楼板应力计算

楼板应力计算

一、中震下楼板应力分析

中震下楼板应力分析要点:1、定义弹性膜或弹性板6,且不要勾选强制刚性楼板假定,具体定义哪种看用户是否想利用板面外刚度;2、定义地震影响系数最大值为中震下的系数;3、本层信息中定义楼板主筋等级;4、勾选梁与弹性板变形协调,让梁与板的有限元节点变形协调,默认已经勾选;5、勾选等值线查看;

二、温度荷载下楼板应力分析

温度荷载下楼板应力分析要点:1、定义弹性膜或弹性板6,且参数设置不要勾选强制刚性楼板假定;2、定义温度荷载,升温为正,降温为负;3、勾选梁与弹性板变形协调,让梁与板的有限元节点变形协调,默认已经勾选;;4、勾选等值线查看;5、本层信息中定义楼板主筋等级。计算完成之后在计算结果菜单下的等值线中查看,楼板应力分析之后的结果可以接到楼板施工图中使用出图。

三、横活荷载下楼板应力分析

横活荷载下楼板应力分析要点:1、定义弹性板6,且参数设置不要勾选强制刚性楼板假定(此时楼板必须有面外刚度才能承担面外荷载);2、定义板面横活荷载;3、勾选梁与弹性板变形协调,让梁与板的有限元节点变形协调,默认已经勾选;4、选择有限元导荷,让板面横活荷载通过楼板的有限元计算再传递给周边构件;5、勾选等值线查看;6、本层信息中定义楼板主筋等级。

应力应变计算方法

钢筋砼梁应力应变计算方法的探讨 摘要:对于钢筋砼梁应力应变的计算,分别用桥梁规范中弹性体假定的应力计算方法和以砼处于弹塑性阶段的应力计算方法进行分析,通过算例比较两者计算结果的差异,提出一些个人的见解。 关健词:桥梁工程;钢筋砼梁;应力应变值;计算方法;基本假定;弹性;弹塑性 0 前言 钢筋砼梁属于受弯构件。按《公路钢筋砼及预应力砼桥涵设计规范》(以下简称《桥规》)要求,对于钢筋砼受弯构件的设计,首先按承载能力极限状态对梁进行强度计算,从而确定构件的设计尺寸、材料、配筋量及钢筋布置,以保证截面承载能力要大于荷载效应;另外,尚需按正常使用极限状态对构件进行应力、变形、裂缝计算,验算其是否满足正常使用时的一些限值的规定。为检验钢筋砼梁的施工是否满足设计要求,均应对形成该梁的材料(钢筋及砼)进行强度检验,但由于砼的养护环境、工作条件及钢筋的加工、布置等方面,均存在试样与实际构件之间的差异,因而不能完全地说明该构件的工作性能。有时,按需要可对梁进行直接加载试验以量测荷载效应值,通过实测值与理论计算值的比较,以检验其工作性能是否能满足设计和规范的要求。通常情况下,我们不能直接测定梁体的应力值,只能通过实测梁体的应变值,进而求算其应力值。但钢筋砼结构属于非匀质材料,不能直接运用材料力学计算公式进行其应力及应变的计算,因此,本文按弹性阶段应力计算和弹塑性阶段应力计算2种方法进行分析比较。 1 按弹性阶段计算应力的方法 钢筋砼梁在使用阶段的工作状态可认为与施工阶段的工作状态相同,都处于带裂缝工作阶段,因此可按施工阶段的应力计算方法进行计算。 1.1 基本假定 《桥规》规定:钢筋砼受弯构件的施工阶段应力计算,可按弹性阶段进行,并作以下3项假定。 1.1.1 平截面假定 认为梁的正截面在梁受力并发生弯曲变形后,仍保持为平面,平行于梁中性轴的各纵向纤维的应变与其到中性轴的距离成正比,同时由于钢筋与砼之间的粘结力,钢筋与其同一水平线的砼应变相等。其表达式为: εh/x=εh′/(h0-x) εg=εh′ 式中:εh′-为与钢筋同一水平处砼受拉平均应变; εh-为砼受压平均应变; εg-为钢筋平均拉应变; x-为受压区高度; h0-为截面有效高度。 1.1.2 弹性体假定 假定受压区砼的法向应力图形为三角形。钢筋砼受变构件处在带裂缝工作阶段,砼受压区的应力分布图形是曲线形,但曲线并不丰满,与直线相差不大,可以近似地看作呈直线分布,即受压区砼的应力与应变成正比。 σh=εhEh 式中:σh-为砼应力; εh-为砼受压平均应变; E h-为砼弹性模量。 1.1.3 受拉区砼完全不能承受拉应力 在裂缝截面处,受拉区砼已大部分退出工作,但在靠近中和轴附近,仍有一部分砼承担着拉应力。由于其拉应力较小,内力偶臂也不大,因此,不考虑受拉区砼参加工作,拉应力全部由钢筋承担。 σg=εgEg 式中:σg-为钢筋应力; εg-为受拉区钢筋平均应变; E g-为钢筋弹性模量。 1.2采用换算截面计算应力 根据同一水平处钢筋应变与砼的应变相等,将钢筋应力换算为砼应力,则钢筋应力为砼应力的n g 倍(n g=E g/E h)。由上述假定得到的计算图式与材料力学中匀质梁计算图非常接近,主要区别是钢筋砼梁的受拉区不参予工作。因此,将钢筋假想为受拉的砼,形成一种拉压性能相同的假想材料组成的匀质截面,即为换算截面,再按材料力学公式进行应力计算。 1.2.1受压区边缘砼应力

楼板结构计算及配筋

利用PKPM进行多层框架结构设计的主要步骤(3) 十三、执行PMCAD主菜单5,画结构平面图 首先确定要画的楼层号 1、选择“1修改楼板配筋参数”,对各项参数进行确认和修改。 支座受力钢筋最小直径:8 板分布钢筋的最大间距:250 双向板计算方法:弹性算法 边缘梁支座算法:梁截面刚度相对楼板较大时“按固端计算”,否则“按简支计算” 有错层楼板算法:错层较大时“按简支计算”,错层较小时“按固端计算” 是否根据裂缝宽度自动选筋:选择“打勾”,允许裂缝宽度取默认0.3mm 使用矩形连续板跨中弯矩算法:选择“打勾” 钢筋级别:全部选用一级钢 钢筋放大系数:取默认值 钢筋强度设计值:取默认值 钢筋级配表:根据工程情况增(删)级配表,给出合适的钢筋级配。 2、选择“2修改边界条件”,先显示边界条件,再按照工程实际情况,对楼板边界条件逐个进行调整。 主要是不符合在楼板配筋参数中定义的边缘梁支座算法的地方,要在此修改边界条件。 3、执行“4 画平面图参数修改”,确定合适的图纸号、比例尺。 “板钢筋要编号”:此项控制楼板钢筋标注方式。选择“打勾”,相同的钢筋编同一个号,只在其中的一根上标注钢筋级配及尺寸;选择“不打勾”,图上的每根钢筋均要标注钢筋的级配及尺寸。 本工程要求不画钢筋表,板钢筋均不编号,钢筋不用简化标注,柱“涂黑”,梁线选择“虚线”。 4、执行“0 继续”,查看楼板计算结果图形。 1)执行“2 现浇板计算配筋图”,生成板计算配筋图BAS*.T。 2)执行“6 现浇板裂缝宽度图”,查看有否裂缝宽度超限。满足,则进行下一步绘施工图;否则,应选择“返回PM主菜单”修改板厚,按上述步骤重新计算。 5、执行“0 进入绘图”,绘制楼板施工图PM*.T。 1)执行“画板钢筋”,选择“自动布筋”。此时可有2种选择:“按楼板归并结果配筋”,则只在样板间内布筋,其余与之编号一样的房间均采用相同配筋;若不归并,则每个房间的配筋均按实际配筋在图上表达。 选择“通长配筋”->“板底配筋”,对相邻几个配筋相同的连续房间实现板底贯通配筋,即钢筋不在中间支座断开并锚固。 选择“改板钢筋”->“移动钢筋”,对钢筋标注位置重叠的钢筋作适当调整,保证图面清晰。 2)执行“标注轴线”,选择“自动标注”,标注轴线并命名。 3)执行“存图退出”,“插入图框” 1、依次键入其他要画的楼层号,重复上述步骤。 十四、执行PMCAD主菜单9,图形编辑、打印及转换 1、执行“图形拼接”,将多个*.T文件合并成一个文件以方便对比查看,如可将输入的各层楼(屋)面恒(活)荷载、梁间荷载、节点荷载等拼接形成一个荷载文件,各层结构构件几何平面图FP*.T拼接形成一个构件布置文件,各层柱、梁配筋验算图PJ*.T拼接形成一个文件,各层梁平面施工图PL*.T拼接形成一个文件,各层柱平面施工图ZPM*.T拼接形成一个文件,各层楼板施工图PM*.T拼接形成一个文件,等。 2、执行“T转DWG”,将T格式的文件转换为DWG格式的文件,以便在AutoCAD中对各文件作进一步地编辑、修改、打印。

超长建筑结构温度应力分析

超长建筑结构温度应力分析 夏云峰 (上海中交水运设计研究有限公司, 上海 200092) 摘要:以郑州第二长途电信枢纽工程为例,对超长建筑结构进行整体有限元建模。针对7种不同类型温度荷载的特点,利用有限元分析程序ANSYS计算。给出了结构整体变形特点、结构中各种构件(梁、楼板、柱子及剪力墙)的温度内力变化范围以及分布规律。通过比较得出超长建筑在各种温度作用下的最不利工况。可为超长建筑结构考虑温度作用进行设计和施工提供参考。 关键词:建筑 超长建筑物 温度荷载 温度应力 St udy on t he Te mperature Stress of Super-Lengt h Buil di ng X ia Yunfeng (Shanghai Zhongji a oW ater Transportation Design Institute Co.,L t d., Shanghai 200092) Abst ract:T aking the Second Long D istance Te leco mm unication H ub Pro ject of Zhengzhou for an exa m ple,t h is paperm akesm odels of so lid fi n ite e le m ent to super-length building.A ccord- i n g to characteristics o f te mperature l o ad of7different types and usi n g t h e ANSYS fi n ite e le- m ents ana l y sis progra m,it concl u des the characteristics of the integral structura l defor m ation, the scope and distribution o f ther m a l i n ner force o f different co mponents,such as bea m,floor slab,pillar and shear w a l.l A fter contrasti n g,it su m s up the w orse w orking cond ition for super -length bu il d i n g under d ifferent te m peratures,wh ich cou ld prov ide references to the design and constr uction o f super-length bu il d i n g by consi d ering te m perature acti o ns. K ey w ords:constructi o n super-leng t h buil d i n g te m perature load te m perature stress 建筑工程中,混凝土结构的裂缝较为普遍,类型也很多,按成因可归结为由外荷和变形引起的两大类裂缝。其中由混凝土收缩和温度变形引起的收缩裂缝和温度裂缝,以及由这两种变形共同引起的温度收缩裂缝,则是实际工程中最常见的裂缝。随着建筑向大型化和多功能发展,超长(即超过温度伸缩缝间距)高层或大柱网建筑不断出现。对超长结构的温度变形与温度应力,若在结构设计中处理不当,将使结构产生裂损,严重影响建筑结构的正常使用。我国的建筑结构设计规范中不考虑温度作用[1],只做构造处理。因此,温度应力是超长建筑结构设计中的重要研究课题之一。1 超长高层建筑结构温度问题有限元建模研究 结合工程实例,分析建筑结构各个阶段温度作用的特点,完善温度作用和温差取值的计算原则,并选出在工程设计中起控制作用的温差取值,方便设计采用。根据实际情况建立超长建筑结构的有限元分析模型,采用有限元分析程序ANSYS 有限元计算程序,进行结构整体分析。 郑州第二长途电信枢纽工程主体为超长高层建筑结构。主楼地下1层,地上主体19层。19层之上局部突起2层。柱网9.6 12m,主体结构东西长134m。由于功能要求建筑中间不设缝,南 10 港口科技 港口建设

超长结构温度应力分析与控制措施

超长结构温度应力分析与控制措施 摘要:随着人们对建筑物使用功能的要求越来越高,一些公共建筑正逐渐向大 型化、舒适化发展,大量超长、超宽的大型公共建筑随之涌现。由于季节变化的 影响,超长结构的温度应力问题会导致混凝土楼板产生裂缝,严重影响建筑的使 用功能和结构安全,因此温度作用在设计中必须予以考虑。本文以某钢筋混凝土 框架-剪力墙结构为例,对超长结构的温度应力问题采用有限元分析程序MidasGen进行了计算分析并给出了控制措施。 关键词:超长结构;温度应力;后浇带;有限元分析 1、前言 超长结构,由于季节变化等因素的影响,会让超长结构的混凝土发生变形, 当混凝土的变形受到墙体等构件的约束,楼板内便会产生较大的温度应力,当温 度应力高出混凝土的抗拉强度时,就会导致混凝土楼板会产生裂缝,通常情况下,若在结构中采用低收缩混凝土材料、设置后浇带以及采用预应力钢筋等措施时, 温度应力及收缩应力对结构的影响一般可以忽略。但超长混凝土结构中,如若不 进行合理的温度效应控制,柱、墙等竖向构件将产生显著的温度内力,影响结构 的承载能力;楼板则很有可能开裂并形成有害的贯通裂缝,对建筑防水和结构的 耐久性很不利,影响建筑的正常使用,因此,如何降低温度应力的影响是超长结 构设计的关键问题。 2、工程概况 某五星级酒店主楼部分采用钢筋混凝土框架-剪力墙结构,楼盖采用现浇钢 筋混凝土梁板体系,底部裙楼为两层宴会大厅,并设有斜圆柱形主出入口。框架 柱截面尺寸600mmx600mm~900mmx1200mm,墙截面尺寸200~500mm。 现行GB50010-2010《混凝土结构设计规范》中对房屋建筑工程结构伸缩缝 的最大间距做如下规定:对于现浇式结构,普通砖混结构50m,框架结构55m, 剪力墙结构45m,框架-剪力墙结构根据框架和剪力墙的具体布置情况取45~55m 之间,通常可取50m。该酒店结构不设缝轴线尺寸为167.2m,超过了规范要求。 3、温度工况 (1)温度荷载。假设该建筑从当年7月开始地上部分施工,第1~3层施工分 别需要一个月,从4层开始每层半个月,至次年二月半完工。按照该假定施加的 温度荷载始终为降温作用,为最不利工况。 (2)有限元模型。针对温度应力建立四组模型(M0、M1、M2、M3),均考虑施 工模拟和收缩徐变的作用;其中,部分模型考虑了地下室顶板的转动弹性嵌固, 弹簧刚度计算按照柱所连接的梁柱刚度进行计算,为近似值。模型的具体设计参 数见表1所示。 结构二层的后浇带设置如图1所示,其余各层M0、M1、M2后浇带设置均同;M3与 M2相比,仅在结构第二层增设后浇带c,其余部位后浇带设置均同M0~M2模型。温度有 限元模型为保证结构成立,将一跨内的所有次梁和板均设置为后浇带。 4、温度应力分析 本工程采用有限元分析程序MidasGen对本模型进行温度应力计算分析,分别探讨温度应力对框剪结构中的柱、剪力墙、梁板等主要构件的影响,并给出控制措施及建议。 (1)柱内力。通过对比框架柱主要集中区域的温度应力,其中:①主楼最外侧柱(区域1);

应力计算

①叶片离心拉应力计算 1)对于涡轮增压器来说,等截面叶片根部截面上的拉应力公式为 20m 1=2u a σρσθ+ 2/N m 其中 ρ为叶片的材料密度(3 /kg m ); m u 为叶片中经处的圆周速度(m/s ); /m D l θ=为直径叶高比; m D 为叶片平均直径(m ); l 为叶片高度(m ); a σ为叶片附加应力,其表示式为: 2222p p t e a m m h m h D A D A u z D A D A πρσ????????=+ ? ????????? ,2/N m 其中 z 为叶轮叶片个数; t D 为叶冠中经(m ); p D 为叶片凸台或拉筋的中经(m ); h D 为叶根直径(m ); e A δ=?为叶冠截面面积(2m ); p A 为凸台或拉筋的截面积(2 m ); h A 为叶根截面面积(2m ); 如果叶片没有设置阻尼拉筋或凸台,则p A =0;如果叶片不带冠,则e A =0;当两者均不存在时,a σ=0. 2)叶片截面面积沿叶高按线性变化时的拉应力计算式: 212113m a u λλσρσθθ+-??=++ ??? 2/N m 式中,/t h A A λ=是叶顶叶根截面比。通常,对压气机叶片,λ=0.3~0.65 3)叶片截面面积沿叶高按某一任意规律变化时,任意一个截面上离心应力可

用数值积分法计算。对于第i 个几面,离心力i σ可按下式计算: 21i i ic i i V r A σρω?=∑ 2/N m 其中 ()112 i i i i im i V A A x A x -?=+?=?为叶片第i 个微段的体积(3m ); i A 和1i A -为叶片第i 个微段的内径与外径上的截面积(3m ); ic h i ic r r x x =++?为第i 个微段重心c 的半径(m ); ()1216i i ic i im A A x x A -+?=?为第i 个微段重心c 离第i 截面的间距(m ); ω为旋转角速度(rad/s ); ρ为材料密度(3/kg m ); ②叶片弯应力计算 1)由气体作用引起的弯矩 作用于叶片任意截面上的气体周向弯矩gu M 可以按下式计算: ()2gu i M B l x =- N m ? 而 ()122um um G B c c zl =+ N/m 式中 i x 为计算截面至叶根的距离(m ); z 为叶片个数; l 为叶片的高度(m ); 1um c ,2um c 为叶片中经处、出口气流周向分速(m/s ); G 为气体流量(kg/s )。 作用于叶片而难以截面上的气体周向弯矩ga M 的计算公式也表达为: ()2ga i M D l x =- N m ? 而 ()()12122m a a r G D c c p p zl z π=-+- N/m 式中 1a c ,2a c 为叶片进、出口中经截面上的周向分速(m/s ); 1p ,2p 为叶片进、出口中经截面上的气体压力(2 /N m );

住宅楼板计算及配筋

住宅楼板计算及配筋 一、关于计算模型 1. 最小直径6mm,最大间距200mm。 2. 采用弹性算法。 3. 边缘梁、剪力墙按固端计算,有错层楼板按固端计算 4. 负筋长度取整模数:50mm。 6. 钢筋面积调整系数:板底钢筋1.15,支座钢筋0.85。 7. 对于砌体结构周边板的边支座,按铰接考虑。 8. 对于内部的大板,大板与周边板厚度相差不宜超过30mm。 9. 对于便于导荷而设置在板中的虚梁,在进行板配筋计算时,应将虚梁删除。 (上条指当板跨大于3900时,小板就算了)。 10. 异形板及大跨度板当板上砌体墙较多,应采用有限元软件进行核对,补充板计算书。 二、板厚 1. 一般情况,双向板的最小板厚取值详见下表,单向板厚取1/30板跨(同时考虑当地的 习惯做法)。 2.特殊情况:1)屋顶板厚至少120; 2)电梯前室、门厅走道板厚至少120; 3)电梯机房层的底板厚120,无机房电梯的顶板厚150; 三、配筋 1. 不同支座情况、不同支座截面、不同砼等级下板面筋可用直径详见下表。 2. 一般情况,面筋采用分离式配筋,底筋双向拉通,板面架立筋为Φ6@200。 3. 不同板厚的最小配筋量详见下表,最小配筋率在一般情况下,HRB400,砼等级C25 取0.16,砼等级C30取0.18,砼等级C35取0.20。 4. 特殊情况:1)当板跨≤2400负筋拉通,当板跨≥3900时隔一拉一; 当板跨≥4200时,直径不小于10mm; 2)房屋四角配筋双层双向拉通; 3)电梯机房层的底板配筋Φ10@150双层双向, 无机房电梯的顶板配筋Φ10@150双层双向; 4)屋顶板,配筋Φ8@150双层双向; 5)房屋长度超限的端部,凹凸角处,异形板,均采用双层双向配筋,间距 不大于150mm; 四、习惯做法及注意事项 1. 降板:卫生间以及阳台、露台、空调隔板、门厅等降板各多少详建筑。 2. 防水翻边:卫生间四周、厨卫井道处以及阳台、露台、空调隔板、门厅等室内外交接处 均需做素砼翻边,上翻高度200或详建筑,宽度同墙。 3. L形异形板、转角窗、框架处无梁时设置JQD(加强带),一般400宽,配筋上下各 4Φ14,Φ8@200箍筋。此外:板内阳角放射状配筋一般为5Φ8@100,长度为L/4,(总说明已有),当异形板跨>=4.2米时为7Φ10@100(具体工程具体分析)。 4. 厨房烟井和暗卫气井不穿底板但上屋面,卫生间水井穿底板但不上屋面。 5. 填充墙下一般设置加强筋,配筋见总说明,钢筋位置在图上表达出来,建筑画虚线墙下 一般不应加粗钢筋,应整体提高板的配筋。只有垂直单向板长边的不可能移位的隔墙,如厕所与其他房间的隔墙下才可以加粗钢筋。

温度应力对超长混凝土结构的影响

温度应力对超长混凝土结构的影响 温度应力对超长混凝土结构的影响 摘要:近十几年来,随着我国经济的快速发展,人民对建筑的外观及使用功能更高的要求,在建筑过程中,出现了越来越多的平面超长的结构,而根据国家结构的相关规范,平面尺寸超过55m即需要设置伸缩缝,如果严格按照规范要求对所有超长建筑设置伸缩缝,将会在很长程度上影响建筑美观及功能使用。而不设置伸缩缝,在温度效应的作用下,产生较大的温度收缩裂缝,从而影响建筑的使用年限。因此从实际角度出发,需要我们结构工程师在结构设计上,解决不设伸缩缝而带来的减少建筑使用年限问题,进而满足超长建筑的功能使用需求。 关键字:钢筋混凝土,超长建筑,温度应力,相应措施 中图分类号:TU37 文献标识码: A 为了满足建筑功能的需要,越来越多的超长结构应运而生,不能设置伸缩缝就成为结构工程师的需要面对的重要问题:既要满足建筑的使用功能要求,又要保证结构使用及耐久性。根据温度应力理论及相关资料,对温度应力作用进行初步的分析,并结合工程实践经验做出几点相应的措施。 温度裂缝的特点: 混凝土在搅拌时产生水化反应,在水化反应的过程中,混凝土发生干缩,混凝土自身具有热胀冷缩的性质,当把混凝土浇筑入模版中时,因受到模版及钢筋的约束,会在混凝土内部产生收缩裂缝或者温度裂缝。在通常的超长建筑中,多见的是收缩应力与温度应力共同作用而产生的温度裂缝。其特点是早期收缩快,6个月即可完成全部收缩量的90%,在一年以后趋于稳定,变形极小。收缩的主要部位是底层和顶层。结构的梁板以及外露的挑檐,女儿墙等构件。 产生温度作用分析: 建筑工程的温差应包括竖向温差和水平温差效应,而对于高度不

楼板裂缝分析报告

楼板裂缝分析报告 外荷载引起的裂缝: 外荷载作用下产生的结构裂缝一般具有很强的规律性,通过计算分析就可以读出正确的结论。如:矩形楼板板面裂缝成环状,沿框架梁分布,板底裂缝成字或米字集中于跨中;转角阳台或挑檐板裂缝位于板面起始于墙板交界以角点为中心成米字形向外延伸。受力裂缝,其裂缝与荷载有关,预示结构承载力可能不足或存在严重问题。 温度收缩裂缝:温度收缩裂缝是一种建筑最常见的裂缝,主要是由于结构的温度变形及材料的收缩变形受阻及应力超标所致。现浇板收缩裂缝主要集中在房屋的中部和房屋四周阳角处,裂缝成枣核状止于梁边。房屋四周阳角处的房间在离开阳角1米左右,即在楼板的分离式配筋的负弯矩筋以及角部放射筋未端或外侧发生45度左右的楼地面斜角裂缝。其原因主要是砼的收缩特性和温差双重作用所引起的,并且愈靠近屋面处的楼层裂缝往往愈大。从设计角度看,现行设计规范侧重于按强度考虑,未充分按温差和混凝土收缩特性等多种因素作综合考虑,配筋量因而达不到要求。而房屋的四周阳角由于受到纵、横二个方向剪力墙或刚度相对较大的楼面梁约束,限制了楼面板砼的自由变形,因此在温差和砼收缩变化时,板面在配筋薄弱处(即在分离式配筋的负弯矩筋和放射筋的未端结束处)首先开裂,产生45度左右

的斜角裂缝。虽然楼地面斜角裂缝对结构安全使用没有影响,但在有水的情况下会发生渗漏,影响正常使用。 地基不均匀沉降产生的裂缝:由于地基沉降不均匀使上部结构产生附加应力,导致楼板裂缝。不均匀沉降产生的裂缝多属贯穿性裂缝,其走向与沉降情况有关。 使用商品混凝土引起的收缩裂缝:商品混凝土由于采用泵送,混凝土的流动性要好,因此一般商品混凝土的坍落度都较大,水灰比较大,如保证水灰比则要增加水泥用量,这样就使混凝土在硬化阶段出现收缩裂缝。裂缝的产生大多在砼浇筑初期,即浇捣后4~6小时左右,裂缝形状不规则且长短不一,互不连贯,产生裂缝部分大多为水泥浮浆层和砂浆层。有于砼坍落度偏大,表面经过振捣形成一层水泥含量较多,收缩性较大的水泥浮浆层及砂浆层一方面由于砼初凝时表面游离水分蒸发过快产生急剧的体积收缩,而此时砼早期强度较低(面层为砂浆层强度更低),不能抵抗这种变形应力而导致砼表面开裂,另一方面由于面层浮浆或砂浆的收缩值比基层砼大许多,而造成变形值不同导致面层开裂

楼板受力分析

楼板力学分析 广东省封开县江口中学 526500 张东旭 论文摘要:本文深入探讨了粤教版的一道课后习题,针对这道题进行了系统的理论分析。 关键字:力矩 物体平衡 截面法 问题出之于粤教版必修一第三章第一节课后习题第六题。 建筑中,用水泥混凝土制作各楼层的地板时,由于混凝土坚硬耐挤压但缺乏弹性,容易在拉伸时断裂,而钢筋弹性好,耐拉伸,所以常在水泥板内加钢筋以增强其抵抗弯曲的能力,试根据弯曲形变的特点说明图中三种布置钢筋的方法中哪种最合理。 教学参考书中只给出了答案是a 选项,至于为什么选a 教学参考书中没有任何提示。 出题人的想法可能是想把这道题出成一种扩展题型。与文科的材料题很类似。 特点就是题目中所涉及的物理知识是超过教学大纲要求的,书本上肯定没有,在题干中出题人给考生留下了解题的提示。在做题的同时扩展考生的知识面。由裁判学生成绩的“法官”,变成学生成长的促进者.这一点事切实符合新课标理念的。所以说这道题是一道好题。但是多年的应试教育体制下的教师、学生已经产生了思维固化。我个人觉得,在教师用书上还是应该给任课教师做出提示的。 学生主要存在的问题有那些呢? 学生在做这道题的时候产生了很大的疑问。题目中已经明确了楼板受两个力,一个是压力。学生理解的比较好,另外一个是钢筋的产生的纵向拉力。楼板整体是平衡的,那么这个拉力是用来与那个力平衡的。这个力明显不属于重力、弹力、摩擦力、电场力、磁场力的范畴。 第一个超纲的点在物理和理论力学中,假设受力体是不变形的刚体。讨论的是物体在外力作用下的速度、加速度、运动轨迹和运动中的能量转换问题。在这里就没有内力、变形、强度等概念。但在工程结构中,受力体是由“可变形固体”材料组成的结构。这时,结构在外力作用下,就会产生变形。也正是由于这种变形,才产生了抵抗外力的内力。也正是由于这种内力,结构才表现出承力和传力的功能。比如桥梁,在车辆压上去时,它是通过一系列的组成构件将车辆对桥面的压力传递到基座上去的。这道题显然研究的是系统内力,属于结构力学范畴。 第二个超纲的点,粤教版教材认为物体静止的条件是受力平衡,根本不考虑转动,不涉及到转动平衡,而这道题恰恰属于转动平衡。 物体的平衡是指两个不同的平衡的合称,及位动平衡和转动平衡。前者对应的是平动(滑动),平衡条件为所收合外力为零,平动过程中物体自身的各质点间不会产生相对位移。后者对应的是转动,平衡条件为以某点为支点,总力矩为零,则称相对这点转动平衡。纯转动(合外力为零,相对某点合力矩不为零)的过程中物体的质心是不会产生位移的。 力矩,大家都比较熟悉。它是和物体的转动相联系的一个力学概念。一个具有固定轴的

地应力计算公式解读

地应力计算公式 (一)、井中应力场的计算及其应用研究(秦绪英,陈有明,陆黄生 2003年6月) 主应力计算 根据泊松比μ、地层孔隙压力贡献系数V 、孔隙压力0P 及密度测井值b ρ可以计算三个主应力值: ()001H v A VP VP μσσμ??=+-+??-?? ()001h v B VP VP μσσμ??=+-+??-?? H v b dh σρ=?? 相关系数计算: 应用密度声波全波测井资料的纵波、横波时差(p t ?、s t ?)及测井的泥质含量sh V 可以计算泊松比μ、地层孔隙压力贡献系数V 、岩石弹性模量E 及岩石抗拉强度T S 。 ① 泊松比 22 2 20.52()s p s p t t t t μ?-?=?-? ② 地层孔隙压力贡献系数 22222(34)12() b s s p m ms mp t t t V t t ρρ??-?=-?-? ③ 岩石弹性模量 222 2234s p b s s p t t E t t t ρ?-?=???-? ④ 岩石抗拉强度 22 (34)[(1)]T b s p sh sh S a t t b E V c E V ρ=???-????-+?? 注:,,,m ms mp t t ρρ??分别为密度测井值,地层骨架密度,横波时差和纵波时差值。,,a b c 为地区试验常数。 其它参数 不同地区岩石抗压强度参数是参照岩石抗拉强度数值确定,一般是8~12倍,也可以通过岩心测试获得。岩石内摩擦系数及岩石内聚力是岩石本身固有特性参数,可以通过测试分析获得。地层孔隙压力由地层水密度针对深度积分求取,或者用重复地层测试器RFT 测量。也可以通过地层压裂测试获得,测试时,当井孔压力下降至不再变化时,为储层的孔隙压力。

钢筋混凝土楼板配筋计算书

钢筋混凝土单向板肋梁楼盖设计 摘要:本文介绍了钢筋混凝土单向板肋梁楼盖设计,是土木工程学生设计学习的"居家良药". 关键词:单向板肋梁楼盖设计 1.设计资料 本设计为一工业车间楼盖,采用整体式钢筋混凝土单向板肋梁楼盖,楼盖梁格布置如图T-01所示,柱的高度取9m,柱子截面为400mm×400mm。 (1)楼面构造层做法:20mm厚水泥砂浆面层,20mm厚混合砂浆顶棚抹灰。 (2)楼面活荷载:标准值为8kN/m2。 (3)恒载分项系数为1.2;活荷载分项系数为1.3(因为楼面活荷载标准值大于4kN/m2)。 (4)材料选用: 混凝土:采用C20(,)。 钢筋:梁中架立钢筋、箍筋、板中全部钢筋采用HPB235()。 其余采用HRB335()。 2.板的计算。 板按考虑塑性内力重分布方法计算。

板的厚度按构造要求取。次梁截面高度取 ,截面宽度,板的尺寸及支承情况如图T-02所示。 (1)荷载: 恒载标准值: 20mm水泥砂浆面层; 80mm钢筋混凝土板; 20mm混合砂浆顶棚抹灰;

; 恒载设计值; 活荷载设计值; 合计; 即每米板宽设计承载力。 (2)内力计算: 计算跨度: 边跨; 中间跨; 跨度差,说明可以按等跨连续板计算内力。取1m宽板带作为计算单元,其计算简图如图T-03所示。 各截面的弯矩计算见表Q-01。 ,(根据钢筋净距和混凝土保护层最小厚度的规定,并考虑到梁、板常用的钢筋直径(梁设为20mm,板设为10mm),室内正常环境(即一类环境)的截面有效高度h。

和梁板的高度h有以下关系: 对于梁: h。=h-35mm (一排钢筋) 或 h。=h-60mm (两排钢筋);对于板 h。=h-20mm 、h。=h-(最小保护层厚度+d/2) ,其中最小保护层厚度依据环境类别和混凝土强度等级定, d 为纵向受力钢筋的直径。一般的,对于梁可取20,板可取10),各截面的配筋计算见表Q-02。 中间板带②~⑤轴线间,其各区格板的四周与梁整体连接,故各跨跨中和中间支座考虑板的内拱作用,其弯矩降低20%。 3.次梁的计算。 次梁按考虑塑性内力重分布方法计算。 取主梁的梁高,梁宽。 荷载:

某超长框架结构温度应力分析及设计

某超长框架结构温度应力分析及设计 摘要:超长结构是当代商业社会下的常见结构类型,而其温度应力的处理和减弱,也是广大建筑项目建设者都需要着重考虑的问题。基于此,本文结合某大型 商业综合体项目实际,分析了在温度应力影响下,如何对结构进行设计。从而实 现建筑项目的稳定性和安全性,促进区域居民生活水平的提升。 关键词:超长框架结构;温度应力;工程;温差 0 引言 超长混凝土框架结构的特点是其结构单元的长度较大,比混凝土结构规范中 限定的一般伸缩缝间距要更大,所以在设计时需要考虑更多因素,从而加强建造 建筑的结构能够满足使用的稳定性和安全性要求。在一般的建筑结构中,设计的 混凝土框架选择低收缩的混凝土材料、钢筋加固、后浇带加强养护等措施,都能 够一定程度的降低材料所受到的温度应力、收缩应力等因素对结构的影响[1]。但 在超长框架结构中,对这些应力作用的处理则是结构设计的重要部分,也是设计 和建造过程中需要重点处理的部分。以下结合笔者参与的具体工程实例,对如何 设计超长框架结构温度应力的内容展开探讨。 1 超长结构温度应力作用对工程建设的影响 1.1温差分析 在自然环境的作用下引起钢混凝土结构中的温差荷载的主要因素包括三点: 季节温差、骤降温差以及日照温差。一般情况下,长期稳定荷載作用下的温度效 应对整个结构的内力起到挖制作用,而骤降温差和日照温差引起的的短期温度作 用-一般只考虑温度场趋于稳定后的温度效应。温度作用是由结构材料“热胀冷缩” 效应被结构内、外约束阻碍而在结构内产生的内力作用。出现温差时梁板等水平 构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力[2]。施工阶段后浇带未封闭以前,温差对结构的影响忽略。施工阶段后浇带封闭,建筑隔墙及装修完成以前,受外界温度影响最大,极容易出现开裂。使用阶段由 于外围有幕墙,屋顶有保温,可考虑温差效应作用打折。 1.2 温度应力计算 参考王梦铁的《工程结构裂缝控制》中的相关计算方法,混凝土收缩应变的 形式和发展与混凝土龄期密切相关,任意时间t(天数)时混凝土已完成的收缩 应变为: (1) 其中为各种修正系数[3]。混凝土收缩是一个长期的过程,影响最终收缩量的 因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种收缩应变可以 和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差) 计入混凝土收缩效应的影响。 2 对温度应力的一般解决措施 2.1施工材料的标准化设计 本工程利用的混凝土材料是由低收缩低水泥、碎石骨料和外加剂等材料均匀 混合而成。要求综合各原材料剂量,在软件中进行统计计算。基本需求是外加剂、水泥和骨料都能够满足项目建设的质量要求,且使用时严控各原材料的剂量,从 而确保配比混合后的材料性质能够贴合降低温度应力的需求。例如降低水灰比,

力学计算公式

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变, EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标轴 的静矩不同,如果参考轴通过图形的形心,则x c=0, y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为

m4 常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩

I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正应 力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。 8.抗弯截面模量

行车道板计算及配筋指导书

10 行车道板计算 考虑到主梁翼缘板配筋是连续的,故行车道板可按悬臂板(边梁)和两端固结的连续板(中梁)两种情况来计算。 10.1 悬臂板荷载效应计算 由于横隔梁宽跨比大于2,故悬臂板可按单向板计算[6],悬臂长度为1.15m ,计算时取悬臂板宽度为1.0 m 。 10.1.1 永久作用 (1)主梁架设完毕时 桥面板可看成80cm 长的单向悬臂板,计算图式见图10-1 b 。 计算悬臂根部一期永久作用效应为: 弯矩: 22g1111 M =0.121250.70.081250.7232 -????-????? 0.898=-(kN· m) 剪力: 11 0.121250.70.081250.45 3.52 g V =???+????=(kN· m) (2)成桥后 桥面现浇部分完成后,施工二期永久作用,此桥面板可看成跨径为0.9m 的悬臂单向板,计算图式如图10-1c 、d 所示。图中:g 1=0.12×1×25=3.0(kN/m ),为现浇部分自重;P =1.5kN ,为防撞栏重力。计算二期永久作用效应如下: 弯矩: 2 3.00.20(0.90.2/2) 1.5g M =-??--?(0.9-0.10)=-1.643(kN·m) 剪力: V g2=3.0×0.20+1.5=2.1(kN) (3)总永久作用效应 综上所述,悬臂根部永久作用效应为: 弯矩:M g =-0.898-1.643=-2.541(kN·m) 剪力:V g =3.5+2.1=5.6(kN)

a) c)g 1 b) d) '1 q r=3.5kN/m 图10-1 悬臂版计算图式(尺寸单位:mm ) 10.1.2 可变作用 在边梁悬臂版处,只作用有人群,计算图式为10-1d 弯矩: M r =21 3.50.652 -??=-0.74(kN·m) 剪力: V r =3.5×0.65=2.275(kN) 10.1.3 承载能力极限状态作用基本组合 按《桥规》4.1.6条: M d =1.2M g +1.4×0.8×Mr =-(1.2×2.541+1.4×0.8×0.74)=-3.878(kN·m) V d =1.2Vg+1.4×0.8×Vr =1.2×5.6+1.4×0.8×2.275=9.268(kN) 10.2 连续板荷载效应计算 对于梁肋间的行车道板,在桥面现浇部分完成后,行车道板实质上是一个支承在一系列弹性支承上的多跨连续板,实际受力很复杂。目前,通常采用较简便的近似方法进行计算。对于弯矩,先计算出一个跨度相同的简支板在永久作用和活载作用下的跨中弯矩M 0,再乘以偏安全的经验系数加以修正,以求得支点处和跨中截面的设计弯矩。弯矩修正系数可视板厚t 与梁肋高度h 的比值来选用。本设计 1211 15813.1674 t h ==<,即主梁抗扭能力较

某平面不规则教学楼楼板温度应力分析

某平面不规则教学楼楼板温度应力分析 发表时间:2020-04-09T03:09:02.249Z 来源:《防护工程》2020年1期作者:徐方舟 [导读] 本文通过有限元分析软件,主要分析了温度作用下楼板平面内应力分布情况,并提出了可行的技术应对措施,以供类似工程参考。中信建筑设计研究总院有限公司湖北武汉 430014 摘要:本工程为某学院教学楼,由于平面尺寸较大并且存在凹凸不规则,在进行楼板设计时需要考虑温度作用的影响。本文通过有限元分析软件,主要分析了温度作用下楼板平面内应力分布情况,并提出了可行的技术应对措施,以供类似工程参考。关键词:混凝土楼板;温度作用;应力分析 1 工程概况 本工程位于湖北省孝感地区,主要建筑功能为教学楼,层数为地上4层,采用框架结构,平面尺寸约为83.15m×86.80m,标准层布置如图1所示,楼板厚度为100~140mm,结构梁板混凝土强度等级采用C30,钢筋采用HRB400。结构平面尺寸较大,超出《混凝土结构设计规范》[1]中伸缩缝最大间距限值,而且结构中部存在细腰部位,属于平面凹凸不规则,因此有必要对楼板温度应力进行计算分析。计算软件采用YJK,楼板采用弹性膜单元,楼板最大单元尺寸为1m。 图1 标准层平面布置图 2 温度作用取值 本工程地面以上结构为冬季采暖夏季空调的教室,结构使用温度取10~26℃(室外温度取值:-5℃~37℃);后浇带的合拢温度取20±5℃,即15~25℃。混凝土结构的温度作用取值如下: (1)均匀温度作用标准值: 结构最大温升工况:ΔTk=结构最高平均温度Ts,max-结构最低初始平均温度T0,min=26-15=11℃结构最大温降工况:ΔTk=结构最低平均温度Ts,min-结构最高初始平均温度T0,max=10-25=-15℃(2)混凝土收缩当量温差ΔTs

不规则多层建筑在地震作用下的楼板应力分析

不规则多层建筑在地震作用下的楼板应力分析 摘要:随着人们对于建筑的使用功能及造型的要求越来越高,越来越多的“不规则建筑”应运而生,结构设计中应注意提高其结构抗震性能。本文结合工程实例,对一多层建筑进行规则性判别以及对楼板进行应力分析,找出其薄弱部位并予以加强。 关键词:不规则建筑;规则性判别;楼板应力分析 Stress Analysis of Slab on Irregular Multi-story Building under Seismic Action Gao Jie Abstract:With increasingly demands of using function and shape of modern buildings,more and more irregular buildings have been built.There structural seismic performance should be improved in structure https://www.360docs.net/doc/b1503646.html,bined with practical work,the discrimination of regularity and stress analysis of slab on the building will be found in this paper.The weak part will be found and enhanced. Key words:irregular buildings;discrimination of regularity;stress analysis of slab 针对各项不规则情况,考虑采取以下措施: (1)对于扭转位移比大于1.2,计算时考虑双向地震扭转效应; (2)对于因局部露台收进形成的梁托柱,因该处传递的竖向荷载不大,计算时对转换构件特殊定义,计算内力按规范要求放大,构件地震力放大1.25倍且对应处楼板按双层双向配筋,并按计算结果放大1.15倍配筋。最后对转换构件提高一级抗震构造措施并对框支柱箍筋全长加密。 (3)对于二层楼板开洞造成的楼板不连续,因开洞较大,故对该层洞口周边薄弱处楼板进行有限元应力分析。小震下使薄弱处楼板混凝土拉应力不大于混凝土抗拉强度标准值,在中震下使楼板钢筋应力不大于其抗拉强度标准值。 2 计算结果及分析 2.1 板单元类型 《抗规》3.4.4条规定:凹凸不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型;高烈度或不规则程度较大时,宜计入楼板局部变形的影响。 (1)刚性板单元 “刚性楼板”模型假定楼板平面内刚度无限大,平面外刚度为零。 在采用刚性楼板假定进行整体分析时,每块刚性楼板在水平面内做刚体运动。刚性楼板内节点自由度只剩下3个,即X、Y方向的平动以及绕Z轴方向的转动。 (2)弹性模单元 “弹性膜”模型假定楼板平面内具有膜元的刚度,但忽略了楼板平面外刚度,即假定楼板平面外刚度为零。计算时采用平面应力膜单元计算楼板的平面内刚度。 对于大多数弹性楼板结构如楼板平面较长或有较大凹入以及平面弱连接结构等的情况,应采用弹性膜假定模型计算,因为这种模型忽略了板的面外刚度,不会使梁的内力配筋计算偏小,不会影响梁的设计安全储备,又能够考虑楼板的面内实际刚度。 (3)弹性板6单元 “弹性楼板6”模型假定楼板平面内刚度和平面外刚度均为有限值。计算时采用壳单元计算楼板的面内刚度和面外刚度。 从力学模型的角度看,弹性楼板6相对最符合楼板的真实受力情况,可以应用于任何工程。但从工程设计的角度看,在采用弹性楼板6假定时,部分竖向楼面荷载将通过楼板的面外刚度直接传递给竖向构件,导致梁的弯矩减少,相应的配筋也会减少。这与采用刚性楼板假定不同,因为采用刚性楼板假定时,所有的竖向楼面荷载都通过梁传递给竖向构件。这点差异会造成采用弹性板6假定和采用刚性楼板假定的梁配筋安全储备不同,而过去所有关于

相关文档
最新文档