桥梁抗震设计方法分析

桥梁抗震设计方法分析
桥梁抗震设计方法分析

桥梁抗震设计方法分析

发表时间:2019-08-12T09:59:12.983Z 来源:《防护工程》2019年9期作者:王宗健

[导读] 随着城镇化进程的加快,我国重要基础设施建设取得了显著的成效。

山东日照 276800

摘要:随着城镇化进程的加快,我国重要基础设施建设取得了显著的成效。近几年来,地震监测与相关抗震技术的研究得到了较大地发展和突破,在抗震理论方面,也取得了较大的进展,相关的工程抗震设计规范也在此基础上得以更新和发展。本文就桥梁抗震设计方法展开探讨。

关键词:桥梁抗震设计;方法;分析

引言

通常,地震的发生会带来很大的破坏,特别是交通,对于地震后的救援重建工作有很大影响。桥梁对于救援非常重要。所以,进行桥梁的设计时,抗震设计是极其重要的,特别是较易发生地震的地区,更应该加强重视。

1桥梁地震破坏现象

1.1上部结构损坏

地震作用通常会对桥梁的下部结构和支座造成损伤,对上部结构一般不会产生直接地损伤,总的来看对上部桥梁结构的直接损坏的现象很少。

1.2支座的震害

在整体抗震中存在着不少薄弱环节,其中支座因没有充分对抗震的要求予以考虑,在构造连接与支挡等构造上存在着不足,支座型式和材料上也存在着一定的缺陷等。

1.3落梁破坏

梁体水平移动的过程中,在长时间的作用之下,很容易出现落梁破坏现象,出现这种破坏现象的主要原因是梁体的位移偏大,桥梁结构的约束能力不断下降。另当外界地震破坏力较大时,桥墩会出现较大的位移,引发严重的落梁破坏现象。另外,桥梁结构支座容易出现破坏,影响桥梁结构的稳定性。

1.4对基础和下部结构的震害

地震中对基础和下部结构造成严重破坏会直接造成桥梁倒塌的情况出现,并且也难以进行修复再投入使用。因沙土液化、岸坡滑移、地基下沉,以及开裂等情况,造成墩台的损坏,通过对基础及结构的抗震能力加强也难以有效避免,需要从结构布置、桥型以及桥梁位址等方面的选择上予以预防和避免。

2桥梁抗震设计的理论基础

目前桥梁抗震设计的破坏准则主要有:强度破坏准则,,即最大的地震应力达到结构的容许应力值;位移破坏准则,即以位移作为判断指标,桥梁结构在地震作用下最大的位移小于容许位移。此外,还有延性破坏准则、能力准则、基于性能的破坏准则等。目前使用最广泛的是延性破坏准则。桥梁抗震设计的思想也从基于强度设计发展到基于延性设计,所谓基于延性设计,通过设置塑性铰,允许结构产生可控塑性变形,局部的次要构件产生可修复的破坏,一次消耗地震能,另一方面延长结构的周期,以减小地震效应。其实现主要是通过设置塑性铰、对桥梁墩柱的配筋,包括纵向钢筋的配筋率,箍筋的配筋率以及搭接锚固,连接件的延性设计等实现。目前对地震作用的分析方法根据确定性和非确定性分析方法,目前基于确定过程的确定性地震反应分析方法在各国得到了普遍的应用,包括静力分析法(弹性静力、非线性分析)、动力反应谱分析法(单振型、多振型、等效线性分析)、动力时程分析方法(弹性和非弹性),目前各国规范中多采用多振型反应谱分析法,采用动力时程分析法适合于复杂桥梁的设计计算。

3桥梁抗震设计方法

3.1静力法

静力法最早提出于日本,它主要是假设结构物和地震动能够有相同频率的震动。根据动力学的角度,将地震中的加速度看成地震破坏的单一因素,这种认知存在着局限性,它忽略了结构的动力特性的特点。结构的基本周期小于地面运动周期,且小很多的情况下,在地震中,结构物才可能在震动中不出现变形的情况,静力法才能够得以成立。如果范围超出,就不能够应用此方式。

3.2动力时程法

地震加速度时程可设定为地震荷载,即动力时程法。其主要通过三种方法获得:通过对地震危险性进行分析,得到人工地震加速度时程作为地震输入荷载;利用地质条件相同的,位于结构物所在场地附近的相关记录;通过常用的国际记录。一般采取同步单点的地震波输入方式,不同步输入方式可在必要时予以考虑,或者同步、不同步多点输入。每个输入点的地震加速度时程可以是相同的或不同的。

3.3反应谱法

反应谱的概念出现后,基于此理论的抗震计算动力法也应运而生。根据“地震荷载”概念来看,这种方式相比静力法有一定的进步。其主要是对作用地面加速度在单自由度系统基底上进行测量,其最大响应由系统的自振周期、动力输入以及阻尼来决定。反应谱方法的概念很简单,存在着操作简单的优点、计算方便,能够通过最少的计算量,结构的最大反应值情况得以准确反映。可是,反应谱只是一定范围内的情况,如果出现在强烈的地震中,这种情况下的塑性工作阶段,不能够直接的进行使用,可以看出,此种方法得到的是地震最大响应,对于结构在地震中的情况不能够反映出来。

4分析如何提高项目中的抗震设计

4.1设防目标

公路桥梁抗震设计规范,依据桥梁结构的重要程度和受损后修复的难易程度将桥梁分为四大类,将地震分为多罕遇地震和遇地震两级,并根据地震的破坏影响分为四个设防等级,即6度、7度、8度、9度设防,其中必须对设计进行多遇地震条件下的相应验算和计算,针

桥梁抗震构造措施

桥梁抗震构造措施 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

桥梁抗震的构造要求有哪些 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 ??? 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 ??? 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 ??? 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 ??? 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 ??? 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 ??? 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 ??? 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 ??? 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 ??? 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接 强度,对双曲拱桥应加强肋波间的连接。 ??? 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 ??? 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 ??? 13.拱桥宜尽量减轻拱上建筑的重量。 ??? 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以 及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的

桥梁抗震设计理念及抗震验算

桥梁抗震设计理念及抗震验算

抗震设计理念

地震 ?地震是一种自然现象,是地球内部缓慢积累的能量突然释放而引起的地表振动。 ?地球上一年发生的地震约500万次左右,人能感觉到的有5万多次,轻微破坏的有1000余次,7级以上造成巨大灾害的有10余次,能造成唐山、汶川地震那样特别严重灾害的地震1—2次。

序号地震名称时间震级(M)死亡人数伤残人数倒塌房屋(间) 1青海玉树县2010.04.147.12220800090% 2台湾高雄2010.03.04 6.7--96-- 3西藏当雄2008.10.06 6.6919147 4四川汶川2008.05.128.08.7万37万779万 5台湾集集1999.09.217.3241211030511万 6云南丽江1996.02.037.0311370648万 7云南澜沧耿马1988.11.067.6743775122.4万 8新疆乌恰1985.08.237.4702003万 9四川松潘1976.08.167.238345000 10河北唐山1976.07.287.824.2万16.4万530万 11云南龙陵1976.05.297.498248242万 12辽宁海城1975.02.047.3132829579111万 13云南大关1974.05.117.114231600 2.8万 14四川炉霍1973.02.067.921752756 4.7万 15云南通海1970.01.057.7156212678333.8万16河北邢台1966.03.087.2818251395400万 17新疆乌恰1955.04.157.018-200 18四川康定1955.04.147.584224636 19西藏察隅1950.08.158.54000--

桥梁工程课程设计

辽宁工业大学 《桥梁工程》课程设计计算书 开课单位:土木建筑工程学院 2014年12月

目录 第一章设计基本资料 (1) 1.1跨度和桥面宽度 (1) 1.2主要材料 (1) 1.3箱型梁构造形式及相关参数 (1) 1.4设计依据与设计规范 (3) 第二章主梁的几何特性计算 (4) 2.1计算截面几何特性 (4) 2.2检验截面效率指标ρ (6) 第三章桥面板计算 (7) 3.1横隔梁设置 (7) 3.2 每延米恒载计算 (7) 3.3恒载内力计算 (7) 3.4车辆荷载产生的内力 (7) 第四章主梁内力计算 (9) 第五章荷载横向分布计算 (11) 5.1 支点截面横向分布系数计算 (11) 5.2跨中截面横向分布系数计算 (13) 第六章活载影响下主梁内力计算 (15) 6.1活载内力计算 (15) 6.2荷载内力组合 (16) 第七章横隔梁内力计算 (18) 7.1作用在横梁上的计算荷载 (18) 7.2绘制横隔梁的内力影响线 (18) 第八章主梁挠度计算 (20) 8.1验算主梁变形 (20) 8.2判断是否设置预拱度 (20) 8.3 计算预拱度最大值 (20) 第九章支座计算 (21) 9.1板式橡胶支座的选择 (21) 9.2确定支座的厚度 (21) 9.3确定橡胶片总厚度 (21)

9.3支座偏移验算 (22) 9.4验算支座滑移稳定性 (22)

第一章 设计基本资料 1.1跨度和桥面宽度 1) 标准跨径:30m (墩中心距) 2) 计算跨径:29.55m 3) 主梁全长:29.96m 4) 桥面宽度:净9+2×1.0m 人行道 5) 人群荷载:23.5/m KN 6) 每侧栏杆及人行道的重量:4.5/m KN 1.2主要材料 1) 混凝土:箱梁为50C 号,铰缝采用40C SCM 灌浆料以加强铰缝;桥面铺装为12cm 厚40 C 防水砼(S6)+10cm 沥青砼;栏杆采用25C 号混凝土。 2) 预应力钢绞线:符合国际通用标准ASTMA416-92规定。单根钢绞线直径为φ 15.24mm ,面积A=140mm 2,标准强度1860b y R MPa =,弹性模量51.9510E MPa =?。 3) 选用R235及HRB335钢筋,其技术标准应符合国家标准(GB1499-1998)及 (GB13013-1991)的规定。 4) 锚具:采用《公路桥梁预应力钢绞线用锚具、连接器规格系列》产品,管道成孔采 用金属波纹管。 5) 支座:采用板式橡胶支座。 6) 其他材料:砂、石、水的质量要求均按《公路桥梁施工技术规范》有关条文办理。 1.3箱型梁构造形式及相关参数 ⑴ 本箱型梁按全预应力混凝土构件设计,施工工艺为后张法。 ⑵ 主梁尺寸拟定: 梁高:根据设计经验,梁高跨比通常为1/14-1/25,本设计初步尺寸定为1.3m , 跨中:预制箱型梁顶板厚0.2m ,底板厚0.2m 腹板厚0.2m. 端部:预制箱型梁顶板厚0.2m ,底板厚0.30m 横隔梁:横向共计五片箱型梁,中间设四个横隔梁。高1.1m,上部宽0.5m,下部宽 0.5m 。 ⑶ 预应力管道采用金属波纹管成形,波纹管内径为60mm ,外径为67mm ,管道摩擦系数μ=0.2,管道偏差系数k=0.0015,锚具变形和钢束回缩量为6mm(单端)。 ⑷ 沥青混凝土重度按23KN/m 3计,预应力混凝土结构重度按26 KN/m 3计,混凝土重度按25 KN/m 3计,单侧防撞栏线荷载为4.5KN/m 。

桥梁专业设计技术规定 第八章 桥梁震动及抗震

8 桥梁振动及抗震 8.1结构抗震体系 8.1.1结构应具有合理的地震作用传力途径和明确的计算简图。结构除了具有必要的承载能力以外,还应具有良好的变形能力和耗能能力,以保证结构的延性性能。 8.1.2结构的质量和刚度应均匀分布,避免因质量和刚度突变而造成地震时结构各部分相对变形过大。对于质量和刚度变化较大的部位,应采取有效措施予以加强。 8.1.3结构基础应建造在坚硬的地基上,尽可能避开活断层及地质条件不好的地基。当结构必须建造在软土地基或可能液化的地基上时,应对地基进行处理。 8.1.4上部结构应尽量采取连续的形式。当上部结构与下部结构之间的支座允许上部结构平动时,必须保证支承面宽度并采取相应的限位措施,防止落梁的发生。 8.1.5确定墩柱的截面尺寸时应避免墩柱的轴压比(墩柱所承受的轴向压力与抗压极限承载力之比)过大,以保证墩柱截面的延性性能。 8.1.6对于多跨连续结构,各中墩柱的截面尺寸和高度应使各柱的纵桥向刚度和横桥向刚度基本相同。跨径相差较大时,应考虑上部结构质量对横桥向频率的影响。对于地面高差较大的地形,可通过下挖地面来调整墩柱的高度。 8.1.7对于大跨度桥梁,应结合桥位处的地质条件和地震动特性等具体情况,对各种结构体系进行分析研究,选择抗震性能较好的结构体系。 8.2地震反应计算 8.2.1工程设计项目应按《地震安全性评价管理条例》(国务院令第323号)及各地方相应管理办法,要求业主对相应区域进行地震危险性分析,

并根据地震危险性分析进行结构的地震反应计算。在桥梁建设中尽量避开具有危险性的活动地震断层。活动性地震断层附近桥梁的地震反应计算要特别注意地面位移对结构的影响。按“条例”不需进行地震安全性评价的一般性工程,应按照《中国地震动参数区划图》(GB18306-xx)规定的设防要求进行抗震设防。 8.2.2应根据工程的重要性等级、场地的地质条件和地震烈度、结构的自振特性等情况,按照规范用反应谱方法进行结构的地震反应计算。对于大跨度桥梁,还应进行时程反应分析,并考虑地震动的空间不均匀性。 8.2.3对于地震作用的计算,应按公路桥梁相关规范执行,城市桥梁应根据道路等级和桥梁的重要性,按表8.1进行重要性系数修正。 表8.1 城市桥梁重要性修正系数Ci 考虑地震引起的位移,避免结构因位移过大而导致非强度破坏。 8.2.5对大跨度桥梁进行地震反应计算时,由于高阶振型的影响较大,必须计算足够多的振型。 8.2.6采用减震措施设计时,应结合具体桥型进行动力时程分析。 8.3构件抗震设计和抗震构造措施 8.3.1 应搜集桥位处地震基本烈度、地质构造、地震活动情况、工程地质及水文地质条件,并根据地震基本烈度及桥梁重要性等级采取相应的

桥梁抗震计算书讲解

工程编号:SZ2012-38 海口市海口湾灯塔酒店景观桥工程 桥梁抗震计算书 设计人: 校核人: 审核人: 海口市市政工程设计研究院 HAIKOU MUNICIPAL ENGINEERING DESIGN & RESEARCH INSTITUTE 2012年09月

目录 1工程概况 ........................................................................................................... - 1 -2地质状况 ........................................................................................................... - 1 -3技术标准 ........................................................................................................... - 2 -4计算资料 ........................................................................................................... - 2 -5作用效应组合 ................................................................................................... - 3 -6设防水准及性能目标 ....................................................................................... - 3 -7地震输入 ........................................................................................................... - 4 -8动力特性分析 ................................................................................................... - 5 - 8.1 动力分析模型 (5) 8.2 动力特性 (6) 9地震反应分析及结果 ....................................................................................... - 6 - 9.1 反应谱分析 (6) 9.1.1E1水准结构地震反应 ........................................................................................ - 6 - 9.1.2E2水准结构地震反应 ........................................................................................ - 7 -10地震响应验算................................................................................................ - 8 - 10.1 墩身延性验算 (10) 10.2 桩基延性验算 (10) 10.3 支座位移验算 (11) 11结论.............................................................................................................. - 11 - 12抗震构造措施.............................................................................................. - 11 - 12.1 墩柱构造措施 (12) 12.2 结点构造措施 (12)

桥梁抗震设计及加固技术

桥梁抗震设计及加固技术浅析 杨立国 (山东科技大学,山东青岛266590) 摘要:地震是我国多发的地质灾害现象,我国地震灾害分布的范围比较大,地震具有强度大、频率高的特点,公路桥梁往往在地震中出现损坏,给救灾工作带来了困难。针对我国汶川地震等近年来地震的情况,我国公路桥梁的抗震加固工作需要进一步加强,文章对我国公路桥梁抗震加固工作的现状进行了分析,探讨了抗震加固技术的应用,为我国公路桥梁提高到足够的抗震强度提供一些思路。 关键词:地震灾害抗震设计;加固技术 引言:随着我国城市化进程加快,作为城市基础设施之一的公路交通其重要性越来越突出。同时,我国处于地震多发地带,尤其是近几年不断发生各种等级的地震。在地震发生时,不仅会有大量的地面建筑物及各种设施遭到破坏或倒塌,大量人员伤亡,而且还会严重造成交通中断。若作为抗震救灾生命线工程之一的公路交通(尤其是铁路桥梁、城市高架、公路桥梁等公路工程的咽喉要道)受到较大损坏,将会给后续救助工作造成极大的困难。此外,目前我国公路行业现采用的抗震设防标准是《公路桥梁抗震设计细则》(JTJ/TB02-01-2008),公路桥梁抗震设计细则》(JTJ/TB02-01-2008)较《公路工程抗震设计规范》(JTJ004-89)在设计思想、安全设防标准、设计方法、设计程序和构造细节等诸多方面均有很大的变化和深入。 1 桥梁与抗震 我国处于世界两大地震带——环太平洋地震带和亚欧地震带之间,是一个强震多发国家,汶川、玉树地震表明强烈地震将引发长期的社会政治、经济问题,并带来难以慰籍的感情创伤。在抗震救灾中,公路交通运输网更是抢救人民生命财产和尽快恢复生产、重建家园、减轻次生灾害的重要环节,所以公路桥梁是生命系统工程中的重要组成部分,公路桥梁抵抗震害的能力是桥梁设计中重点关注的问题之一。桥梁震害中获得的经验和知识是推动桥梁抗震设计的原动力,1971年美国san fernand地震(6.6级)、1989年美国北加州的lonm pfieta地震(7.1级)、1995年日本阪神大地震(7.2级)、2008年汶川大地震(8.0级)等影响巨大的地震引起了工程界的重视和广泛探讨。随着建筑物与地震反应关系的研究深入,桥梁抗震设计理论得到了提高与拓展,2008年我国公路桥梁设计规范由《公路桥梁抗震设计细则》(JTJ/TB02-01-2008)替代原来的《公路工程抗震设计规范)(JTJ004-89),是我国桥梁设计的一大进步,根据历次大地震的调查研究,公路桥梁的地震破坏主要形式总结归纳如下:(1)桥梁上部结构受水平力作用滑落(汶川百花大桥落梁);(2)桥墩塑性铰的抗弯、抗剪强度不足,导致桥墩破坏(日本阪神大量墩柱破坏);(3)桥墩、桩基础钢筋的连接及锚固性能不足,导致桥墩破坏(最为常见); (4)桥梁支座等连接部位破坏(最为常见)。常规桥梁抗震设计首先应是抗震构造措施,根据汶川地震相关调查表明干线公路桥梁由于采用了合理的抗震构造措施,结构安全富裕较多,震后其破坏远小于地方道路桥梁。抗震构造措施是总结桥梁震害经验的基础上提出的设计原则,事实表明抗震构造措施可以起到有效减轻震害作用,而所耗费的工程代价往往较低。 2 桥梁设计与抗震措施 2.1 防止落梁的措施 《公路桥梁抗震设计细则》指出上部结构主梁的支承长度a≥70+0.5L(L为梁的计算跨径,L 单位为m,a单位为cm),该取值沿用自日本抗震设计规范,多数设计者认为规范取值较为保守,比上一代规范《公路工程抗震设计规范(JTJ004-89))有较大提高(a≥50+l)。这里需指出该种认识属于误区,当“长桥高墩”时应在规范基础上给予更多的安全富余。例如:都汶高速公路庙子坪岷江大桥第10跨(跨径50m、墩高70m)。虽然盖梁宽度高达3.0m(根据《桥梁

桥梁工程课程设计计算书

桥梁工程课程设计计算书 The pony was revised in January 2021

《桥梁工程》课程设计 专 业:土木工程(道桥方向) 班 级: 2011班 学生姓名: 周欣树 学 号: 27 指导教师: 一、确定纵断面、横断面形式,选择截面尺寸以及基本设计资料 1. 桥面净宽:净—72 1.0+? 荷载: 公路—Ⅱ级 人群—23.0kN m 人行道和栏杆自重线密度-5.0kN m 2. 跨径及梁长:标准跨径13b L m = 计算跨径12.40L m = 主梁全长 '12.96L m = 3. 材料 钢筋:主筋用HRB400级钢筋,其他用HPB335级钢筋 混凝土:C40,容重325kN m ;

桥面铺装采用沥青混凝土;容重323kN m 4.构造形式及截面尺寸 梁高: 1.0h m = 梁间距:采用5片主梁,间距。 采用三片横隔梁,间距为 梁肋:厚度为18cm 桥面铺装:分为上下两层,下层为C25砼,路缘石边处厚 ;上层为沥青砼,。桥面采用%横坡。 桥梁横断面及具体尺寸:(见作图) 二、确定主梁的计算内力 (一)计算结构自重集度(如下表) (二)计算自重集度产生的内力(如下表) 注:括号()内值为中主梁内力值 根据计算经验,边梁荷载横向分布系数大于中梁,故取边梁进行计算分析。 (三)支点处(杠杆原理法) 由图可求得荷载横向分布系数: 汽车荷载:1 0.3332oq m η==∑ 人群荷载: 1.222or r m η==

(四)跨中处(修正刚醒横梁法) 1、主梁的抗弯惯性矩I x 平均板厚:()1 1012112H cm =+= 22 3344 1111100162111621127.86181001810027.861221223291237.580.03291x I cm m ????=??+??-+??+??- ? ????? == 2、主梁的抗扭惯性矩Ti I 对于T 形梁截面,抗扭惯性矩计算如下:见下表. 3.计算抗扭修正系数 主梁的间距相等,将主梁近似看成等截面,则得 221 1 12Ti i i Gl I E a I β=+∑∑ 其中:∑It ---全截面抗扭惯距 Ii---主梁抗弯惯距 L---计算跨径 G---剪切模量 G= i a --主梁I 至桥轴线的距离 计算得0.9461β=< 满足 4.采用修正后的刚醒横梁法计算跨中荷载横向分布系数 此桥有刚度强大的横隔梁,且承重结构的跨宽比为:

桥梁抗震设计要点及减隔震技术的应用

桥梁抗震设计要点及减隔震技术的应用 桥梁是现代人类生活中极为重要的生命线之一,也是不可或缺的重要设施,作为生命线工程,其抗震安全的重要性不言而喻,因此,桥梁抗震设计、减隔震技术是桥梁抗震研究的重要内容。本文在总结了以往地震中橋梁震害,提出了桥梁抗震设计要点,阐明了减隔震原理、分类及适用情况,为桥梁工程师提供一个有利的依据。 标签:桥梁震害;抗震设计;减隔震 引言 目前中国新建和在建的桥梁工程,大都没有经历过强震的考验,震害资料缺乏,其抗震设计理论和方法研究存在不足,我国现阶段的抗震思想是“小震不坏,中震可修,大震不倒”,这一抗震思想要求结构遭遇设防烈度的地震后主体结构不应有大的破坏并可以修复,遭遇罕遇地震后允许结构有大的破坏,但不能倒塌造成人员伤亡。但由于地震作用的不确定性和复杂性,结构有可能遭受比设防烈度更大的地震作用,这样会使结构构件严重受损。综上,在地震来临时,如何保证桥梁结构的安全性以及震后修复工作,给桥梁建造者带来了巨大的挑战,桥梁抗震设计显得尤为突出,桥梁的减震措施的应用显得尤为迫切。 一、桥梁震害及分析 调查与分析桥梁的震害及其产生的原因是建立正确的抗震设计方法、采取有效的抗震措施的科学依据[1-2]。桥梁主要由上部结构、下部结构、支座及附属结构组成,纵观历史上发生的大地震,由地震引起的损害也多集中正在上部结构、下部结构及支座,主要有以下现象: 1)上部结构的震害 上部结构的震害分为自身震害、位移震害和碰撞震害。在历次的地震中,混凝土梁体自身在地震中的破坏并不多,主要是钢结构的局部屈曲破坏。桥梁上部结构的移位震害在主要表现为桥梁上部结构的纵向移位、横向移位以及扭转移位,如伸缩缝的移位震害,落梁震害。上部结构的碰撞震害多为相邻梁体粱端之间的碰撞、梁端部与桥台胸墙之间的碰撞。地震中,如果相邻结构之间的间距过小,可能会发生碰撞,产生极大的撞击力,从而使结构受到破坏。 2)支座的震害 桥梁支座是连接上部结构与下部结构的重要部分,是桥梁结构体系中抗震性能较薄弱的一个环节,在强地震作用下,支座非常容易发生破坏。支座的破坏形式主要有支座移位、锚固螺栓被剪断、拔出,支座脱空等。

《桥梁工程》的教案-桥梁工程课程设计

二〇一〇级土木工程(交通土建)专业 《桥梁工程》(Ⅰ) 教案 教师:文国华 班级: 1003307、308班 课时: 64 学时 湖南城市学院土木工程学院 二〇一三年二月

课程名称桥梁工程(Ⅰ) 使用教材桥梁工程 主编邵旭东出版社人民交通出版(修订)时间2007 专业班级 1003307、3308 授课时数总64课时;理论:64课时;实践:0课时;其他:0课时 授课教师文国华 授课时间2013 年上学期 成绩的考核为考试科,成绩按:作业(含平时)30分,考试70分计 主要参考文献: 1、高等院校土木工程专业系列教材《桥梁工程》主编王丽荣,2005年9月; 2、高等学校教材《桥梁工程》主编范立础,1993年7月; 3、高等学校教材《桥梁工程》主编姚玲森,1999年4月; 4、国标《公路桥涵设计通用规范》2004年10月; 5、国标《公路钢筋混凝土及预应力混凝土桥涵设计规范》2004年10月; 6、国标《公路圬工桥涵设计规范》2005年11月; 7、自编教学讲议《桥梁工程习题集》2012年1月等。

第一篇总论第一章概述 目的要求:了解桥梁在交通中的地位、桥梁的发展概况;掌握桥梁的组成和分类 教学重点:桥梁的组成和分类 教学难点:各类桥梁的受力特点 教学课时:4课时 教学方法:课堂教学 教学内容与步骤: 先导概念 1、桥梁 是连续道路中断空间、跨越道路受阻障碍、传递交通流的道路工程结构物。包括“桥”与“涵洞”两类工程建筑。 2、桥梁建设的意义 适应经济发展,满足交通运输需要,促进地区交流,加强民族团结,巩固国防等。 3、桥梁在道路工程中的地位 ⑴数量上一般公路为3~5座桥涵/km;山区公路为7~9座桥涵/km。 ⑵造价上一般公路的桥涵占其公路总造价10~20%;高等级公路的可达30%以上。 ⑶工期上是全线施工工期的关键。 ⑷重要程度上是交通运输的咽喉,是道路正常运输的关节。 ⑸社会性上立交桥、城市桥成为当地经济、文化、政治的标志。 第一节桥梁的组成与分类 一、桥梁的基本组成与常用术语 ㈠桥梁的基本组成 1、上部结构(或桥跨结构、或桥孔结构) ⑴定义桥梁结构中跨越障碍的主要承载结构,如梁桥的主梁,拱桥的主拱。 ⑵作用连续中断的路线、承受交通荷载并将荷载产生的作用反力传递给墩台上的支座。 2、支座 ⑴定义桥跨结构中墩台上支承主要承载结构的传力装置。 ⑵作用传递上部结构的荷载作用,适应桥跨设计变位,联结上下部结构。 3、下部结构 ⑴定义为桥跨中支承上部结构的桥墩、桥台。

桥梁抗震复习题

复习题 1.地震动的三要素? 答:地震动强度(振幅、峰值),频谱特性,强震持续时间。 2. 什么是基本地震烈度?基本地震烈度和E1地震E2地震是什么关系? 答:基本地震烈度是指该地区今后一个时期内,在一般场地条件下可能遭遇到的最大地震烈度,即《中国地震烈度区划图》规定的烈度。 3.地震按照成因、震源的深浅、震中距的远近等的分类;一些有关地震的术语含义。 答:按照成因可分为:火山地震、陷落地震、构造地震、诱发地震 按照震源的深浅可分为:浅源地震、中源地震、深源地震 按照震中距的远近可分为:地方震、近震、远震 4. 地震波包含了哪几种波?它们的传播特点是什么?各种波的速度对比? 分为体波和面波。 体波 纵波:在传播过程中,其介质质点的震动方向与波的前进方向一致。 纵波的周期较短,振幅较小,波速较快,在地壳内的速度一般为200-1400m/s。 横波:在传播过程中,其介质质点的振动方向与波的前进方向垂直。 横波的周期较长,振幅较大,波速较慢,在地壳内的速度一般为100-800m/s。 面波 瑞利波:传播时,质点在与地面垂直的平面内沿波前进方向做椭圆反时针方向运动。 振幅大,在地表以竖向运动为主。 乐浦波:传播时,类似蛇形运动,质点在地平面内做与波前进方向相垂直的运动。

5. 地震动、地震波的概念。 地震动:也称地面运动,是指由震源释放出来的地震波引起的地表附近土层的震动。 地震波:当震源岩层发生断裂、错动时,岩层所积聚的变形能突然释放,引起剧烈的振动,振动以弹性波的形式从震源向各个方向传播并释放能量,这种波 就称为地震波。 6. 地震震级、地震烈度的概念,两者之间的区别与关联,地震震级和地震释放的能量之间 的关系。 地震震级:衡量一次地震大小的等级,用符号M表示。 比较通用的是里氏震级(用Ml表示),定义为: 在离震中100Km处用伍德-安德生式标准地震仪所记录到的最大水平 动位移(以微米计)的常用对数值,即 Ml=lgA 地震烈度:用来衡量地震破坏作用大小的一个指标。 联系与区别:对于一次地震而言,震级只有一个,烈度则随着地点的变化而有若干个。一般来说,震中的烈度最高,离震中越远,地震影响越小,烈度 越低。 关系:Ml=1.5+0.58I0(震中烈度) 7.影响地震动特性的因素。 答:包括震源、传播介质与途径、局部场地条件这三类。 8.地震烈度是按什么标准进行区分的? 答:按地震烈度表的标准进行区分 主要依据是建筑物的破坏程度、地貌变化特征、地震时人的感觉、家具器物的反 应等。 9.地震造成的地表破坏有哪些现象? 答:地裂缝、滑坡、砂土液化软土震陷。

宁海新桥主桥抗震分析_李微哲

第38卷,第2期2013年4月 公路工程Highway Engineering Vol.38,No.2Apr .,2013 [收稿日期]2012—03—23 [作者简介]李微哲(1981—),男,江西芦溪人,硕士,工程师,主要从事桩基础及桥梁结构计算分析研究。 宁海新桥主桥抗震分析 李微哲 (中煤科工集团重庆设计研究院,重庆400016) [摘 要]以宁海新桥特大桥主桥为例,采用Midas Civil 有限元软件,对其进行了反应谱分析和非线性时程分 析。针对其下部结构刚度较大的特点,提出了纵横向限位装置联合抗震支座的抗震设计方案。计算结果表明,E1地震作用下,桥梁基本处于弹性工作状态,E2地震作用下抗震支座非滑动方向发生屈服,通过侧向滑移摩擦消能后,桥墩水平地震力大大减小,而限位装置承担余下的水平地震力,同时防止落梁。纵横向限位装置联合抗震支座的抗震设计,适合本桥,也适合下部结构刚度较大的混凝土梁桥。 [关键词]宁海新桥;抗震分析;限位装置;抗震支座 [中图分类号]U 442.5+ 5 [文献标识码]A [文章编号]1674—0610(2013)02—0120—05 Seismic Analysis of the Main Bridge NingHai Bridge LI Weizhe (China Coal Technology Engineering Groups ,Chongqing Design &Research Institute ,Chongqing 400016,China ) [Abstract ]Spectrum analysis and time-history analysis for the main bridge of NingHai Bridge is done on the paper.Seismic restrainers and seismic bearings are applied to the main bridge of NingHai bridge for earthquake-resistance.According to the analysis ,some conclusions are drawn as follows :first-ly ,the bridge works flexibly under earthquake action E1;secondly ,seismic bearings will yield under earthquake action E2,and the bridge will be hold on by the seismic restrainers while sliding laterally ;thirdly ,the seismic responses of piers are much more reduced.Finally ,seismic design such as seismic restrainers and seismic bearings is effective for the main bridge of NingHai bridge and other bridges with rigid piers. [Key words ]NingHai bridge ;seismic analysis ;seismic restrainers ;seismic bearings 工程设计中,一般在连续梁桥中间桥墩设置纵向固定支座[1-7] 。在地震区中,当桥墩刚度较大又无合适的抗震措施时, 纵向地震作用下,固定支座桥墩将承受非常大的水平地震力,其数值远大于支座本身的水平承载力,即固定支座将发生破坏。因此,基于固定支座不发生破坏的假定,而进行的反应谱分析和时程分析,与工程实际情况不符。 本文以宁海新桥特大桥主桥为例,对其进行了反应谱分析,并指出本桥反应谱分析结果的不足。同时结合抗震设计方案,假定了限位挡块、抗震支座的本构模型,进行了非线性时程分析。 1 宁海新桥主桥概况 1.1 主桥结构构造及地基条件 福建省省道201线宁海新桥工程位于莆田市涵 江区与荔城区交界处,是省道201线的重要组成部分,是衔接荔城区与涵江区的城市快速路。桥梁地处7度抗震区,桥梁全长1164m ,桥宽41m ,桥跨布置为8?40m 预应力砼连续箱梁+45+5?70+45m 变截面预应力砼连续箱梁+10?40m 预应力钢筋砼连续箱梁。 主桥梁体为单箱双室斜腹板变截面连续箱梁,箱宽20m ,悬臂3.0m 。梁根部梁高4.5m ,跨中梁高2.3m ,腹板斜率均为4。对称悬臂施工,边跨现浇梁段9m ,合拢段长2m 。箱梁典型截面如图1、图2所示。 下部结构采用花篮型实体桥墩,墩帽宽9.0m ;厚3.4m ,墩身宽8.4m 、厚2.8m ,变化段高度5.0

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

简支T形桥梁工程课程设计说明

桥梁工程课程设计(本科) 专业道路桥梁与渡河工程班级15春 姓名王炜灵

学号9 理工大学网络教育学院 2016年12月 一、课程设计目的 本课程的任务和目的:学生通过本课程的设计练习,使学生掌握钢筋混凝土简支T梁设计计算的步骤和方法,学会对T梁进行结构自重力计算、汽车荷载和人群荷载力计算、作用效应组合;在汽车和人群荷载力计算时,学会用偏心受压法和杆杠原理法求解荷载横向分布系数。 二、课程设计题目 装配式钢筋混凝土简支T形梁桥设计 三、课程设计任务与指导书(附后) 四、课程设计成果要求 设计文本要求文图整洁,设计图表装订成册,所有图表格式应符合一般工程设计文件的格式要求。

五、课程设计成绩评定 课程设计文本质量及平时成绩,采用五级制评定:优、良、中、及、不及。 装配式钢筋混凝土简支T形梁桥 课程设计任务与指导书 一、设计容 根据结构图所示的一孔标准跨径为L b=25m的T形梁的截面尺寸,要求对作用效应组合后的最不利的主梁(一根)进行下列设计与计算: 1、行车道板的力计算; 2、主梁力计算; 二、设计资料 1、桥面净宽:净-7(车行道)+2×1.0(人行道)+2×0.25(栏杆)。 2、设计荷载:公路-II级,人群3.5kN/m2。

4、 结构尺寸图: 主梁:标准跨径Lb=25m (墩中心距离)。 计算跨径L=24.50m (支座中心距离)。 预制长度L ’=24.95m (主梁预制长度) 。 横隔梁5根,肋宽15cm 。 桥梁纵向布置图(单位:cm ) 桥梁横断面图(单位:cm ) T 型梁尺寸图(单位:cm )

三、知识点(计算容提示) 1、 行车道板计算 1) 采用铰接板计算恒载、活载在T 梁悬臂根部每延米最大力(M 和Q )。 2) 确定行车道板正截面设计控制力。 2、 主梁肋设计计算 1) 结构重力引起力计算(跨中弯矩和支点剪力),剪力按直线变化,弯矩按二次抛物线变化。 2) 计算活载(车道荷载)和人群荷载引起截面力(跨中弯矩、支点剪力和跨中剪力)。 荷载横向分布系数计算:跨中m 0.5按偏心受压法计算, 支点m 0按杆杠原理法计算。 计算跨中弯矩和支点剪力时荷载横向分布系数按《桥规》规定变化。 3) 计算控制截面的跨中弯矩、支点剪力和跨中剪力。 4) 对计算出的控制截面力进行荷载组合,并按《桥规》进行系数提高。 5) 根据组合后的力,取最大力(M 和Q )作为设计力值。 3、 变形验算和预拱度设置。 结构的变形计算和验算,根据《桥规》规定设置预拱度。 设计方案: 一、主梁力计算 (一)、恒载力计算: 1、恒载集度计算: 主梁截面面积:[(0.08+0.14)×0.8]/2×2+0.2×1.4=0.456 m 2 主梁自重:g 1边=g 1中=0.456×25=11.4 KN/m 横隔梁折算荷载: kN/m 335.150.24251015.08.0208.014.02.1g 中2=÷????????????? ??+-= 7kN/m 66.050.2425515.08.0208.014.02.1g 2边=÷??? ?????????? ??+-= 桥面铺装:()kN/m 50.352525.308.012.021g 3=÷?? ? ??????+=

桥梁抗震

东南大学(2014~2015)年第一学期 桥梁动力分析与抗震设计桥梁抗震读书报告 成绩: 姓名:高明天 学号:145511 专业:桥梁与隧道工程 授课教师:胡晓伦 日期:2015年1月

目录 目录 桥梁减隔震设计 1 减隔震技术的原理....................................................................................... 错误!未定义书签。 1.1 减隔震技术的工作机理................................................................. 错误!未定义书签。 1.2 减隔震技术与延性抗震设计的比较............................................. 错误!未定义书签。 2 减隔震装置与系统 (2) 2.1 减隔震系统的组成 (2) 2.2 常用减隔震装置简介 (2) 3 减隔震技术的应用 (5) 3.1 减隔震系数在国外桥梁工程中的应用 (5) 3.2 抗震技术在越南工程中的应用 (6) 3.3 减隔震桥梁的震害表现 (7) 4 桥梁减隔震设计 (8) 4.1 减隔震设计的一般原则 (8) 4.2 减隔震装置的布置 (8) 4.3 减隔震桥梁的地震反应分析 (8) 4.4 减隔震体系的抗震验算............................................................... 错误!未定义书签。0 4.5 其他构件和细部构造的设计....................................................... 错误!未定义书签。0

桥梁抗震基本要求、场地和地基

桥梁抗震基本要求、场地和地基 与地震作用
李建中
同济大学

地震桥梁震害分析 89规范存在的问题新规范编写要点 基本要求 场地和地基 地震作用

1 桥梁地震桥梁震害与抗震设计
1.1典型桥梁震害 落梁破坏
庙子坪大桥 桥梁结构特点:采用板式橡胶支座,梁体直接搁置在支座上
汶川 23 21
百花大桥 G213 庙子坪大桥
17×50
125
220
125 2×50 1 3
都江堰
19 17 15 13
11 9
7 6
5
4

1 桥梁地震桥梁震害与抗震设计
(a)第5孔落梁

1 桥梁地震桥梁震害与抗震设计
百华大桥
百华大桥位于岷江右岸,桥长495.55m,最大墩高30.87m。上部采用 4×25(钢筋砼连续梁)+5×25(钢筋砼连续梁)+50(简支T梁)+3×25 (钢筋砼连续梁)+5×20(钢筋砼连续梁)+2×20(钢筋砼连续梁)平 面位于R=150的圆曲线(左偏)、L=192.601的直线以及R=66的圆曲(右 偏)上。第5联桥跨,即5-20米连续梁整体倾覆,完全破坏

1 桥梁地震桥梁震害与抗震设计
联 墩编号 墩高(m) 13 30.3 14 29.9 15 29.7
第 5 联 16(固定) 26.9 17 22.2 18 18.1
第 6 联 19(固定) 7.1 20 桥台

桥梁抗震体系

桥梁抗震体系 内容摘要:在桥梁设计中,现行的通常做法是仅对桥粱进行简单抗震设防,桥粱结构设计工程师应努力掌握更多的结构抗震知识,提高抗震设防意识。本文分析了桥梁的震害特征和原因,阐述了桥梁抗震设计的具体原则和方法。 关键词:抗震设计;桥梁;地基与基础 一.概述 我国是世界上地震活动最为强烈的国家之一,今年5月份的四川汶川大地震造成了令人触目惊心的损失,作为结构设计工程师,必须充分认识到自己的职责所在,尽可能得利用自己掌握的专业知识,合理提高结构物的抗震能力。尽量减少地震带来的灾害。 二.桥梁的震害及特征 对国内外震害的调查表明,在过去的地震中,有许多桥梁遭受了不同程度的破坏,其主要震害有以下几点。 1.桥台震害 桥台的震害主要表现为桥台与路基一起向河心滑移,导致桩柱式桥台的桩柱倾斜、折断和开裂:霞力式桥台胸墙开裂,台体移动、下沉和转动;桥头引道沉降,翼墙损坏、开裂,施工缝错工、开裂以及因与主梁相撞而损坏。桥台的滑移与倾斜会进一步使主梁受压破坏,甚至使主梁坍毁。 2.桥墩震害 桥墩震害主要表现为桥墩沉降、倾斜、移位,墩身开裂、剪断,受压缘混凝土崩溃。钢筋裸露屈曲,桥墩与基础连接处开裂、折断等。 3.支座震害 在地震力的作用下,由于支座设计没有充分考虑抗震的要求,构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等.并由此导致结构力f专递形式的变化,进而对结构的其他部位产生不利的影响。 4.梁的震害

桥梁最严重的震害现象是主梁坠落。落梁主要是由于桥台、桥墩倾斜、倒塌,支座破坏.梁体碰撞,相邻墩间发生过大相对位移等引起的。 5.地基与基础震害 地基与基础的严重破坏是导致桥梁倒塌。并在震后难以修复使用的蕈要原因。地基破坏主要是指因砂土液化、不均匀沉降及稳定性不够等因数导致的地层水平滑移、下沉、断裂。基础的破坏与地基的破坏紧密相关,地基破坏一般都会导致基础的破坏,主要表现为移位、倾斜、下沉、折断和屈曲失稳。 6.另外桥梁结构的震害还表现在:结构构。造及连接不当所造成的破坏、桥台台后填土位移过大造成的桥台沉降或斜度过大而造成墩台承受过大的扭矩引起的破坏。 三.桥梁的震害原因 国内外学者对桥梁震害的调查研究结果表明,现在桥梁的破坏大多沿顺桥向和横桥向发生,而顺桥向震害尤其严重,分析其破坏原因主要表现在以下几个方面: 1.地震位移造成的粱式桥梁上部活动节点处因盖梁宽度设置不足导致落梁或粱体相互碰撞引起的破坏。而对拱式结构则主要表现在拱上建筑和腹拱的破坏,拱圈在拱顶、拱脚产生的破损裂缝,甚至整个隆起变形。 2.地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大。当采用排架桩基础时,则使桩基的承载力降低,从而造成与地震反应无关的过大的竖向和横向位移,而简支粱桥对此尤为明显。另外,由于地基软弱,地震时当部分地基液化失效后引起了结构物的整体倾斜.下沉等严重变形,进而导致结构物的破坏,震害较重。 3.支座破坏,在地震力的作用下,由于支座设计没有克分考虑抗震要求。构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等,并由此导致结构力的传递形式的变化,进而对结构的其他部位产生不利的影响。 4.软弱的下部结构破坏。即由于桥梁下部结构不足以抵抗其自身的惯性力和支座传递的主梁的地震力,导致结构下部的开裂、变形和失效,甚至倾覆,并

相关文档
最新文档