管道硫化氢腐蚀原因分析

管道硫化氢腐蚀原因分析
管道硫化氢腐蚀原因分析

化工安全与防腐案例分析

化工安全与防腐案例分析 —真空制盐钛制换热器腐蚀失效实例分析 班级:xxxxxx 姓名:xx 学号:xxxxxxxx

真空制盐钛制换热器腐蚀失效实例分析 一般认为在温度不太高的NaCl溶液中,钛的腐蚀速度非常低。但是随着钛在制盐行业的大量使用,发生腐蚀失效事故也开始增多,引起各制盐企业的重视,钛腐蚀的原因大致可归为四类:缝隙腐蚀、氢损失、应力腐蚀、铁污染等,且受材质成分、设计制作、工况介质等具体情况影响,腐蚀原因往往较为复杂,多为一个主要因素诱导,几种辅助因素共同作用的结果。以下分析国内发生的两起制盐钛制换热器腐蚀失效案例。 1.案例一首效换热管腐蚀失效分析: 2004年四川某制盐厂30 万吨/年装置 检修时,发现首效换热管发生较严重的腐蚀。该加热室总共1454 根钛管,本次检修共发 现158 根换热管有不同程度的腐蚀穿孔。 已拔出的部分换热管进行检查,发现孔损、破损、脆裂较严重,有的管子从1米左右高处自然落下即断成两半或破裂,断口晶粒粗大,破裂片用手可掰断,吸氢脆化现象明显。该装置首效加热蒸汽约0.4MPa,原料卤水 为天然卤水和岩卤的混合卤水,用石灰乳预处理卤水,进罐pH约为8。该套装置首效 加热室采用某种钛合金材料,Ⅱ~Ⅳ效采用TA2 工业纯钛换热管。在检修只发现了首效换热管有腐蚀,其余各效换热管未见腐蚀现象。 1.1.化学成分分析 因抽换出的换热管已明显脆化(可以从“从1米左右高处自然落下即断成两半或破裂”看出),据此判断材料吸氢肯定比较严重,为此分别取3段腐蚀较明显的管样和1段外观形貌较好的管样分别分析气体含量。分析结果见表1,从表中可以看出,腐蚀样中氢含量明显高于未发生腐蚀样品,据此可以判断是失效换热管可能失效的一种方式是氢损伤。 1.2.化学成分比较 采用化学分析和电镜(JSM6460)扫描 相结合的方式,对腐蚀样和非腐蚀样进行较全面的化学成分分析。分析结果与工业纯钛和钛钼镍合金的成分对比表见表2, 从表中们可以看出,腐蚀管样的Mo、Ni 含量很少,几乎可以认为未检出,而主要成分和工业纯钛(TA2)比较接近,合金元素 与钛钼镍合金(TA10)差距较大。 1.3.力学性能分析 腐蚀样和未腐蚀样进行力学性能检测,并将检测数据与TA2 进行对比,详见表3, 由表3可知,腐蚀管样的力学性能也与工业 纯钛一致,那么结合化学成分分析可以得出,该换热器首效管所选材料是工业纯钛。 1.4.腐蚀原因分析及其可能采取防腐 措施 由图1可以知道,工业纯钛在高温(>120℃)氯化钠溶液中较钛钼镍合金更易发 生缝隙腐蚀;由图2可以知道,在发生电化 学腐蚀的情况下,钛钼镍合金有更低的电流密度,这表明钛钼镍合金能显著改变电化学行为,促进钝化,有效降低腐蚀速率

硫化氢和含硫气体腐蚀金属的原因

硫化氢和含硫气体腐蚀金属的原因 干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性. 1. 湿硫化氢环境的定义 (1)国际上湿硫化氢环境的定义 美国腐蚀工程师协会(NACE)的MR0175-97"油田设备抗硫化物应力开裂金属材料"标准: ⑴酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥0.0003MPa; ⑵酸性多相系统:当处理的原油中有两相或三相介质(油,水,气)时,条件可放宽为:气相总压≥ 1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S 含量超过15%. 四,硫化氢腐蚀机理 (2)国内湿硫化氢环境的定义 "在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境". (3) 硫化氢的电离 在湿硫化氢环境中,硫化氢会发生电离,使 水具有酸性,硫化氢在水中的离解反应式为: H2S = H+ + HS- (1) HS- = H+ + S2- (2) 2.硫化氢电化学腐蚀过程 阳极: Fe - 2e →Fe2+ 阴极: 2H+ + 2e →Had + Had →2H →H2↑ ↓ [H]→钢中扩散 其中:Had - 钢表面吸附的氢原子 [H] - 钢中的扩散氢 阳极反应产物: Fe2+ + S2- →FeS ↓ 注:钢材受到硫化氢腐蚀以后阳极的最终产物就是硫化亚铁,该产物通常是一种有缺陷的结构,它与钢铁表面的粘结力差,易脱落,易氧化,且电位较正,因而作为阴极与钢铁基体构成一个活性的微电池,对钢基体继续进行腐蚀. 硫化氢电化学腐蚀过程 阳极: Fe - 2e →Fe2+ 阴极: 2H+ + 2e →Had + Had →2H →H2↑ ↓ [H]→钢中扩散 其中:Had - 钢表面吸附的氢原子 [H] - 钢中的扩散氢 阳极反应产物: Fe2+ + S2- →FeS ↓ 五,硫化氢引起氢损伤的腐蚀类型 反应产物氢一般认为有两种去向,一是氢原子之间有较大的亲和力,易相互结合形成氢分子排出;另一个去向就是由于原子半径极小的氢原子获得足够的能量后变成扩散氢[H]而渗入钢的内部并溶入晶格中,溶于晶格中的氢有很强的游离性,在一定条件下将导致材料的脆化(氢脆)和氢损伤.. 1. 氢压理论:与形成氢致鼓泡原因一样,在夹杂物,晶界等处形成的氢气团可产生一个很大的

金属腐蚀及防腐技术

金属腐蚀及防腐 内容 1.腐蚀的定义及其危害 2.工程中钢铁的腐蚀问题 3.国内外在防腐蚀涂料方面的研究现状及分析 4.防腐蚀涂料简介 5.防腐蚀涂料的用途 6.防腐蚀涂料的选择与施工 7.Z Y-S高渗透性带锈防锈漆系列产品简介 8.Z Y-D橡塑漆简介 9.目前在研项目 1.腐蚀的定义、危害及分类 腐蚀是指材料与它所处的环境介质之间发生作用而引起的变质和破坏。 根据机理,腐蚀分为化学腐蚀、电化学腐蚀、物理腐蚀。 腐蚀的危害: 目前全球每年因腐蚀造成的损失已高达7000亿美元,占G D P总值的2~4%,为地震、台风、水灾等自然灾害造成损失的6倍之多 我国2003年统计,腐蚀损失约占国民生产总值(G N P)的约6%,完成“九五” 期间降低1个百分点挽回了700多亿人民币的损失。钢铁因腐蚀而报废的数量约当年产量的25-30%造成重大事故,阻碍经济发展。军事设备、舰艇、沿海空军飞机、二炮发射井架、两栖装甲车、沿海通讯装备。 化学腐蚀: 材料与环境介质发生直接的化学作用而引起的破坏。 氧化反应与还原反应同时发生。

腐蚀的机理: 电化学腐蚀:电化学腐蚀是对金属材料而言,指金属与离子导电的介质发生电化学作用而产生的破坏。 特点:氧化反应和还原反应为两个相对独立并同时进行的过程,即阴极过程和阳极过程。 物理腐蚀:指材料由于单纯的物理作用所引起的破坏。 特点:过程中既不发生化学作用,也不发生电化学作用。 工程中钢铁的腐蚀问题: 2.1钢铁的腐蚀环境分析 钢铁腐蚀主要指钢铁构件和混凝土的腐蚀,其中混凝土的腐蚀包括混凝土中钢筋的腐蚀及混凝土材料本身的腐蚀。钢铁设备所处的腐蚀环境是大气环境,或者是水环境。大气环境和水环境都属于自然环境。表面上看,自然环境的腐蚀问题不及工业环境腐蚀那么明显,但这类腐蚀情况十分复杂,影响因素很多,往往随时间的延长而加剧,最后导致材料失效。对腐蚀来说,大气的污染程度是重要的因素。 2.2影响钢铁腐蚀的因素: 湿度:湿度是决定大气腐蚀类型和速率的一个重要因素,一般来说,金属的临界湿度为50%~70%。 温度:在其他条件相同的情况下,平均气温高的地区,大气腐蚀速率较大。大气中S O2含量:我国城市大气中S O2浓度2级标准含量为0.023%,3级标准为 0.096%,碳钢在3级标准大气中腐蚀速率比2级标准大气中要快4倍。2.3钢铁材料的腐蚀:钢铁材料的腐蚀大多为电化学腐蚀。 2.4钢铁腐蚀典型案例分析: 广东某斜拉桥1988年12月建成,1995年5月,一根拉索突然断裂,自行坠落该斜拉桥拉索钢丝的性能符合标准要求。拉索聚乙烯套管内的水泥浆体离析,浆

硫化氢腐蚀的机理及影响因素..

硫化氢腐蚀的机理及影响因素 作者:安全管理网来源:安全管理网 1. H2S腐蚀机理 自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。 (1) 硫化氢电化学腐蚀过程 硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。 1

在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-X S在内的具有保护性的硫化物膜。然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-X S为主的包括FeS,FeS2在内的非保护性膜。此时,腐蚀速率随H2S浓度的增加而迅速增长,同时腐蚀速率也表现出随pH降低而上升的趋势。Sardisco和Pitts发现,在pH处于6.5~8.8时,表面只形成了非保护性的Fe1-X S;当pH处于4~6.3时,观察到有FeS2,FeS,Fe1-X S形成。而FeS保护膜形成之前,首先是形成Fe S1-X;因此,即使在低H2S浓度下,当pH在3~5时,在铁刚浸入溶液的初期,H2S也只起加速腐蚀的作用,而非抑制作用。只有在电极浸入溶液足够长的时间后,随着FeS1-X逐渐转变为FeS2和FeS,抑制腐蚀的效果才表现出来。根据Hausler等人的研究结果,尽管界面反应的重 2

硫化氢题库-完整

硫化氢复习资料 一、填空题 1、中石油集团公司安全警示日是( 12月23日)。 2、硫化氢的颜色是(无色);气味(臭鸡蛋)。 3、石油天然气行业硫化氢的来源是(原生硫化氢),(次生硫化氢)。 4、硫化氢的安全临界浓度值,OSHA的标准是( 10ppm )。 5、硫化氢的安全临界浓度值,中国的标准是( 20ppm )。 6、硫化氢的危险临界为( 100 )。 7、硫化氢的致死浓度为( 500 )。 8、当硫化氢达到( 2000 )时,只吸一口就可死亡。 9、硫化氢进入人体的途径有(皮肤)(呼吸道粘膜组织)(消化道)。 10、中毒分为(急性中毒)(慢性中毒)。 11、中毒人员的搬运方式有(托两臂法)(托衣法)(抬四肢法)。 12、心肺复苏包括(人工呼吸)(胸外心脏按压)。 13、人工呼吸的方式有(口对口)(口对鼻)(口对口鼻)。 14、发现患者一停止心跳和呼吸,可在( 4 )分钟内进行人工呼吸和胸外按压,病人才有获救的可能。如果有条件时,最好的办法是( 吸氧 )治疗 15、现场心肺复苏主要有(打开气道)、(人口呼吸)、(胸外按压)三个步骤。 16、胸外心脏按压成人每分钟( 100)下,按压深度(4-5 )厘米。 17、硫化氢对金属的腐蚀形式有(电化学腐蚀)(氢脆破坏)(硫化物应力腐蚀开裂)。 18、硫化氢易溶于(水)(醇类)(油类)。 19、硫化氢的检测有两种方法即(化学方法)和(电子探测仪) 20、、可携式硫化氢电子探测报警器具有(体积小)、(重量轻)、(反应速度快)和(灵敏度高)的优点。 21、便携式硫化氢检测仪电池应该能够至少运行(10)小时。 22、带氧式防毒面具,当气瓶中压力降至4—6Mpa时,报警器发出汽笛声,此时气瓶内还能供气( 6-8 )分。 23、防硫化氢气体主要使用(过滤式)(隔离式)防护器材。 24、呼吸道防毒用品一般分为(过滤式)和(隔离式)两种。 25、劳动保护就是指保护劳动者在生产过程中的(安全)(健康)。 二、判断题 1、硫化氢广泛存在于各行各业中,约有50(70)种行业接触硫化氢(×) 2、细菌作用不会产生硫化氢。(×) 3、钻井液中硫化氢的主要来源是钻入含硫化氢地层,地层流体侵入钻井液。(√) 4、在石油天然气钻井过程中,某些泥浆处理剂在高温热分解也可产生硫化氢。(√) 5、硫化氢可使原有的青光眼、白内障发作并加重。(√) 6、硫化氢有臭鸡蛋气味,可以用嗅觉检测硫化氢是否存在(×) 7、硫化氢低浓度时没有气味,高浓度时有臭鸡蛋气味。(×) 8、硫化氢比空气轻,所以漂浮在空气上层。(×) 9、当空气或氧气中硫化氢含量达到%—%的范围时,遇火发生强烈爆炸。(√) 10、硫化氢的毒性是一氧化碳的5—6倍。(√) 11、硫化氢沸点很低,通常成气态,容易被风或气流吹散。(√) 12、硫化氢的沸点是-80℃()。(×) 13、硫化氢是一种助燃气体。(×) 14、硫化氢能溶于水和酒精中。(√) 15、硫化氢进入人体的途径有呼吸道和皮肤两种。(×) 16、硫化氢的危害原理是:夺取人体赖以生存的物质,生命运输线——血液里的溶解氧。(√) 17、1ppm=m3(×) 18、硫化氢安全临界浓度值,中国的标准是10ppm20(×) 19、硫化氢的致死浓度是1000ppm500(×) 20、一氧化碳的致死浓度是500ppm1000(×) 21、当硫化氢的浓度达到2000ppm时只吸一口就可造成死亡,所以又称是“闪电式”中毒。(√)

防腐蚀论文

随着对经济效益的追求,必然趋动整个涂装工业的迅速发展,涂 装安全和清洁生产得到了政府和企业的重视,但目前涂装伤亡事故、 中毒事故、火灾爆炸事故频繁发生;从业人员的急、慢性苯中毒和粉 尘侵害等职业安全卫生问题比较突出,职业病人数居高不下;在涂装 过程中产生的废气、废水、废渣等三废问题也给环境造成了不同程度 的污染,影响生态平衡或直接危害了人类的健康,给国家财产和人民 生命财产造成了不同程度的损失。为了帮助企业加强作业安全防护措施,搞好车间设计,减少环境污染,构建和谐美丽环境,我中心决定 近期举办“涂装作业安全防护与清洁生产技术指导会”,此次会议将由 刘小刚主任、涂装安全作业泰斗宋世德副理事长和涂装泰斗林鸣玉副 理事长强强携手,结合实际案例对涂装安全防护清洁生产进行指导。 请各单位根据实际情况派员参加。具体事宜如下: 一、会议内容: Ⅰ涂装作业安全 1.涂装作业安全概述 2.涂装作业场所的燃烧爆炸的防护重点 2.1涂装作业场所燃烧的多发、常发、一触即发的决定因素 2.1.1 涂料及其辅料的主要物化特性 2.1.2 降服涂料燃烧爆炸的基本手段 3.涂装作业防护重点 3.1材料防毒重点 3.2安全卫生管理 3.3标准的实施与监管 3.4急救和应急措施 3.5安全培训教育 4.燃气的毒性,危险性及其一般防护知识 5.涂装安全标准查漏补缺 6.推荐常用的几个涂装安全设计参数 7.涂装作业外的几个常用重要安全‘标准’和‘手册’ Ⅱ涂装清洁生产 1.涂装过程的环保要求 1.1 世界各国对涂装过程的环保要求 1.2我国对涂装过程的环保要求2.涂装过程中三废治理的措施 2.1减少涂装材料中有害物质的含量 2.1.1 前处理材料的减少有害物质措施 2.1.2 涂料中减少有害物质措施 2.2减少废水、废气、废渣排放量的措施 2.2.1 减少废水排放措施 2.2.2 减少废渣排放措施 2.2.3 减少废气排放措施 2.3对排放出的三废中的有害物质进行处理技术 3.HJ/T293-2006《清洁生产标准-汽车制造业(涂装)》3.1 HJ/T293-2006《清洁生产标准-汽车制造业(涂装)》的内容3.2关于HJ/T293-2006实施的建议Ⅲ涂装车间的安全和环保设

H2S腐蚀研究进展

H2S腐蚀研究进展 摘要 近年来我国发现的气田均含有硫化氢、二氧化碳等腐蚀性气体,特别是我们盆地,含硫化氢天然气分布最广泛。众所周知,硫化氢腐蚀是井下油套管的主要腐蚀类型之一。本文简述了硫化氢的物性,研究了硫化氢腐蚀的机理和影响因素,并在此基础上介绍了采用缓蚀剂、涂镀层管材、根据国际标准合理选材、电化学保护等几种国外常用的防腐措施,并指出了各种方法的优缺点,最后还探讨了硫化氢油气田腐蚀研究的热点问题及发展方向。 关键词:硫化氢腐蚀,腐蚀机理,防腐技术 ABSTRACT In recent years, the gas fields found in our country contain hydrogen sulfide, carbon dioxide and other corrosive gases, especially in the Sichuan basin, with the most extensive distribution of hydrogen sulfide gas. It is well known that the hydrogen sulfide corrosion is one of the main corrosion types of the oil casing in the well. Properties of hydrogen sulfide is described in this paper to study the hydrogen sulfide corrosion mechanism and influencing factors, and on this basis, introduces the corrosion inhibitor, coating tubing, according to international standard and reasonable material and electrochemical protection at home and abroad, several commonly used anti-corrosion measures, and points out the advantages and disadvantages of each method, and finally discusses the hot issues and development direction of the research on oil and gas fields of hydrogen sulfide corrosion by. Key word s:hydrogen sulfide corrosion, corrosion mechanism, corrosion

金属管道的腐蚀及防腐对策

目录 一、金属管道腐蚀的危害1 1.金属管道腐蚀程度鉴别 (2) 2. 金属管道的腐蚀及使命 (2) 3.管道腐蚀实例及分析 (5) 4.金属管道腐蚀的危害 (8) 二、金属管道腐蚀的原因 1.化学腐蚀 (8) 2.电化学腐蚀 (9) 3.其它原因 (10) 三、防腐对策 (10) 1.做好金属管道的防腐层处理 (11) 2.合理选用管材及阀件 (13) 3. 合理设计 (13) 4.精心施工,严格按规范操作 (13) 5.加强运行维护管理 (14) 6.质量控制及检验 (14) 结论 (19) 致谢 (21) 参考文献 (22)

金属管道的腐蚀及防腐对策 摘要介绍了金属管道腐蚀的危害及实例。简述了化学腐蚀、电化学腐蚀和由于安装原因造成的管道腐蚀,提出了覆盖层保护法,加强运行维护管理和精心施工,合理选用管材管件等防腐措施。 关键词:金属管道化学腐蚀电化学腐蚀防腐质量控制 一、金属管道腐蚀的危害 金属及金属管道腐蚀是一个世界性的问题。用于建筑设备配管的金属管道由于直接接触各种易产生腐蚀的介质,其腐蚀问题尤为突出。建筑设备配管的金属管道按材质分主要有钢管(含镀锌钢管)、铸铁管、不锈钢管、铜管、铝管等,按用途分有生活、生产的冷、热给水管、蒸汽及其它气体、污废水排水、凝结水、消防给水管等。因钢管的用量最大、最容易腐蚀,本文将予以重点讨论。 1.1 金属管道腐蚀程度的鉴别方法可用表1 来表述(指安装前内外壁检查)。 1.2 金属管道的腐蚀及其使用寿命 腐蚀将严重影响金属管道使用寿命。随着时间的推移,金属管道的腐蚀是不可避免的。即使做了防腐涂层,其涂层也会逐渐老化而丧失其防腐蚀性能。金属管道的腐蚀有多方面因素,主要原因可用表2 来表述。

硫化氢腐蚀

硫化氢(H2S)的特性及来源 1.硫化氢的特性 硫化氢的分子量为34.08,密度为1.539mg/m3。而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。 H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。 H2S不仅对人体的健康和生命安全有很大的危害性,而且它对钢材也具有强烈的腐蚀性,对石油、石化工业装备的安全运转存在很大的潜在危险。 2.石油工业中的来源 油气中硫化氢的来源除了来自地层以外,滋长的硫酸盐还原菌转化地层中和化学添加剂中的硫酸盐时,也会释放出硫化氢。。 3.石化工业中的来源 石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。 干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。 硫化氢腐蚀机理 1.湿硫化氢环境的定义 (1)国际上湿硫化氢环境的定义 美国腐蚀工程师协会(NACE)的MR0175-97“油田设备抗硫化物应力开裂金属材料”标准: ⑴ 酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥ 0.0003MPa; ⑵ 酸性多相系统:当处理的原油中有两相或三相介质(油、水、气)时,条件可放宽为:气相总压≥1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S含量超过15%。(2)国内湿硫化氢环境的定义 “在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境”。 (3)硫化氢的电离 在湿硫化氢环境中,硫化氢会发生电离,使水具有酸性,硫化氢在水中的离解反应式为:

炼油装置湿硫化氢应力腐蚀分析详解

炼油装置湿硫化氢应力腐蚀分析 中国石化茂名分公司吕运容 摘要:本文结合部分案例,对炼没装置湿硫化氢应力腐蚀环境进行了分析,指出了炼油装置湿硫化氢应力腐蚀环境的部位,提出了防范措施。 关键词:硫化氢;应力腐蚀 近年来,沿海和沿江炼油厂加工进口中东高含硫原油的比例不断增加,设备腐蚀日益加重,设备腐蚀问题已经成为影响装置安全、长周期运行的关键因素之一,炼没装置湿硫化氢应力腐蚀问题时有发生,应引起广大技术人员和防腐工作者的关注。本文结合部分案例,对炼没装置湿硫化氢应力腐蚀环境进行了分析,提出了防范措施。 一、腐蚀案例 1、加氢装置 (1)茂名石化一加氢装置汽提塔顶回流罐(容104)器壁97年查出60多个鼓泡。容器材质为A3F沸腾钢,钢的纯净度不够,钢内夹杂物多,GB150-1998已不允许用沸腾钢制造成压力容器,更不能用于有应力腐蚀开裂敏感性的介质。 (2)茂名石化三加氢装置循环氢压缩机C1101、四加氢装置循环氢压缩机C301气体引压阀阀盖螺纹连接处断裂(见图1),阀杆与阀盖飞出,大量氢气喷出,车间发现并处理及时,未发生恶性事故。断口为典型脆性断口,判定为湿硫化氢应力腐蚀断裂。该阀为上海某阀门厂制造,阀体材质为18-8奥氏体不锈钢(含Cr18.2、Ni8.62),硬度HRC56,断裂六角螺母材质为Cr13(含Cr14.8),硬度HRC70,金相组织为马氏体,对SSCC最敏感,这样高硬度(远高于HB235)与敏感的马氏 体组织的螺栓在H 2S+H 2 O的作用下,在应力集中的螺纹尾部产生应力腐蚀断裂。 (3)茂名石化三加氢装置干气冷却器(E1110)小浮头螺栓断裂,材质为1Cr13 、35CrMoA使用约一周时间,均断裂,后改用Q235,使用良好。1Cr13金相组织 为马氏体,对SSCC最敏感,且硬度高,在H 2S+H 2 O的作用下,易产生应力腐蚀断裂。 2、催化装置

2020年硫化氢腐蚀的机理及影响因素

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年硫化氢腐蚀的机理及影 响因素 Safety management is an important part of production management. Safety and production are in the implementation process

2020年硫化氢腐蚀的机理及影响因素 1.H2 S腐蚀机理 自20世纪50年代以来,含有H2 S气体的油气田中,钢在H2 S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2 S不仅对钢材具有很强的腐蚀性,而且H2 S本身还是一种很强的渗氢介质,H2 S腐蚀破裂是由氢引起的;但是,关于H2 S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。 因此,在开发含H2

S酸性油气田过程中,为了防止H2 S腐蚀,了解H2 S腐蚀的基本机理是非常必要的。 (1)硫化氢电化学腐蚀过程 硫化氢(H2 S)的相对分子质量为34.08,密度为1.539kg/m3 。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。 在油气工业中,含H2 S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt 等提出的H2 S04 中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁

硫化氢腐蚀与防护

1. 选用抗硫化氢材料 抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。同时采用低硬度(强度)和完全淬火+回火处理工艺对材料抗硫化氢腐蚀是有利的。 美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行淬火+595℃以上温度的回火处理;对于最小屈服强度大于655MPa的钢材应进行淬火+回火处理,以获得抗硫化物应力腐蚀开裂的最佳能力 抗H2S腐蚀钢材的基本要求: ⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。 ⑵采用有害元素(包括氢, 氧, 氮等)含量很低纯净钢; ⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小; ⑷回火稳定性好,回火温度高(>600℃); ⑸良好的韧性; ⑹消除残余拉应力。 2.添加缓蚀剂 实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。缓蚀剂对应用条件的选择性要求很高,针对性很强。不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。 用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓蚀剂),有胺类、米唑啉、酰胺类和季胺盐,也包括含硫、磷的化合物。如四川石油管理局天然气研究所研制的CT2-l和CT2-4油气井缓蚀剂及CT2—2输送管道缓蚀剂,在四川及其他含硫化氢油气田上应用均取得良好的效果。 3.控制溶液pH值 提高溶液pH值降低溶液中H+含量可提高钢材对硫化氢的耐蚀能力,维持pH值在9~11之间,这样不仅可有效预防硫化氢腐蚀,又可同时提高钢材疲劳寿命。 4. 金属保护层 在需保护的金属表面用电镀或化学镀的方法镀上Au,Ag,Ni,Cr,Zn,Sn等金属,保护内层不被腐蚀。 5. 保护器保护 将被保护的金属如铁作阴极,较活泼的金属如Zn作牺牲性阳极。阳极腐蚀后定期更换。 6. 阴极保护 外加电源组成一个电解池,将被保护金属作阴极,废金属作阳极。 硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显著,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。

防止硫化氢应力腐蚀的热喷涂技术研究

防止硫化氢应力腐蚀的热喷涂技术研究 2007-8-23 摘 要:对压力容器用钢WH530及其用铝及锌铝复合涂层实行热喷涂的试样进行了涂层结合强度及 H2S应力腐蚀试验。结果表明,铝涂层可显著提高抗H2S应力腐蚀能力,锌铝复合涂层较差;文中同时对锌铝涂层的失效机理进行了探讨。 关键词:压力容器 硫化氢应力腐蚀 热喷涂技术 1 引言 碳钢及低合金钢在湿硫化氢环境中发生的硫化物应力腐蚀开裂(SSC)是石油化工设备安全隐患之一。国内外最新研究结果表明:对低浓度硫化氢环境,可通过净化材质、大幅降低S、P含量、改善材料组织结构等措施对SSC加以防护;但对于高浓度的硫化氢环境,就目前的钢材冶炼水平,即使钢材纯净度达到S含量在0 002%以下的超低水平,仍难以避免发生SSC[1]。因此,近年来有采用热喷涂技术防止发生H2S应力腐蚀的报道[2、3]。热喷涂技术用于防止金属一般腐蚀已有多年历史,技术上也较成熟;但用于防止H2S应力腐蚀尚属新课题。从技术和经济角度考虑,对大型设备,热喷涂材料采用铝及锌铝合金较为普遍。为探讨对防止H2S应力腐蚀的效果,本文以武钢压力容器用钢WH530为对象,对其基材及其用铝涂层及锌铝复合涂层热喷涂的试样分别进行了涂层结合强度及应力腐蚀性能试验。并对试验结果进行了机理分析。 2 试验材料 喷涂试验基材采用由武汉钢铁(集团)公司提供的WH530高强度低合金钢,其化学成分及力学性能见 表1(略)及表2(略)。涂层采用24目刚玉砂进行喷砂处理,压力为5~6kg;随后进行电弧喷涂,电弧喷涂工艺参数见表3(略)。底锌面铝复合涂层中锌铝层各厚100μm,热喷涂铝层厚度200μm。 3 试验结果 3.1 涂层结合强度试验 本试验按GB8642—88[4]进行。试验在CSS-1110型电子万能试验机上进行,加载速度为3mm/min,试件直径 25mm,试验结果见表4(略)。试验结果表明,铝涂层与钢铁基体的结合强度是底锌面铝复合涂层与钢铁基体结合强度的5倍。 3.2 恒负荷拉伸试验 本试验执行GB4157—84[5]并参照美国腐蚀工程师协会NACETMO177—96[6]。试验在P1500应力腐蚀横负荷拉伸试验机上进行。试件为 5mm圆截面光滑试件。将基材试件及涂层试件浸入NACE标准饱和H2S溶液中进行恒负荷拉伸试验,其试验结果见表5(略)。取出在恒负荷试验1100小

硫化氢腐蚀与防护相关知识

硫化氢腐蚀与防护相关知识 1. 硫化氢腐蚀的预防措施 1.1. 选用抗硫化氢材料 抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。同时采用低硬度(强度)和“完全淬火+回火”处理工艺对材料抗硫化氢腐蚀是有利的。 美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行“淬火+595℃以上温度的回火”处理;对于最小屈服强度大于655MPa的钢材应进行“淬火+回火”处理,以获得抗硫化物应力腐蚀开裂的最佳能力。 1.2. 抗H2S腐蚀钢材的基本要求 ⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。 ⑵采用有害元素(包括氢,氧,氮等)含量很低纯净钢; ⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小; ⑷回火稳定性好,回火温度高(>600℃); ⑸良好的韧性; ⑹消除残余拉应力。 1.3. 添加缓蚀剂 实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。缓蚀剂对应用条件的选择性要求很高,针对性很强。不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。 用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓

硫化氢腐蚀的影响因素

硫化氢腐蚀的影响因素 1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显着,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴ 显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。 ⑶ 合金元素及热处理 有害元素:Ni、Mn、S、P; 有利元素:Cr、Ti 碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。 镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。 铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差异。也有的文献作者认为,含铬量高时是有利的,认为铬的存在使钢容易钝化。但应当指出的是,这种效果只有在铬的含量大于11%时才能出现。 钼(Mo):钼含量≤3%时,对钢在硫化氢介质中的承载能力的影响不大。

关于动火作业事故案例分析课件

关于动火作业事故案例分析课件 关于动火作业事故案例分析课件篇一:动火作业安全事故分析及对策 动火作业(石化企业)安全事故分析及对策 动火作业--禁火区与动火区的划定 企业根据生产工艺过程的危险程度与维修工作的需要,在厂区内划分固定动火区和禁火区。在化工企业中设立固定动火区应符合下列条件。 (1)固定动火区距可燃易燃物质的设备、贮罐、仓库、堆场等应符合国家有关防火规范的防火间距要求,距易燃易爆介质的管道最好在15m以上; (2)在任何气象条件下,固定动火区区域内的可燃气体含量在允许含量以下。设备装置正常放空时的可燃气体扩散不到动火区;(3)若设在室内,应与防爆生产现场隔开,不准有门窗串通,允许开的门窗要向外开,道路要通畅; (4)固定动火区周围10m内不得存放易燃易爆及其他可燃物质;(5)固定动火区应备有适用的、数量足够的灭火器具,并设置“动火区”字样一类的明显标志。 除固定动火区外的其他区域均为禁火区。凡需要在禁火区动火时,必须申请办理“动火证”。禁火区内的动火可划分为两级,一级动火是指在正常生产情况下的要害部位、危险区域动火。一级

动火由厂安全技术和防火部门审核、主管厂长或总工程师批准;二级动火是除固定动火区和一级动火区以外的动火。二级动火由所在车间主管 主任批准即可。 动火作业--动火的含义:在化工企业中,凡是动用明火或可能产生火种的作业都属于动火作业。例如电焊、气焊、切割、熬沥青、烘砂、喷灯等明火作业;凿水泥基础、打墙眼、电气设备的耐压试验,电烙铁锡焊、凿键槽、开坡口等易产生火花或高温的作业。在禁火区内从事上述作业都应办理动火证审批手续,落实安全动火的措施。 一、引言 石油化工企业目前正向着生产装置大型化方向发展,生产从原料的投入到产品的产出,要经过多道工序和复杂的加工单元,辅助供热、供水、供风、供电系统庞大。生产过程中的炉、塔、罐、槽、压缩机、泵等设备,以管道相连通,从而形成了工艺复杂、工艺流程长的生产线。生产过程中各工序之间一环扣一环,紧密相连、互相制约、具有高度的连续性;随着计算机技术、控制技术、通信技术的应用,生产装置自动化程度也越来越高。特别是在石油化工行业,生产过程具有高温、高压、易燃、易爆、有毒、有害、腐蚀性强等许多潜在的危险因素,安全生产难度也越来越大,尤其在生产、抢修、检修过程中,免不了要进行动火作业。动火作业过程中,如有一点防范措施不到位,就容易发生火灾、

高温硫化氢腐蚀

2、腐蚀案例分析——1号柴油加氢T202进料线腐蚀穿孔 (1)事件情况 1号柴油加氢装置汽提塔T202进料管线于2009年2月20日凌晨3:30时左右出现穿孔泄漏,装置随即降压生产,经测厚检查发现T202进料管线整段高温部位管线已整体减薄,最薄处为1.6mm,装置停工把该段管线更换。 图7.1 1号柴油加氢装置汽油管段(φ219×6)减薄穿孔图7.2 减薄管线剖开形貌 (2)管道使用情况 40万吨/年柴油加氢精制装置由原茂名石化设计院设计,建设公司安装。该装置主要是以二次加工粗柴油或高含硫直馏粗柴油为原料,通过加氢精制,生产储存安定性和燃烧性能都较优良的柴油组分,副产少量粗汽油和瓦斯。装置的加工流程灵活,也可以直馏煤油为原料,生产优质灯油或航煤。并考虑了切换焦化粗汽油为原料,生产车用汽油调和组分的可能性。 装置于1991年4月基本建成,7月正式投产。装置在2003年2月份的大修中进行了扩能改造,柴油处理能力已达到60万吨/年。2006年8月,装置改造成以焦化汽油为原料,生产高质量的乙烯原料石脑油,目前汽油加氢精制能力为40万吨/年。 汽提塔T202进料线流程如图7.2所示,已部分预热的低分油(含汽油,H2S,H2)经反应产物第一换热器E201与反应产物换热,热塔进料与另一路90℃左右的冷进料混合后得到170℃左右的塔进料油进入汽提塔T202。此段流程于2003年3月大修时改造完成,原先设计的流程为经反应产物第二换热器E202换热后进入T202,见图中虚线部位,按原流程换热后温度约为250℃;改造后流程为经反应产物第一换热器E201换热,换热后温度大大提高,达到280-320℃。

硫化氢腐蚀的影响因素

硫化氢腐蚀的影响因素 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

硫化氢腐蚀的影响因素1.材料因素 在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显着,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等。 ⑴ 显微组织 对应力腐蚀开裂敏感性按下述顺序升高: 铁素体中球状碳化物组织→完全淬火和回火组织→正火和回火组织→正火后组织→淬火后未回火的马氏体组织。 注:马氏体对硫化氢应力腐蚀开裂和氢致开裂非常敏感,但在其含量较少时,敏感性相对较小,随着含量的增多,敏感性增大。 (2) 强度和硬度 随屈服强度的升高,临界应力和屈服强度的比值下降,即应力腐蚀敏感性增加。 材料硬度的提高,对硫化物应力腐蚀的敏感性提高。材料的断裂大多出现在硬度大于HRC22(相当于HB200)的情况下,因此,通常HRC22可作为判断钻柱材料是否适合于含硫油气井钻探的标准。 油气开采及加工工业对不昂贵的、可焊性好的钢材的需要,基本上决定了研究的工作方向就是优先研制抗硫化物腐蚀开裂的低合金高强度钢。 ⑶ 合金元素及热处理 有害元素:Ni、Mn、S、P; 有利元素:Cr、Ti 碳(C):增加钢中碳的含量,会提高钢在硫化物中的应力腐蚀破裂的敏感性。 镍(Ni):提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力。原因是镍含量的增加,可能形成马氏体相。所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%。含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响。在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高。 铬(Cr):一般认为在含硫化氢溶液中使用的钢,含铬%~13%是完全可行的,因为它们在热处理后可得到稳定的组织。不论铬含量如何,被试验钢的稳定性未发现有差

湿硫化氢腐蚀类型及机理研

湿硫化氢腐蚀类型及机理研 杨智华(山东豪迈化工技术)引言随着原油消耗量的不断增加,从国外进口原油的数量也会不断增长,国外原油尤其是中东原油中硫含量会比较高。因此对设备的腐蚀也越来越严重。对设备腐蚀较严重的含硫化合物主要是硫化氢 (H2S)。H2S的腐蚀主要表现为湿H2S的腐蚀。若湿H2S 与酸性介质共存时,腐蚀速率会大幅提高。 1. 腐蚀分类在氢存在环境操作的设备中,由于氢的存在或氢与金属反应造成的材质失效主要有以下几大类:氢损伤、氢和湿硫化氢腐蚀、高温氢和硫化氢的腐蚀、不锈钢堆焊层的氢致剥离[1]。 1.1氢损伤 氢损伤是指金属中由于含有氢或金属中的某些成分与氢反应,从而使金属材料的力学性能发生改变的现象[1]。氢损伤导致金属或金属材料的韧性和塑性降低,易使材料开裂或脆断。电镀、酸洗、潮湿环境下的焊接、高温临氢环境(加氢反应、氮氢气合成氨的反应)、非高温临氢环境(含硫化氢和氰化物的溶液)均能引起不同性质的氢损伤。氢损伤的形式主要有氢脆、氢鼓泡、氢腐蚀、表面脱碳4种不同类型。 1.1.1氢脆氢脆发生在钢材中,当钢中氢的质量分数为0.1-10μg/g,并在拉应力与慢速应变时钢材表现出脆性上升,甚至

出现裂纹。在-100~100℃内极易发生氢脆[2],随着温度升高,氢脆效应下降,当温度超过71-82℃时不太容易发生,所以实际氢脆损伤往往都是发生在装置开、停工过程的低温阶段。若将钢材中的氢释放出来,钢材机械性能仍可恢复,因此氢脆是可逆的。 1.1.2氢鼓泡氢鼓泡形成的两个主要条件:一是存在原子状态的氢;二是金属内部存在“空穴”。原子状态的氢来源于湿H2S 对石油管道钢材表面的腐蚀,而钢材内部的“空穴”则来源于钢材的冶金缺陷和制造缺陷。腐蚀过程中析出的氢原子向钢中扩散,在钢材的非金属夹杂物、分层和其他不连续处易聚集形成分子氢。由于氢分子较大,难以从钢的组织内部逸出,从而形成巨大内压导致其周围组织屈服,形成表面层下的平面孔穴结构造成氢鼓泡,其分布平行于钢板表面。氢鼓泡的产生无需外加应力,与材料中的夹杂物缺陷密切相关。 1.1.3 氢腐蚀氢腐蚀则是在高温(205-595℃)下发生的,主要是在高温下氢原子渗入钢内与碳化合成甲烷,引起钢材的内部脱碳,温度降低后也会使钢材表面发生鼓泡。 即:2H2+Fe3C----3Fe+CH4C+2H2-----CH4或C+4H----CH4生成甲烷的化学反应在晶界上进行,它在钢中的扩散能力很小,没有能力从钢材中扩散出去,在钢材缺陷部位聚集,在孔穴处生长且连接起来,形成局部高压,造成应力集中,导致微观孔隙发展,以至形成内部裂纹使钢材强度和延性显著

相关文档
最新文档