与质量安全控制监测。 1.监测数量。每个试点地区监测放射治疗设备18台。其中医用电子加速器10台,钴-60远距离治疗机3台,头部伽玛刀2台,后装治疗机3台。 2.监测依据的标准。 (1)医用电子加速器依据《医用电子加速器性能和试验方法》(GB 15213-94)。 (2)钴-60远距离治疗机依据《医用γ射束远距治疗防护与安全标准》(GBZ 161-2004)。 (3)头部伽玛刀依据《X、γ射线头部立体定向外科治疗放射卫生防护标准》(GBZ 168-2005)。 (4)后装治疗机依据《后装γ源治疗的患者防护与质量控制检测规范》(WS 262-2006)、《后装γ源近距离治疗放射卫生防护标准》(GB 16364-1996)。 3.监测指标。 (1)医用电子加速器(监测指标共13项,其中X射线7项,电子线6项)。 X射线的性能:辐射质、辐射野的均整度、辐射野与光野的重合、辐射野的对称性、剂量示值的重复性、剂量示值的线性、剂量示值的误差; 电子线的性能:辐射质,辐射野的均整度,辐射野的对称性,剂量示值的重复性、剂量示值的线性,剂量示值的误差。 (2)钴-60远距离治疗机(监测指标共7项)。准直器旋转中心,灯光野与照射野的重合性,半影区宽度,辐射野对称性,输出剂量的重复性,输出剂量的线性,治疗计划的吸收剂量偏差。 (3)头部伽玛刀(监测指标共7项)。焦点剂量率,焦点计划剂量与实测剂量的相对偏差,机械中心与辐射野中心之间的距离,辐射野半影宽度,辐射野尺寸(FWHM)与标称值最大偏差,透过准直体的泄漏辐射,非治疗状态下杂散辐射。 (4)后装治疗机(监测指标5项)。治疗源活度测量, 源传输到位精度,测量点吸收剂量重复性,距离贮源器表面5cm处的任何位置的泄露辐射空气比释动能率,距离贮源器表面100cm处任一点的泄露辐射空气比释动能率。 (二)核医学设备安全防护与质量安全控制监测。 1.监测数量。每个试点地区监测核医学设备5台,其中PET/CT 2台、SPECT 3台。 2.监测依据的标准。 (1)PET/CT。依据《放射性核素成像设备性能与实验规则第1部分:正电子发射断层成像装置》(GB/T 18988.1-2003)、《正电子发射断层成像装置性能测试》(NEMA NU2-2001)、

医用重离子加速器

第三章医用重离子加速器 医用重离子加速器提供的重离子束主要应用于重离子束治癌,而提供的放射性核素以在核医学方面的应用为主。重离子束治癌在美,日,德等发达国家已进入到临床试验阶段,而放射性核素在核医学方面的应用大都处于试验研究阶段。由中国科学院近代物理研究所、甘肃省医学科学研究院、甘肃省肿瘤医院合作、兰州军区兰州总医院参与的甘肃省科技重大项目——“重离子束辐射治疗癌症的关系就是开发研究”,于2006年12月开始临床研究。到目前,已应用重离子束放射治疗浅表肿瘤受试者127名,效果显著,绝大部分病人无明显不良反应,治

疗后病人的随访率达96%以上,使我国成为国际上第4个有能力进行重离子治癌临床研究的国家。 第一节重离子治癌原理 一、概述 重离子束与物质相互作用的特殊机理使得它在肿瘤治疗方面具有一系列明显的优点:重离子束治疗精度高达(毫米量级);剂量相对集中,照射治疗时间短,疗效高;对肿瘤周围健康组织损伤小;重离子束治疗能做到实时监测,便于控制辐照位置和剂量。 以上优点使得重离子束的治疗作用可

以与手术刀媲美,达到普通电离辐照(此处普通电离辐照指x、r及电子束)治疗难以实现的疗效,因而重离子束被称为是21世纪最理想的放射治疗用射线。也正是由于重离子束在放射治疗中的上述优点,世界上许多国家都倾注了大量的人力和物力进行医用重离子束加速器的研制,或利用已有的重离子加速器进行治癌装置的建造和治癌基础及临床应用研究,这使得重离子治癌成为放射治疗领域的前沿性研究课题。 二、重离子治癌的科学依据和优势 放射治疗的主要原则就是给予肿瘤尽

可能大的辐射剂量,将癌细胞杀死,同时又尽可能地保护肿瘤周围和辐射通道上的正常组织使其少受损伤。由于普通电离辐照对剂量深度分布均呈指数衰减或略微上升而后衰减的特征,使治疗受到很大限制;而重离子束以其独特的放射物理学和放射生物学性质,在放射治疗上独具优势。 (一)重离子束的物理特性 1.特殊的深度剂量分布 荷电重离子贯穿靶物质时主要是通过与靶原子核外电子的碰撞损失其能量,随离子能量的降低,这种碰撞的概率增大。因此,离子在接近其射程末端时损失其大部分初始动能,形成一个高剂量的能量损

辐射环境防护监测及仪器选用

辐射环境防护监测及仪器选用 摘要:电离辐射监测在习惯上称放射性监测,简称辐射监测。人们对电离辐射危害忽视或感到忧虑不安的一个主要原因,是因为人体不能直接察觉电离辐射的存在,人们无法由感觉器官听到、看到、闻到、尝到或感觉到它,必须使用专用仪器进行测量与评价。abstract: ionization radiation monitoring is traditionally referred to as radioactivity monitoring and radiation monitoring for short. one of the main reasons for people’s ignorance or anxiety towards the harm of ionization radiation is that human body cannot directly detect the presence of ionization radiation. people can’t hear, see,smell, taste or feel it through sense organs; specific instruments are used to measure and evaluate it. 关键词:辐射监测;辐射防护;监测仪器 key words: radiation monitoring;radiation protection;monitoring instrument 中图分类号:tl81 文献标识码:a 文章编号:1006-4311(2013)22-0076-02 1 辐射防护监测 辐射防护监测的概念——是指为估算和控制公众及工作人员所 受辐射剂量而进行的测量。 辐射防护的目的——是保证公众和工作人员生活在安全的环境

同步辐射光源及其应用_沈元华

同步辐射光源及其应用 沈元华 (复旦大学物理教学实验中心上海200433) 摘 要:介绍了同步辐射光源的产生、特点及其应用. 关键词:同步辐射;光源;加速器 Synchrotron radiation source and its applications SHEN Yuan-hua (Central Labo rato ry fo r Phy sics Educatio n,Fudan University,Shang hai,200433) Abstract:The forma tio n,characteristics and applicatio ns of synchro tro n radiatio n so urce are introduced. Key words:synchrotron radiatio n;ligh t source;accelerato r 在著名科学家谢希德、杨福家等院士的倡议下,一座投资十亿的宏伟建筑即将耸立在上海浦东高科技园区,它就是世界瞩目的第三代同步辐射光源——上海光源. 什么是同步辐射光源?它与普通光源有什么区别?它有什么重大的科学意义和应用价值?本文将做一简要介绍. 1 同步辐射光源的产生 同步辐射光源是由同步加速器的发展而产生的.著名原子物理学家尼·玻尔说过,高速粒子与物质相互作用时发生的各种效应,是获取原子结构信息最主要的来源之一.事实上,科学家们往往要用高速运动的粒子去轰击原子核,观察撞击时发生的种种变化,才能了解原子的结构和原子内部的各种秘密.各种加速器正是为获得这种高速运动的粒子而建造的.早期的加速器是直线型的,要获得的粒子速度越快,其长度也要越长.为了缩短加速器的长度,可用磁场使带电粒子发生偏转而作回旋运动,这就是回旋加速器.这种加速器利用强大的磁场,使带电粒子作回旋运动而不断加速.由于在一定的磁场作用下,粒子的回旋轨道半径随其速度的增加而增加,故磁场空间必须很大.因此,这种高能回旋加速器的磁铁是极其笨重的. 为了减轻磁铁的重力,并进一步提高粒子的速度,人们设计出采用环形电磁铁并不断改变磁场强度,使粒子的轨道半径保持恒定的加速器.这种固定轨道、用调变磁场的方法实现电场对粒子的同步加速的加速器,就称为同步加速器.带电粒子在同步加速器中按同一轨道作圆周运动,可以大大提高粒子的能量和速度.然而,当粒子的能量越来越大时,人们发现要进一步加速却越来越困难了.其根本原因之一就是带电粒子改变运动方向(转弯)时,必然伴随着电磁波的辐射,即光波的发射;粒子的能量越大,辐射就越强.虽然早在1898年理论物理学家Lienard就预言带电粒子作圆周运动时会产生辐射而发光,但是直到本世纪四十年代末,才由Pollack等人在美国通用电气公司的一台同

粒子加速器辐射防护规定.

粒子加速器辐射防护规定 L 总则 1.1 为加强对拉子加速器辐射防护工作的管理,保护环境,保障上作人员和邻近居民的健康与安全,根据GBJ8一74《放射防护规定》,参照国际辐射防护有关标准,并结合国内加速器的辐射防护状况,特制定本规定。。 1.2 本规定适用于加速粒子的单核能量低于100MeV。的粒子加速器(不包括医疗用加速器和象密封型中子管之类的可移动加速器)设施。 1.3 凡有粒子加速器的单位,必须根据本规定的要求,结合本单位加速器的特点,制定出实施细则。 1.4 在加速器辐射防护工作中,应当在降低剂量所获得的效益和为此而付出的代价之间进行权衡,使该设施运行中产生的集体剂量保持在可以合理做到的尽可能低的水平,并保证个人所接受的剂量当量不得超过剂量当量限值。 1.5 新建、扩建和改建加速器设施的单位,必须编写该设施对环境质显影响的评价报告,报请当地环境保护部门批准,否则不得设计和(或)施工。与此同时,还必须向当地公安部门登记 1.6 要关心在加速器上工作的人员的身体健康,加强健康管理。这类人员应当事受劳动保护部门和其他部门规定的劳保待遇。 1.7 本规定由当地辐射防护主管部门监督执行。 2 剂量当量限值 2.1 职业放射性工作人员全身受到均匀照射的剂量当量或全身受到不均匀照射的有效剂量当量,均不得超过每年50mSv(5rem);公众中的个人,均不得超过每年5mSv(0<5rem)。 2.2 职业放射性工作人员跟晶体的剂量当量不得超过每年50mSv(5ren),其他组织或器官的剂量当量均不得超过每年500mSv(50rem)公众中的个人任何器官或组织的剂量当量,均不得超过每年50mSv(5rem)。 2.3 在只受到外照射的情况下,深部剂量当量指数应低于每年50mSv(5rem)。 2.4 在只受到内照射的情况下,每年摄入的放射性物质数量应低于附录C(补充件)所列ALI。 2.5 在受到内外合并照射的情况下,为保证不超过年剂量当量限值,必须同时满足下列两个公式: 式中:Hid --年深部剂量当量指数,Sv(rem) HL--年深部剂量当量限值,Sv(rem); Ij第j种放射性核素的年摄入量,Bq(Ci); (ALI)j--第j种放射性核素的年摄入量限值,Bq(Ci) His--年浅表剂量当量指数,Sv(rem); HSKL――皮肤的年剂量当量限值,500mSv(50rem)。 2.6 必要时经辐射安全机构批准,可允许职业放射性工作人员接受超过年剂量当量限值的照射。但1小次事件接受的剂量当量或剂量当量负担,不得超过年限值的2倍;一生中这种照射总共接受的剂量当量或剂量当量负担,不得大于年限值的5倍。 具有生育能力的妇女和未满18周岁者,不得接受这种照射 2.7 从事放射性工作的孕妇,授乳妇以及年龄在16~18周岁的实习人员、应在1年的照射不超过年剂量当量限值3/10的条件下工作,并要求剂量当置率比较均匀。 未满16周岁者,禁止从事放射性工作。

XX市2019年医疗卫生机构医用辐射防护监测工作方案【精品范文】

XX市2019年医疗卫生机构医用辐射防护监 测工作方案 目录 一、监测目标 (2) 二、监测范围 (2) 三、监测内容与方法 (2) 四、质量控制 (4) 五、项目管理要求 (5) 六、进度安排 (6) 附表2-1放射诊疗机构基本情况调查表 (7) 附表2-2医疗机构开展放射诊疗频度调查记录表 (11) 附表2-3医疗卫生机构医用辐射防护监测工作考核评分表 (12)

医疗卫生机构医用辐射安全关系到放射工作人员、患者和公众的身体健康和生命安全。为顺利完成国家医疗卫生机构医用辐射防护监测任务,了解我市医用辐射防护现状,科学实施医疗卫生机构放射诊疗防护管理,现结合我市实际,制定本工作方案。 一、监测目标 通过开展问卷调查、现场监测的方法,掌握医疗卫生机构放射诊疗设备防护安全、医疗照射频度、患者和工种的辐射防护情况,为研究制定适宜的放射卫生标准和规范提供技术支持,有效保护医疗卫生机构放射工作人员、患者和公众的健康权益。 二、监测范围 2019年度我市监测工作范围覆盖全市各县(市、区),在全市范围内选择20家医疗机构(监测点医院名单见附件4)开展监测工作,做到县、区全覆盖。监测工作分为两部分:(一)市疾控中心负责对辖区内监测点医疗卫生机构相关放射诊疗设备的防护性能和场所辐射防护进行监测。 (二)市卫生监督所负责组织实施对辖区内所有开展放射诊疗的医疗机构基本情况及放射诊疗频度进行调查。 三、监测内容与方法 (一)放射诊疗机构基本情况调查。 市卫生监督所负责组织辖区监测点医疗卫生机构填写《放射诊疗机构基本情况调查表》、《医疗卫生机构开展放射诊疗频度调查记录表》(见附表2-1、2-2),调查放射治疗、

重核离子束成分的加速器质谱分析

第33卷第2期原子能科学技术V o l.33,N o.2  1999年3月A tom ic Energy Science and T echno logy M ar.1999重核离子束成分的加速器质谱分析3 何 明 姜 山 蒋崧生 武绍勇 (中国原子能科学研究院核物理研究所,北京,102413) 为拓展加速器质谱技术(AM S)测量范围及测量放射性核束成分,建立了利用入射离子发射特征X射线鉴别同量异位素的方法,开展了利用AM S测量重核离子束成分的工作。用此方法可将测 量79Se时的同量异位素干扰79B r压低2个数量级。对将用于64Cu放射性束实验的铜靶离子束成分 进行了分析。 关键词 离子束分析 入射离子X射线 加速器质谱 中图法分类号 TL52 TH84 加速器质谱技术(AM S)由于其高灵敏度而广泛应用于各个学科。AM S在测量重核,如79Se、126Sn等会遇到同量异位素的严重干扰。为拓展AM S测量范围,需建立重核的AM S分析新方法。另外,放射性核束物理实验的束流是混合束(受到一些稳定核素的干扰),需要对其成分进行鉴别而对离子束成分分析提出了要求。当离子经过加速器加速再经过分析磁铁选定所测核素后,离子束中一般只有所测核素的同位素和同量异位素。因此,离子束成分分析主要是分析离子束中的同位素和同量异位素含量。 1 同位素的分析方法 111 电刚度分析法 待分析样品在离子源被电离、经加速器加速后由分析磁铁选择出某一核素,只有相同磁刚度2〔(E q)?(m q)〕1 2的离子才能通过分析磁铁(E、m、q分别为离子能量、质量和电荷态)。离子在加速过程中由于电荷交换等原因使一些同位素的磁刚度满足选定的磁刚度而通过分析磁铁,因这些同位素离子质量不同,能量比选择的离子能量要高或低。静电分析器是能量分析器,即只有电刚度(E q)相同的离子才会通过静电分析器,因此可对离子的同位素进行分析。中国原子能科学研究院的高灵敏静电分析器[1]可对离子束中的同位素进行分析:通过改变静电分析器的电压让能量不同的离子(相应于质量不同的离子)通过静电分析器,对通过的离子进行测量来对离子束中的同位素进行鉴别。静电分析器在分析模拟传输64Cu时离子束中同位 3国家自然科学基金和核工业基金资助项目 何 明:男,29岁,加速器质谱学专业,助理研究员 收稿日期:1998205218 收到修改稿日期:1998208202

直线加速器机房放射防护安全制度标准范本

管理制度编号:LX-FS-A30285 直线加速器机房放射防护安全制度 标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

直线加速器机房放射防护安全制度 标准范本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、按照国家《放射性同位素与射线装置放射防护条例》的要求加强放射卫生防护管理 2、直线加速器的防护性能应符合《医用远距离治疗X线卫生防护规则》的标准要求 3、参加放射治疗工作的技术人员必须经过严格的放射卫生防护知识培训并合格后,并取得“大型医用设备使用人员上岗证”才能进行上机操作 4、直线加速器的操作人员必须严格遵守各项才做规程,并经常检测防护设施的性能,及时处理发现的问题,严禁在直线加速器异常的情况下进行放射治

辐射防护与安全标准(GB10252-1996)

钴-60辐照装置的辐射防护与安全标准 (GB10252-1996) 本标准是GB10252-88《辐射加工用钴-60辐照装置的辐射防护规定》的修订版本。本版在格式上依照GB/T1.1-1993《标准化工作导则 第1单元:标准的起草与表述规则 第1部分:标准编写的基本规定》。修订部分主要有:增加前言和引用标准一章;不再列出职业人员基本限值,只提出执行有关的标准,并给出与源相关的剂量控制值、对公众照射给出了管理限值;井水中污染控制值改为 10Bq/L;通过屏蔽墙对非限制区公众的照射原规定过产,现适当放宽;在总结了近年来国内经验和教训的基础上,对原版中的有关辐射防护与安全管理部分,参照国际原子能机构(IAEA)有关规范,增加了辐照装置的安全分析、辐射源的清点与盘存和辐射防护与安全检测内容三章;原版中的附录A删去。 本标准从实施之日起,同时代替GB 10252-88。 本标准的附录A是标准的附录。 本标准由中国核工业总公司提出。 本标准起草单位:北京放射医学研究所。 本标准起草人:郭勇、史元明、李成林 1. 范围 本标准规定了60Co辐照装置设施的辐射防护与安全要求,包括场所划分、工作人员和公众受照控制以及有关防护与安全等管理和技术要求。 本标准适用于水池贮源式60Co辐射装置的选址、设计、运行和退役。 2. 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB3095-82 大气环境质量标准 GB4076-83 密封放射源一般规定 GB13367-92 辐射源和实践的豁免管理原则 3. 辐射照射与污染控制

医用直线加速器放射安全与职业防护管理

CHINESE HOSPITAL ARCHITECTURE & EQUIPMENT | 96依据现行的射线装置分类办法,医用电子直线加速器属于II类射线装置,属于中危险射线装置,发生事故时可以使受照射人员产生较严重的放射损伤,大剂量照射甚至导致死亡。医用电子直线加速器对工作场所及周围环境产生的辐射水平及其防护问题已经引起了社会的普遍注意和关切。各相关医疗机构在医用加速器的使用中应高度重视辐射防护问题,在做好医学放射工作人员职业防护的同时,更应确保机房周围环境的放射安全,保护好公众安全。 一、直线加速器结构、工作原理及辐射特征 医用电子直线加速器能量一般指X射线治疗方式下的加速电位,即X射线的最高能量。通常按能量10MV为界区分,以采取与之相应的放射防护措施。它还可以按照产生X射线的种类分为单光子、双光子和多光子直线加速器。加速系统是医用电子直线加速器的核心,由加速管、微波功率源、微波传输系统、电子注入系统、高压脉冲调制系统、聚焦系统、真空系统、电源和控制系统、附属设备等组成。 其工作过程是:调制器产生两个脉冲高压,一个加到功率源(速调管和磁控管),功率源产生的微波功率经微波传输系统,馈入加速管,并在其中建立加速场;另一个脉冲高压加到电子枪,引出电子束,电子束注入加速管,受到其中加速场的加速。 医用电子直线加速器运行时,被加速的带电粒子从加速器的真空区引出后,这些带电粒子与被撞击的物质相互作用时产生轫致辐射 医用直线加速器放射安全与职业防护管理 MEDICAL LINEAR ACCELERATOR RADIATION SAFETY AND OCCUPATIONAL PROTECTION MANAGEMENT 文|党升强 曹小军 谢龙 韩良辅 摘 要 文章介绍了医用电子直线加速器的结构和工作原理,分析了其辐射特征和危害,详细阐述了医院应采取的防护措施和工作人员注意事项,建议加强放射安全及职业防护管理。关键词 直线加速器 放射安全 防护管理Abstract The article introduces medical linear accelerator structure and working principle; analyzes the features and hazards of radiation; explains the protective measures and cautions for the medical staff; proposes to strengthen the safety and occupational radiation protection management.Keywords Linear accelerator Radiation Protection doi:10.3969/j.issn.1671-9174.2013.09.007 X射线、特征X射线、瞬间γ射线、中子射线和缓发射线(能量≥10MeV时)。而且,由于射线作用于空气及次级辐射等因素,可产生臭氧、氮氧化物和微量气载放射物质。 1.初级射线辐射。是指来自加速器准直器孔直接发射的射线。当光阑完全打开时,从辐射头靶端出射的X射线为一个半角为14度的锥形线束,其能量特性决定于选择的X射线能量级别。辐射防护主要依据X 射线能量。 2.露射线辐射。是指穿过加速器组装壳体的泄露射线,与主射线相比,泄露剂量率 比主射线束发射剂量率要低得多。 3.散射线辐射。是指受有用射线束和泄漏辐射直接照射的照射对象、装置部件以及建筑物室壁的散射辐射。 4.中子辐射。是指在高能X线模式下会产生一定数量的中子,通常无论在高能电子线或低能X线模式都只有很低能量级水平。但在高于10MV的X线模式中,迷路入口的设计必须对中子剂量加以考虑。 5.辐射活化的产生。是指直线加速器工作高于8MeV的能量级时,会发生光核效应,特别是高于12MeV时增加更快。这样会造成辐射头、室内其他物质包括周围空气在内的放射线核素的形成,产生少量的放射性气体,如13N(半衰期10min)和15O(半衰期2min)等。 二、直线加速器异常情况下的辐射危害(事故照射) 当加速器装置损坏、调试和操作失误

加速器类型

粒子加速器: particleaccelerator 一种用人工方法产生快速带电粒子束的装置。粒子加速器有三个基本组成部分:粒子源;真空加速系统和导引、聚焦系统。粒子加速器的效能通常以粒子所能达到的能量来表征。 粒子能量在100MeV 以下的称为低能加速器,能量在 0.1?1GeV间的称为中能加速器,能量在1GeV以上的称为高能加速器 按照被加速粒子的种类,加速器可分为电子加速器、质子加速器和重粒子加速器等。 按照加速电场和粒子轨道的形态,又可分为四大类:直流高压式加速器、电磁感应式加速器、直线谐振式加速器和回旋谐振式 加速器。 它们各自都有适于工作的粒子品种、能量范围以及性能特色。近年来,大中型的粒子加速器(如重离子加速器和高能加速器等)往往采用多种加速器的串接组合:例如由直流高压型加速器作预加速器,注入直线谐振式加速器加速至中间能量,再注入回旋谐振式加速器加速至终能量。 这样的系统有利于发挥每一类加速器的效率和特色。 (撰写: 陈佳滠审订: 关遐令)串列加速器: tandem accelerator 利用一个高压使带电粒子获得两次加速的静电型加速 KB 器。 串列加速器的直流高压通常由输电系统将电荷从低电位输送到高压电极上而形成。 它的工作原理是将由负离子源产生负离子注入到加速器主体中,在高压电极的正电

场的作用下,经低能段加速管被第一次加速。 当负离子到达高压电极后,通过电子剥离器并被剥掉2 个或多个电子,变为正离子。 在高压电极作用下,正离子经高能段加速管再次被加速。 图为中国原子能科学研究院的HI-13 串列加速器主体外貌。 (撰写: 秦久昌审订: 关遐令)高压倍加器: Cockcroft-Waltonaccelerator 利用倍压整流方法产生直流高压,对离子或电子加速。 其倍压整流工作原理如图所示,主要由高压变压器,高压整流器和高压电容器等组成。 在无负载时,倍压整流线路输出的高压V随倍压级数n增加而线性增加, 可表达为V-2nVa,式中Va为高压变压器T的次级绕组交流电压峰值。 当有负载时,随着级数n 的增加,线路的电压降和电压波动会严重增加,因此级数n 不能太高。 一般倍压整流器可输出直流高压从几百千伏(大气中)到兆伏级(高气压下)。 高压倍加器由高压倍压整流电源,离子源(或电子枪),加速管、聚焦和传输系统,真空和控制系统组成。 高压倍加器的输出功率较大,可以用作较理想的中子源,X 光源少离子注入机。 (撰写: 秦久昌审订: 关遐令)静电加速器: electrostatic accelerator; Van de Graff accelerator 一种利用直流高压静电场对带

激光同步辐射作为阿秒X射线辐射源的特性研究.

7卷第11期第1 005年11月 2强激光与粒子束HIGHPOWERLASERANDPARTICLEBEAMSVol.17,No.11 ,Nov.2005 文章编 号:()001-4322200511-1630-05 1 激光同步辐射作为阿秒X射线辐射源的特性研究 田友伟1, 余玮1, 陆培祥2, 何峰1, 马法君1, 徐涵1, 钱列加3 (1.中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海201800; 2.华中科技大学激光技术国家重点实验室,湖北武汉430070;00433) 3.复旦大学光科学与工程系,上海2* 微分散射截面等特摘要: 研究了逆流相对论电子与激光脉冲相互作用获得激光同步辐射的频率上移、 性。发现逆流相对论电子与短脉冲激光相互作用,可以获得阿秒X射线辐射脉冲。短脉冲激光条件下得到的 后向散射光的频率上移与长脉冲激光条件下得到的后向散射光的频率上移是完全一致的,同时发现随着入射 电子初始能量的增加,散射光的准直性越来越好,后向散射光脉冲的脉宽越来越短。 关键词: 阿秒脉冲; X射线; 激光同步辐射; 频率上移; 后向散射 434.1 文献标识码: 中图分类号: O A 这些领域包括医学成像、X射线诊台式可调谐的单色X射线光源在许多领域有着非常广阔的应用前景, 断学、核共振吸收、显微术、固体物理和材料科学等。逆流相对论电子与激光脉冲相互作用的线性汤姆逊散射被认为可以获取可调谐、近单色和准直性好的X射线光源,这一方案被称作激光同步辐射(,最初是由LSS) [],,第三代同步辐射加速器的磁振荡器SranleTinEsareisher1等人提出的。在激光同步辐射方案中,pggy和F 被激光脉冲所替代,激光脉冲的波长比普通磁振荡器的波长小4个数量级,因此产生同样能量的光子,激光同步辐射所需的入射电子的能量远小于普通同步辐射源所需的能量,即用低能电子代替普通加速器中的高能电子意味着试验装置费用的大大降低。近几年来随着台式短脉冲高强度激光技术和高亮度电子加速器技术的迅2]速发展,使得激光同步辐射方案重新进入人们获取X射线光源的视野,而随着单个阿秒X射线脉冲的产生[, 已经揭开了阿秒现实应用的序幕。为了研究阿秒时间量级的超快过程中所发生的瞬态现象,就需要探索可能产生阿秒X射线脉冲的方法,我们发现逆流相对论自由

医用加速器工作人员的辐射安全.

医用加速器工作人员的辐射安全 刘艳 国际电工委员会(IEC)成立于1906年,医用电子加速器属于IEC62C技术委员会的专业范畴,1988年我国采用IEC601-1号出版物制订了国际9706.1“医用电气设备第一部分:通用安全要求”。在该标准中,医用电子加速器划属I类、B型设备,由此对医用电子加速器的绝缘耐压、接地保护、连续漏电流和患者漏电流等电气安全要求作了详细而具体规定。1981年出版的602-2-1号文件规定了对医用电子加速器辐射安全的要求。由于医用电子加速器是放射治疗设备,所以要求从事医用加速器的工作人员必须是训练有素、考评合格的。这些人员包括:放射治疗医生、操作技术员、维修工程师和放射物理、放射生物等专业技术人员。随着近年来医用加速器数量大幅度的增加,加速器工作人员队伍也迅速地成长壮大起来。由于职业的关系,这支队伍经常处在有辐射危险和多种有害物质的环境里工作。尽管目前几乎所有的医用加速器都有相当完备的防护措施,但如果执行操作规程不严,或者工作人员的技术素质不高,一时的粗心大意都可能造成意外的伤害事故。特别是加速器的操作和维修人员,他们平时接触辐射源和有害物质的机会最多,发生意外伤害的危险性要比其他工作人员大得多,为避免这种情况的发生,尽可能地把危害减少到最低的限度,既不能谈虎色变,借此推委而影响工作,又不能盲目大意,不讲科学依据,因为来自加速器的许多危险是肉眼看不见的。避免各种意外伤害的关键,是要提高辐射安全意识,加强辐射安全的管理。为提高辐射安全管理的自觉性,现将加速器辐射源及有害物质的产生来源和可能造成的严重后果综述如下。 1X射线 X射线是来自加速器的主要危害之一,它是电子与物质相互作用的结果,是电子在轰击靶时产生的轫致辐射。当电子能量小于10MV时,其辐射强度与电子能量的三次方成正比,当电子能量高于10MV时,其辐射强度与电子能量的平方成正比。加速器可以在很短的时间内,产生足以使人致死的放射剂量,如果管理不严或使用不当,不知不觉地受到有害剂量照射是完全可能的。虽然有些后果不是立即的,但它可诱发严重的疾病,乃至丧失生命,造成无法补救的后果。对于熟练的加速器工作者来说,只要严格执行规程,意外伤害事故是完全可以避免的。按国家粒子加速器辐射防护规定(GB5172-85)和国家放射卫生防护基本标准(GB4792-84)限定,加速器工作人员全身受均匀照射的年剂量当量为 50msv/a(5rem/a)以下。一般是按周剂量进行控制,Mm=1msv/w (0.1rem/w)。只要我们严格遵守上述规定,控制X线受量,辐射危害是可减免的。 2中子 中子辐射在加速器虽不占第1位,但防护比较困难,危害也不可低估。当加速器能量高于10MV时,因光致衰变会产生中子,产额虽不很大,但对于不同的材料中子的阈能值是不一样的。对轻质材料,中子的阈能值为10~19MeV;对重质材料,中子的阈能值为4~6MeV。当电子能量达到10~35MV之间时,将产生巨共振中子,其能谱接近裂变谱,平均能量为2~4MV,它按各向同性发

3.离子束分析技术

Zhang Xiaodong
参考书目
离子束分析
Ion Beam Analysis (IBA)
? 《离子束分析》 杨福家
1985版 1985版
? 《原子核物理实验方法》(下) 1985版 1985版 ? 《粒子同固体物质相互作用》(上)王广厚 ? 《质子X荧光分析和质子显微镜》任炽刚 1981版 《质子X 1981版
课程安排
综述 卢瑟福背散射分析(RBS)、弹性反冲分 卢瑟福背散射分析(RBS)、弹性反冲分 析(ERD)和沟道技术 析(ERD) 粒子诱发X射线荧光分析(PIXE) 粒子诱发X 射线荧光分析(PIXE) 核反应分析(NRA) 核反应分析(NRA) 如有时间,适当补充课外知识
1.1 绪言
? 粒子与离子的概念差异
– 在微观领域,粒子是离子、电子、光子和亚核粒子等的总称
? 离子束分析的概念
– 总的来说:以离子束作为工具,通过它与物质相互作用来判 断物质中元素组成及结构的一门学科 – 具体来说:利用具有一定能量的离子(如:质子、α离子及 其它重离子)束去轰击样品,使样品中的元素发生电离、激 发、发射和核反应以及自身的散射等过程,通过测量这些过 程中所产生的射线的能量和强度来确定样品中元素的种类和 含量的一门学科 – 为了对其概念有一深入的理解,大家来看离子束作用机制图
次级离子质谱
次级粒子
俄歇电子 X射线
Secondary Ion Mass Spectrometry(SIMS)
离 子
-原 子 作 用 范 畴 离 子
俄歇电子谱
Auger Electron Spectrometry(AES)
粒子诱发X射线荧光分析
Particle Induced X-ray Emission(PIXE)
离子束(E,q) 发射粒子 背散射粒子 样品 γ射线
弹性反冲分析
Elastic Recoil Detection(ERD)
-原 子 核作 用 范 畴
核反应分析
Nuclear Reaction Analysis(NRA)
卢瑟福背散射分析
Rutherford Backscattering Spectrometry(RBS)
离子束作用机制图
离子束分析作用机制图
质子X射线荧光分析
1

回旋加速器中带电粒子产生同步辐射的必要条件

新型无辐射矩形同步回旋加速器设计原理 梅晓春 俞 平 (福州原创物理研究所) 内容摘要 按照经典电磁理论,带电粒子做加速运动时会辐射电磁波,然而实际情况并非总是如此。实验表明,带电粒子做直线加速运动是几乎不辐射的。目前为研究希格斯粒子准备建造的国际大型直线加速器,就基于这个结果。在电子感应加速器中,当电磁和磁场同时存在时,也没有观察到电子辐射电磁波(布鲁埃特实验)。本文严格讨论带电粒子在电磁场中的相对论运动,与经典电磁辐射公式相结合,从理论上证明带电粒子做直线加速运动和在电子感应加速器中做加速运动时的辐射极小,可以认为几乎是不辐射的。由此就可以将同步回旋加速器设计成矩形的形状,并在弯角处采用电子感应加速器的运动轨道。在这种矩形同步回旋加速器中,带电粒子可以被加速到无限接近光速的高能状态,但几乎不产生辐射损耗。 关键词:狭义相对论,同步辐射,电子感应加速器,同步回旋加速器,矩形同步回旋加速器 一. 无辐射矩形同步回旋加速器的设计 作者于2012年2月曾在加拿大《Applied Physics Research 》上发表一篇文章,题为“带电粒子在电磁场中相对论运动稳定性分析与建造无辐射损耗同步回旋加速器的可能性”()1。文中提出一种无辐射损耗同步回旋加速器的设计原理,这种加速器是圆环型的,对辐射损耗的计算略显粗糙。本文提出一种更简单、更高效的无辐射损耗同步回旋加速器设计原理。这种加速器是矩形的,在弯角处改用螺线型轨道。本文同时对带电粒子在直线和螺线加速运动过程的辐射做严格的计算,证明矩形无辐射损耗同步回旋加速器是完全可能的。 按照经典电磁理论,带电粒子做加速运动时会产生电磁波辐射。这种辐射与推迟电磁场有关,与加速度有关的辐射可以传播到远处,与加速度无关的电磁场在近处就严重衰减。如果粒子的加速度与运动速度平行,比如粒子做直线运动,辐射功率为()2: 322302 211)/1(6c V c a q P **-=πε (1) 如果加速度与速度垂直,比如电子在磁场中运动, 辐射功率为: 2223022)/1(6c V c a q p **⊥-= πε (2) 式中*V 是推迟速度,*a 是推迟加速度。 然而实验证明情况并非如此,带电粒子做加速运动在某些情况下会辐射电磁波,在某些情况下却是几乎不辐射的。比如电子做直线加速运动时,就是几乎不辐射。2013年欧洲核子研究中的LHC 上发现拟似希格斯粒子的粒子后,世界各国开始考虑建造的国际直线加速器,就是基于这个结果。 发现带电粒子辐射电磁波的历史是很有趣的。早在1944年,美国通用电器公司在纽约州申纳塔底有一台能量为100MeV 的电子感应加速器。物理学家布鲁埃特负责调试这台设备时,希望能发现电子的辐射。布鲁埃特用一个非常灵敏的,频率从Hz Hz 810~50的的探测器,相当于无线电从超长波到超短波的波段。

GBZ130-2013 医用X射线诊断放射防护要求

4.GBZ130-2013 医用X射线诊断放射防护要求。 1范围 本标准规定了医用诊断放射学、牙科放射学和介入放射学用设备防护性能、机房防护设施、X射线 诊断操作的通用防护安全要求及其相关检测要求。 本标准适用于医用诊断放射学、牙科放射学和介入放射学实践。模拟定位设备参照本标准执行。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文 件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB9706.12医用电气设备第一部分:安全通用要求三、并列标准诊断X射线设备辐射防 护通用要求 GB9706.23医用电气设备第部分:介入操作X射线设备安全专用要求 GB16348医用X射线诊断受检者放射卫生防护标准 GB18871电离辐射防护与辐射源安全基本标准 GBZ128职业性外照射个人监测规范 GBZ165X射线计算机断层摄影放射防护要求 GBZ179医疗照射防护基本要求 GBZ/T180医用X射线CT机房的辐射屏蔽规范 GBZ186乳腺X射线摄影影像质量控制检测规范 GBZ187计算机X射线摄影(CR)质量控制检测规范 WS76医用常规X射线诊断设备影像质量控制检测规范 3总则 3.1在医用诊断放射学、牙科放射学和介入放射学实践中,应保障放射工作人员、患者和受检者以及公

众的放射防护安全与健康,并应符合GB18871、GB16348和GBZ179的规定。 3.2应用X射线检查应经过正当性判断。执业医师应掌握好适应证,优先选用非X射线的检查方法。 加强对育龄妇女、孕妇和婴幼儿X射线检查正当性判断;严格控制使用剂量较大、风险较高的放射技 术、除非有明确的疾病风险指征,否则不宜使用CT进行健康体检。对不符合正当性原则的,不应进行 X射线检查。 3.3遵从防护最优化的原则,在保证获得足够的诊断信息情况下,使患者和受检者所受剂量尽可能低。 3.4对工作人员所受的职业照射应加以限制,符合GB18871职业照射剂量限值的规定;对患者和受 检者开展的诊疗检查,应以医疗照射指导水平为放射防护指导原则,避免一切不必要的照射;对确实具 有正当理由需要进行的医用X射线诊断检查,应在获取所需诊断信息的同时,把患者和受检者的受照 剂量控制到可以合理达到的尽可能低水平。 3.5各种X射线检查应使用相应的专用设备,且各类设备的应用除符合本标准要求外,还应符合X射线设备其他有关放射防护标准的要求。各种X射线设备及场所应经具备放射卫生技术服务机构资质的单位检测,合格后方可使用。 4X 射线设备防护性能的技术要求 4.1X 射线设备防护性能的通用要求 4.1.1各种X射线设备X射线束的第一半值层应符合附录A的规定。 4.1.2除乳腺摄影用X射线设备外,X射线源组件中遮挡X射线束部件的等效滤过应符合如下规定: a)在正常使用中不可拆卸的滤过部件,应不小于0.5mmAl。

相关文档
最新文档