2005-2011全国高考理综物理计算题

2005-2011全国高考理综物理计算题
2005-2011全国高考理综物理计算题

(2005年)23.(16分)

如图所示,在水平桌面的边角处有一轻质光滑的定滑轮K ,一条不可伸长的轻绳绕过

K 分别与物块A 、B 相连,A 、B 的质量分别为m A 、m B 。开始时系统处于静止状态。

现用一水平恒力F 拉物块A ,使物块B 上升。已知当B 上升距离为h 时,B 的速度为v 。求此过程中物块A 克服摩擦力所做的功。重力加速度为g 。

解:由于连结AB 绳子在运动过程中未松,故AB 有一样的速度大小,对AB 系统,由功能关系有:

Fh -W -m B gh=12(m A +m B )v 2

求得:W=Fh -m B gh -1

2 (m A +m B )v 2

24.(19分)

在同时存在匀强电场和匀强磁场的空间中取正交坐标系O x yz (z 轴正方向竖直向上),如图所示。已知电场方向沿z 轴正方向,场强大小为E ;磁场方向沿y 轴正方向,磁感应强度的大小为B ;重力加速度为g 。问:一质量为m 、带电量为+q 的从原点出发的质点能否在坐标轴(x ,y ,z )上以速度v 做匀速运动?若能,m 、q 、E 、B 、v 及g 应满足怎样的关系?若不能,说明理由。

解:能

第一种情况:mg>qE,由平衡条件知洛仑兹力f 沿z 轴正向,粒子以v 沿x 轴正向运动 由匀速运动易知其条件是:mg -qE=qvB

第二种情况:mg

x y

z

O

qE -mg=qvB

25.(20分)

质量为M 的小物块A 静止在离地面高h 的水平桌面的边缘,质量为m 的小物块B 沿桌面向A 运动以速度v 0与之发生正碰(碰撞时间极短)。碰后A 离开桌面,其落地点离出发点的水平距离为L 。碰后B 反向运动。求B 后退的距离。已知B 与桌面间的动摩擦因数为μ。重力加速度为g 。

解:设AB 碰后A 的速度为v 1,则A 平抛有

h=12 gt 2 L=v 1t 求得:v 1=L g 2h

① 设碰后B 的速度为v 2 ,则对AB 碰撞过程由动量守恒有 mv 0=Mv 1-mv 2 ②

设B 后退距离为s ,对B 后退直至停止过程,由动能定理: μmgs=1

2

mv 22 ③

由①②③解得:s=12μg (M 2L 2g 2m 2h +v 02

2MLv 0m g 2h

) (2006)23.(16分)

天空有近似等高的浓云层。为了测量云层的高度,在水平地面上与观测者的距离为

d =3.0km 处进行一次爆炸,观测者听到由空气直接传来的爆炸声和由云层反射来的爆炸声时间上相差Δt=6.0s 。试估算云层下表面的高度。已知空气中的声速v =

3

1km/s 。

23.如图,A 表示爆炸处,O 表示观测者所在处,h 表示云层下表面的高度,用t 1表示爆炸声直接传到O 处所经时间,则有

d =v t 1 ①

用t 2表示爆炸声经云层反射到达O 处所在经时间,因为入射角等于反射角,故有

22

2

22vt h d =+??

? ?? ② 已知t 2- t 1=Δt ③ 联立①、②、③,可得

()t dv t v h ΔΔ22

12

+=

代入数值得

m h 3

100.2?= ⑤

24.(19分)

一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度α0开始运动,当其速度达到v 0后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。

24.根据“传送带上有黑色痕迹”中知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度a 0。根据牛顿定律,可得

A=μg ①

设经历晚间,传送带由静止开始加速到速度等于v 0,煤块则由静止加速到v ,有

v 0 = a 0t ②

v = at ③

由于a< a 0,故v< v 0,煤块继续受到滑动摩擦力的作用。再经过时间t ’,煤块的速度由v 增加到v 0,有v 0=v+at ’④

此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹。 设在煤块的速度从0增加到v 0的整个过程中,传送带和煤块移动的距离分别为s 0和s 2,有

s 0=

'2

102

0t v t a + ⑤

s =

a

v 22

传送带上留下的黑色痕迹的长度 l = s 0- s ⑦ 由以上各式得

l =

g

a g a v 002

02)(μμ- ⑧

25.(20分)

有个演示实验,在上下面都是金属板的玻璃盒内,放入了许多用锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。现取以下简化模型进行定量研究。 如图所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。设两板之间只有一个质量为m 的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(α<<1)。不计带电小球对极板间匀强电场的影响。重力加速度为g 。

(1)欲使小球能够不断地在两板间上下往返运动,电动势ε至少应大于多少? (2)设上述条件已满足,在较长的时间间隔T 内小球做了很多次往返运动。求在T 时间内小球往返运动的次数以及通过电源的总电量。

25.(1)用Q 表示极板电荷量的大小,q 表示碰后小球电荷量的大小。要使小球能不停地往返运动,小球所受的向上的电场力至少应大于重力,即mg d

q >ε

其中Q q α= ② 又有εC Q = ③

由①②③式得C

mgd

αε>

(2)当小球带正电时,小球所受电场力与重力方向相同,向下做加速运动。以a 1表示其加速度,t 1表示从A 板到B 板所用的时间,则有

1ma mg d q =+ε

2

112

1t a d =

当小球带负电时,小球所受电场力与重力方向相反,向上做加速运动。以a 2表示其加速度,t 2表示从B 板到A 板所用的时间,则有

2ma mg d q =-ε

2

222

1t a d =

小球往返一次共用的时间为(t 1+t 2),故小球在T 时间内往返的次数

2

1t t T n +=

由以上有关各式得

mgd

C md

mgd

C md

T

n -+

+=

2

2

2

222ε

αεα ⑩

小球往返一次通过电源的电量为,在T 时间内通过电源的总电量 Q ’=2qn ⑾ 由⑩⑾式可得

mgd

C md

mgd

C md

T

C Q -+

+=

2

22

2222'εαε

αεα ⑿

(2007年)23.(15分)甲、乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保持9m/s 的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的。为了确定乙起跑的时机,需在接力区前适当的位置设置标记。在某次练习中,甲在接力区前S 0=13.5m 处作了标记,并以V =9m/s 的速度跑到此标记时向乙发出起跑口令。乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒。已知接力区的长度为L =20m 。

求:(1)此次练习中乙在接棒前的加速度a ; (2)在完成交接棒时乙离接力区末端的距离。

23. 解:(1)设经过时间t ,甲追上乙,则根据题意有vt-vt/2=13.5 将v=9代入得到:t=3s, 再有 v=at 解得:a=3m/s 2

(2)在追上乙的时候,乙走的距离为s, 则:s=at 2/2 代入数据得到 s=13.5m

所以乙离接力区末端的距离为?s=20-13.5=6.5m

24.如图所示,质量为m 的由绝缘材料制成的球与质量为M=19m 的金属球并排悬挂。现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞。在平衡位置附近存在垂直于纸面的磁场。已知由于磁场的阻尼作用,金属球将于再

次碰撞前停在最低点处。求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于450。

25.两屏幕荧光屏互相垂直放置,在两屏内分别去垂

直于两屏交线的直线为x和y轴,交点O为原点,如图所

示。在y>0,0

在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区

域内的磁感应强度大小均为B。在O点出有一小孔,一束

质量为m、带电量为q(q>0)的粒子沿x周经小孔射入磁

场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射

粒子的速度可取从零到某一最大值之间的各种数值。已知

速度最大的粒子在0a的

区域中运动的时间之比为2︰5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。

25 解:对于y轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a相切,此时r=a,y轴上的最高点为y=2r=2a ;

所以在x 轴上的范围是2a x 2(1+3

a ≤≤

(2008年)23.(14分)

已知O 、A 、B 、C 为同一直线上的四点、AB 间的距离为l 1,BC 间的距离为l 2,一物体自O 点由静止出发,沿此直线做匀加速运动,依次经过A 、B 、C 三点,已知物体通过AB 段与BC 段所用的时间相等。求O 与A 的距离.

23、解析:设物体的加速度为a ,到达A 点的速度为v 0,通过AB 段和BC 点所用的时间为t ,则有

l 1=v 0t +12at 2···································································································································· ①

l 1+l 2=2v 0t +2at 2 ················

············································································································ ② 联立①②式得

l2-l1=at2·······································································································································③3l1-l2=2v0t····································································································································④设O与A的距离为l,则有

l=v02

2a

··············································································································································⑤

联立③④⑤式得

l= (3l1-l2)2 8(l2-l1)

个人解析:设物体在OA段的距离为s,用时t,在AB、BC段用时均为t1,由运动学公式:

在OA段:s = 1

2

at2 ······················································································································①

在OB段:s +l1= 1

2

a(t+t1)2··············································································································②

在OC段:s +l1+l2= 1

2

a(t+2t1)2 ·······································································································③

联立①②③解得s= (3l1-l2)2 8(l2-l1)

24.(18分)

图中滑块和小球的质量均为m,滑块可在水平放置的光滑固定导轨

上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,

轻绳长为l。开始时,轻绳处于水平拉直状态,小球和滑块均静止。

现将小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂

有粘性物质的固定挡板粘住,在极短的时间内速度减为零,小球继

续向左摆动,当轻绳与竖直方向的夹角θ=60°时小球达到最高点。求

(1)从滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块的冲量;

(2)小球从释放到第一次到达最低点的过程中,绳的拉力对小球做功的大小。

24、个人解析:(1)对系统,设小球在最低点时速度大小为v1,此时滑块的速度大小为v2,

滑块与挡板接触前

由系统的机械能守恒定律:mgl = 1

2

mv12 +

1

2

mv22 ·············································································①

由系统的水平方向动量守恒定律:mv1 = mv2··················································································②对滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块的冲量为:

I = mv2 ··········································································································································③联立①②③解得I= m gl方向向左 ·······························································································④(2)小球释放到第一次到达最低点的过程中,设绳的拉力对小球做功的大小为W,对小

球由动能定理:

mgl+W = 1

2

mv12 ····························································································································⑤

联立①②⑤解得:W =-1

2

mgl,即绳的拉力对小球做负功,大小为

1

2

mgl。

25.(22分)

如图所示,在坐标系xoy中,过原点的直线OC与x轴正向的夹

角φ=120°,在OC右侧有一匀强电场;在第二、三象限内有一匀

强磁场,其上边界与电场边界重叠、右边界为y轴、左边界为图

中平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直抵

面向里。一带正电荷q、质量为m的粒子以某一速度自磁场左边

界上的A点射入磁场区域,并从O点射出,粒子射出磁场的速

度方向与x轴的夹角θ=30°,大小为v,粒子在磁场中的运动轨

迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两

倍。粒子进入电场后,在电场力的作用下又由O点返回磁场区域,经过一段时间后再次离开磁场。已知粒子从A点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。忽略重力的影响。求

(1)粒子经过A点时速度的方向和A点到x轴的距离;

(2)匀强电场的大小和方向;

(3)粒子从第二次离开磁场到再次进入电场时所用的时间。 25、个人解析:(1)从A 点进入磁场后从O 点离开磁场的过程是匀速圆周运动,画出粒子运动的轨迹图,依题意由几何关系可得圆弧的圆心正好是两条虚线的交点。

故经过A 点的速度方向为x 轴正方向。

设圆周的半径为R ,有:∠OO 1A =30° ·············································· ① 根据向心力公式:Bqv = m v 2R ···························································· ②

A 点到x 轴的距离:x = R -R cos30° ·················································· ③ 联立①②③解得:x =

2-32 mv

Bq

(2)粒子能从O 点进入电场且能由O 点返回,对正电荷,说明电场的方向垂直于OC 向左,设电场强度大小为E ,电场中的时间为t 1,由动量定理: Eqt 1=2mv ························································································· ④

粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期T ,由: T =

2πR

v

··························································································· ⑤ 从O 点返回磁场后的轨迹如图,圆心角为120°,故:

T =t 1+112T +1

3T ·······················⑥

联立②④⑤⑥解得:E =

12Bv

················⑦ (3)第二次离开磁场后到再进入电场,如图轨迹。

则DF =OD =2R cos30° ····················⑧ 时间t 2= OD v = 3m Bq

(2009年)24.(15分)(注意:在试题卷上作答无效.........

) 材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+at),其中α称为电阻温度系数,ρ0是材料在t=0 ℃时的电阻率.在一定的温度范围内

α是与温度无关的常数。金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温数系数.利用具有正负温度系数的两种材料的互补特性,

可制成阻值在一定温度范围内不随温度变

化的电阻.已知:在0 ℃时,铜的电阻率为1.7×10 –8 Ω?m,碳的电阻率为3.5×10 -5Ω?m,附近,在0 ℃时,.铜的电阻温度系数为3.9×10 –3

℃-1

,碳的电阻温度系数为-5.0×10-4℃-1

.将横截面积相同的碳棒与铜棒串接成长1.0 m 的导体,要求其电阻在0 ℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化).

答案0.0038m

【解析】设碳棒的长度为X,则铜棒的电阻为s

x t s

x R o )1()

1()1(1111-+=-=αρρ,碳棒的

电阻s

x t s

x R o )

1(222

2αρρ+==,要使得在0

0c

附近总电阻不随温度变化,则有

定值=+21R R ,则有式中t 的系数必须为零,即有x ≈0.0038m.

25.(18分) (注意:在试题卷上作答无效.........).

如图所示,倾角为θ的斜面上静止放置三个质量均为m 的木箱,相邻两木箱的距离均为l 。工人用沿斜面的力推最下面的木箱使之上滑,逐一与其它木箱碰撞。每次碰撞后木箱都粘在一起运动。整个过程中工人的推力

不变,最后恰好能推着三个木箱匀速上滑。已知木箱与斜面间的动摩擦因数为μ,重力加速度为g.设碰撞时间极短,求 (1) 工人的推力;

(2) 三个木箱匀速运动的速度; (3) 在第一次碰撞中损失的机械能。 答案(1)3sin 3cos mg mg θμθ+

(2(3)(sin cos )mgL θμθ+

【解析】(1)当匀速时,把三个物体看作一个整体受重力、推力F 、摩擦力f 和支持力.根据平衡的知识有θμθcos 3sin 3mg mg F +=

(2)第一个木箱与第二个木箱碰撞之前的速度为V 1,加速度

)cos (sin 2cos sin 1θμθθμθ+=--=g m

mg mg F a 根据运动学公式或动能定理有

)c o s (s in 21θμθ+=gL V ,碰撞后的速度为V 2根据动量守恒有212mV mV =,即碰撞后

的速度为)cos (sin 2θμθ+=

gL V ,然后一起去碰撞第三个木箱,设碰撞前的速度为V 3

从V2到V3的加速度为2

)

cos (sin 2cos 2sin 22θμθθ

μθ+=

--=

g m

mg mg F a ,根据运动

学公式有L a V V 22

22

32=-,得)cos (sin 23θμθ+=gL V ,跟第三个木箱碰撞

根据动量守恒有4332mV mV =,得)cos (sin 23

24θμθ+=

gL V 就是匀速的速度.

(3)设第一次碰撞中的能量损失为E ?,根据能量守恒有2

22

122

12

1mV E mV +

?=,带入数

据得)cos (sin θμθ+=?mgL E .

26.(21分)(注意:在试题卷上作答无效.........

) 如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。A 是一块平

行于x 轴的挡板,与x 轴的距离为,A 的中点在y

轴上,长度略小于。带点粒子与挡板碰撞前后,x

方向的分速度不变,y 方向的分速度反向、大小不变。质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。不计重力。求粒子入射速度的所有可能值。 26. 【解析】设粒子的入射速度为v,第一次射出磁场的点为'

O N ,与板碰撞后再次进入磁

场的位置为1N .粒子在磁场中运动的轨道半径为R,有qB

mv R =

…?,粒子速率不变,每次

进入磁场与射出磁场位置间距离1x 保持不变有=1x θsin 2R N N O O ='

…?,粒子射出磁

场与下一次进入磁场位置间的距离2x 始终不变,与1N N O '

相等.

由图可以看出a x =2……?

设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即

()a nx x n 212

1=-+……?,由??两式得a n n x 1

21++=

……?

若粒子与挡板发生碰撞,有4

21a x x >

-……?联立???得

n<3………?联立???得

a n n m qB v 1

2sin 2++?=

θ

………?把2

2

sin h

a h +=

θ代入?中得

0,2

2

=+=

n mh

h a qBa v o …………?

1,432

21=+=

n mh

h a qBa v …………⑾

2,322

22=+=

n mh

h a qBa v …………⑿

(2010年)24.(15分)(注意:在试题卷上作答无效.........

) 材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+at),其中α称为电阻温度系数,ρ

是材料在t=0 ℃时的电阻率.在一定的温度范围内α是与温度无关的常数。金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温数系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0 ℃时,铜的电阻率为1.7×10 –8 Ω?m,碳的电阻率为3.5×10 -5Ω?m,附近,在0 ℃时,.铜的电阻温度系数为3.9×10 –3

℃-1

,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0 m 的导体,要求其电阻在0 ℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化).

答案0.0038m 【解析】设碳棒的长度为X,则铜棒的电阻为s

x t s

x R o )1()

1()1(1111-+=-=αρρ,碳棒的

电阻s

x t s

x R o )

1(222

2αρρ+==,要使得在00c 附近总电阻不随温度变化,则有

定值=+21R R ,则有式中t 的系数必须为零,即有x ≈0.0038m.

25.(18分) (注意:在试题卷上作答无效.........).

如图所示,倾角为θ的斜面上静止放置三个质量均为m 的木箱,相邻两木箱的距离均为l 。工人用沿斜面的力推最下面的木箱使之上滑,逐一与其它木箱碰撞。每次碰撞后木箱都粘在一起运动。整个过程中工人的推力不变,最后恰好能推着三个木箱匀速上滑。已知木箱与斜面间的动摩擦因数为μ,重力加速度为g.设碰撞时间极短,求

(4) 工人的推力;

(5) 三个木箱匀速运动的速度;

(6) 在第一次碰撞中损失的机械能。 答案(1)3sin 3cos mg mg θμθ+

(2(3)(sin cos )mgL θμθ+

【解析】(1)当匀速时,把三个物体看作一个整体受重力、推力F 、摩擦力f 和支持力.根据平衡的知识有θμθcos 3sin 3mg mg F +=

(2)第一个木箱与第二个木箱碰撞之前的速度为

V 1,加速度

)cos (sin 2cos sin 1θμθθ

μθ+=--=

g m

mg mg F a 根据运动学公式或动能定理有

)c o s (s in 21θμθ+=gL V ,碰撞后的速度为V 2根据动量守恒有212mV mV =,即碰撞后

的速度为)cos (sin 2θμθ+=

gL V ,然后一起去碰撞第三个木箱,设碰撞前的速度为V 3

从V2到V3的加速度为2

)

cos (sin 2cos 2sin 22θμθθ

μθ+=

--=

g m

mg mg F a ,根据运动

学公式有L a V V 22

22

32=-,得)cos (sin 23θμθ+=gL V ,跟第三个木箱碰撞

根据动量守恒有4332mV mV =,得)cos (sin 23

24θμθ+=

gL V 就是匀速的速度.

(3)设第一次碰撞中的能量损失为E ?,根据能量守恒有2

22

122

12

1mV E mV +

?=,带入数

据得)cos (sin θμθ+=?mgL E .

26.(21分)(注意:在试题卷上作答无效.........

) 如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。A 是一块平

行于x 轴的挡板,与x 轴的距离为,A 的中点在y

轴上,长度略小于。带点粒子与挡板碰撞前后,x

方向的分速度不变,y 方向的分速度反向、大小不变。质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。不计重力。求粒子入射速度的所有可能值。 26. 【解析】设粒子的入射速度为v,第一次射出磁场的点为'

O N ,与板碰撞后再次进入磁

场的位置为1N .粒子在磁场中运动的轨道半径为R,有qB

mv R =

…?,粒子速率不变,每次

进入磁场与射出磁场位置间距离1x 保持不变有=1x θsin 2R N N O O ='

…?,粒子射出磁

场与下一次进入磁场位置间的距离2x 始终不变,与1N N O '

相等.

由图可以看出a x =2……?

设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即

()a nx x n 212

1=-+……?,由??两式得a n n x 1

21++=

……?

若粒子与挡板发生碰撞,有4

21a x x >-……?联立???得

n<3………?联立???得

a n n m qB v 1

2sin 2++?=

θ

………?把2

2

sin h

a h +=

θ代入?中得

0,2

2

=+=

n mh

h a qBa v o …………?

1,432

21=+=

n mh

h a qBa v …………⑾

2,322

22=+=

n mh

h a qBa v …………⑿

24.(15分)(注意:在试题卷上作答无效............

汽车由静止开始在平直的公路上行驶,0~60s 内汽车的加速度随时间变化的图线如右图所示。

(1)画出汽车在0~60s 内的v-t 图线; (2)求这60s 内汽车行驶的路程。

24.(15分)?速度图像为右图。 ?900m

?汽车运动的面积为匀加速、匀速、匀减速三段的位移之和。

900201020301010321=?+?+?=++=s s s s m

25.(18分)(注意:在试卷题上作答无效.........

如右图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀

速圆周运动,星球A 和B 两者中心之间的距离为L 。已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。引力常数为G 。 (1)求两星球做圆周运动的周期:

(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期为1T 。但在近似处理问题时,常常认为

月球是绕地心做圆周运动的,这样算得的运行周期记为2T 。已知地球和月球的质量分别为24

5.9810kg ?和22

7.3510kg ?。求2T 与1T 两者平方之比。

(结果保留3位小数) 25.(18分) ?)

(23

m M G L

T +=π ?1.01

26.(21分)(注意:在试卷题上作答无效.........

如下图,在0x ≤

≤区域内存在与xy 平面垂直的匀强磁场,磁感应强度的

大小为B 。在t=0 时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知沿y 轴

正方向发射的粒子在t=0t 时刻刚好从磁场边界上,a)点离开磁场。求:

(1)粒子在磁场中做圆周运动的半径R 及粒子的比荷q /m;

(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;

(3)从粒子发射到全部粒子离开磁场所用的时间. 26.(21分) ?a R 3

32=

32Bt m q π=

?速度与y 轴的正方向的夹角范围是60°到120° ?从粒子发射到全部离开所用 时间 为02t (2011年)24.(15分)(.注意:在试题卷上作答无效............).

如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L 1电阻不计。在 导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡。整个系统置于匀强磁场 中,磁感应强度方向与导轨所在平面垂直。现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放。金属棒下落过程中保持水平,且与导轨接触良好。已知某时刻后两灯泡保持正常发光。重力加速度为g 。求: (1)磁感应强度的大小:

(2)灯泡正常发光时导体棒的运动速率。

25.(19分)(注意:在试卷上作答无效)

如图,与水平面成45°角的平面MN 将空间分成I 和II 两个区域。一质量为m 、电荷量为q (q >0)的粒子以速度0v 从平面MN 上的0p 点水平右射入I 区。粒子在I 区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在II 区运动时,只受

到匀强磁场的作用,磁感应强度大小为B,方向垂直于纸面向里。求粒子首次从II区离开时到出发点

p的距离。粒子的重力可以忽略。

26.(20分)(注意:在试题卷上作答无效)

装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击。

通过对一下简化模型的计算可以粗略说明其原因。

质量为2m、厚度为2d的钢板静止在水平光滑桌面上。质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿。现把钢板分成厚度均为d、质量均为m的相同两块,

间隔一段距离水平放置,如图所示。若子弹以相

同的速度垂直射向第一块钢板,穿出后再射向第

二块钢板,求子弹射入第二块钢板的深度。设子

弹在钢板中受到的阻力为恒力,且两块钢板不会

发生碰撞不计重力影响。

高考物理考纲解读与热点难点突破专题15计算题解题方法与技巧教学案

专题15 计算题解题方法与技巧 【高考考纲解读】 【高考题型示例】 1.看题 “看题”是从题目中获取信息的最直接的方法,一定要全面、细心,看题时不要急于求解,对题中关键的词语要多加思考,搞清其含义,对特殊字、句、条件要用着重号加以标注;不能错看或漏看题目中的条件,重点要看清题中隐含的物理条件、括号内的附加条件等. 2.读题 “读题”就是默读试题,是物理信息内化的过程,它能解决漏看、错看等问题.不管试题难易如何,一定要怀着轻松的心情去默读一遍,逐字逐句研究,边读边思索、边联想,以弄清题中所涉及的现象和过程,排除干扰因素,充分挖掘隐含条件,准确还原各种模型,找准物理量之间的关系.3.思题 “思题”就是充分挖掘大脑中所储存的知识信息,准确、全面、快速思考,清楚各物理过程的细节、内在联系、制约条件等,进而得出解题的全景图. 【例1】某工厂为实现自动传送工件设计了如图所示的传送装置,由一个水平传送带AB和倾斜传送带CD组成.水平传送带长度L AB=4 m,倾斜传送带长度L CD=4.45 m,倾角为θ=37°.传送带AB和CD通过一段极短的光滑圆弧板过渡.AB传送带以v1=5 m/s的恒定速率顺时针运转,CD传送带静止.已知工件与传送带之间的动摩擦因数均为μ=0.5,重力加速度g=10 m/s2.现将一个工件(可视为质点)无初速度地放在水平传送带最左端A点处.已知sin 37°=0.6,cos 37°=0.8.求: (1)工件从A端开始第一次被传送到CD传送带上,工件上升的最大高度和从开始到上升到最大高度的过程中所用的时间. (2)要使工件恰好被传送到CD传送带最上端,CD传送带沿顺时针方向运转的速度v2的大小.(v2

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

2018全国卷理综3物理

2018年普通高等学校招生全国统一考试 理科综合能力测试 二、选择题:本题共8小题,每小题6分,共48分。在每小题给出的四个选项中,第14~17题只有一项符 合题目要求,第18~21题有多项符合题目要求。全部选对的得6分,选对但不全的得3分. 14.1934年,约里奥-居里夫妇用α粒子轰击铝核27 13A l,产生了第一个人工放射性核素X:2713 α+A l n+X 。 X的原子序数和质量数分别为 A.15和28 B.15和30 C.16和30 D.17和31 15.为了探测引力波,“天琴计划”预计发射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q的轨道半径约为地球半径的4倍。P与Q的周期之比约为 A.2:1 B.4:1 C.8:1 D.16:1 16.一电阻接到方波交流电源上,在一个周期内产生的热量为Q方;若该电阻接到正弦交变电源上,在一个周期内产生的热量为Q正。该电阻上电压的峰值为u0,周期为T,如图所示。则Q方: Q正等于 A.1 B1 C.1:2 D.2:1 17.在一斜面顶端,将甲乙两个小球分别以v和 2 v的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍B.4倍C.6倍D.8倍 18.甲乙两车在同一平直公路上同向运动,甲做匀加速直线运动,乙做匀速直线运动。甲乙两车的位置x 随时间t的变化如图所示。下列说法正确的是 A.在t1时刻两车速度相等 B.从0到t1时间内,两车走过的路程相等 C.从t1到t2时间内,两车走过的路程相等 D.从t1到t2时间内的某时刻,两车速度相等 19.地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速度大小v随时间t

2019高考物理真题汇编——计算题

目录 牛顿第二定律 (2) 功能 (3) 动量 (3) 力学综合 (3) 动量能量综合 (4) 带电粒子在电场中的运动 (6) 带电粒子在磁场中的运动 (7) 电磁感应 (8) 法拉第电磁感应定律(动生与感生电动势) (8) 杆切割 (8) 线框切割 (9) 感生电动势 (9) 电磁感应中的功能问题 (10) 电磁科技应用 (11) 热学 (12) 光学 (14) 近代物理 (15) 思想方法原理类 (16)

牛顿第二定律 1.【2019天津卷】完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并 取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC.已知飞行员的质量m=60kg,g=10m/s2,求 (1)舰载机水平运动的过程中,飞行员受到的水平力所做功W; (2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大。 2.【2019江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。 A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求: (1)A被敲击后获得的初速度大小v A; (2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′; (3)B被敲击后获得的初速度大小v B。

2018年高考全国卷3(Ⅲ)(三)理综物理试题答案解析分析

2018年高考全国卷(Ⅲ)理综物理试题解析 欢迎大家阅读 1. 1934年,约里奥-居里夫妇用α粒子轰击铝核,产生了第一个人工放射性核素 X:。X的原子序数和质量数分别为 A. 15和28 B. 15和30 C. 16和30 D. 17和31 【答案】B 【解析】试题分析本题考查核反应方程遵循的规律及其相关的知识点。 解析根据核反应遵循的质量数守恒和电荷数守恒可知,X的电荷数为2+13=15,质量数为4+27-1=30,根据原子核的电荷数等于原子序数,可知X的原子序数为15,质量数为30,选项B正确。 2. 为了探测引力波,“天琴计划”预计发射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q的轨道半径约为地球半径的4倍。P与Q的周期之比约为 A. 2:1 B. 4:1 C. 8:1 D. 16:1 【答案】C 【解析】试题分析本题考查卫星的运动、开普勒定律及其相关的知识点。 解析设地球半径为R,根据题述,地球卫星P的轨道半径为R P=16R,地球卫星Q的轨道半径为R Q=4R,根据开普勒定律,==64,所以P与Q的周期之比为T P∶T Q=8∶1,选项C正确。 3. 一电阻接到方波交流电源上,在一个周期内产生的热量为Q方;若该电阻接到正弦交变电源上,在一个周期内产生的热量为Q正。该电阻上电压的峰值为u0,周期为T,如图所示。则Q方: Q正等于 A. B. C. 1:2D. 2:1 【答案】D

【解析】试题分析本题考查交变电流的图线、正弦交变电流的有效值、焦耳定律及其相关的知识点。 解析根据题述,正弦交变电流的电压有效值为,而方波交流电的有效值为u0, 根据焦耳定律和欧姆定律,Q=I2RT=T,可知在一个周期T内产生的热量与电压有效值的二次方成正比,Q方∶Q正= u02∶()2=2∶1,选项D正确。 点睛此题将正弦交变电流和方波交变电流、有效值、焦耳定律有机融合。解答此题常见错误是:一是把方波交变电流视为正弦交变电流;二是认为在一个周期T内产生的热量与电压有效值,导致错选B;三是比值颠倒,导致错选C。 4. 在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A. 2倍 B. 4倍 C. 6倍 D. 8倍 【答案】A 【解析】试题分析本题考查平抛运动规律、机械能守恒定律及其相关的知识点。 解析设甲球落至斜面时的速率为v1,乙落至斜面时的速率为v2,由平抛运动规律,x=vt,y=gt2,设斜面倾角为θ,由几何关系,tanθ=y/x,小球由抛出到落至斜面,由机械能守恒定律,mv2+mgy=mv12,联立解得:v1=·v,即落至斜面时的速率与抛出时的速率成正比。同理可得,v2=·v/2,所以甲球落至斜面时的速率是乙球落至斜面时的速率的2倍,选项A正确。 点睛对于小球在斜面上的平抛运动,一般利用平抛运动规律和几何关系列方程解答。 5. 甲乙两车在同一平直公路上同向运动,甲做匀加速直线运动,乙做匀速直线运动。甲乙两车的位置x随时间t的变化如图所示。下列说法正确的是 A. 在t1时刻两车速度相等 B. 从0到t1时间内,两车走过的路程相等

初中物理计算题汇总(附答案)

人教版初中物理计算题汇总(附答案) 1密度计算: 1、有一个玻璃瓶,它的质量为0.1千克。当瓶内装满水时,瓶和水的总质量为0.4千克。用此瓶装金属粒 若干,瓶和金属颗粒的总质量是0.8千克,若在装金属颗粒的瓶中再装满水时,瓶、金属颗粒和水的总质量为0.9千克。求: (1)玻璃瓶的容积。(2)金属颗粒的质量。(3)金属颗粒的密度。 2、一个质量为232g 的铜铝合金球,其中含铝54g ,铜的密度为ρ铜=8.9g/cm 3,铝的密度为ρ铝=2.7g/cm 3 , 求合金球的密度为多少? 二速度计算: 3、一座桥全长6.89Km ,江面正桥长为1570m ,一列长为110m 的火车匀速行驶,通过江面正桥需120s ,则 火车速度是多少m/s?火车通过全桥需用多长时间? 三、杠杆平衡条件计算: 4、 长lm 的杠杆水平放置,支点在距左端0.8m 处,现在左端挂20N 重的物体,要使杠杆在水平位置平 衡,应在杠杆的最右端挂的重物是多重。 5、一把杆秤不计自重,提纽到秤钩距离是4cm ,秤砣质量250g .用来称质量是 2kg 的物体,秤砣应离提纽多远,秤杆才平衡?若秤杆长60cm ,则这把秤最大能称量多少kg 的物体? 四、压强计算: 6、学生课桌质量为9千克,桌子与地面有四个接触面,每个接触面的面积为4×10 -4 米2;某同学将底面积为24.5×10-4米2 、容量为1升、装满水后水深为18厘米的塑料水杯放在课桌的桌面上。求: (1)课桌对地面的压力;(2)课桌对地面的压强;(3)杯对桌面的压强。(不计塑料水杯的质量) 7、放在水平面上容器内装有质量为1kg 的水,若水深h =18cm ,容器底面积S =50cm 2 ,不计容器的质量。 求: (1)离容器底8cm 处有一个A 点,A 处受到水的压强和方向;(2)水对容器底的压力和压强; (3)容器对桌面的压力和压强。 图7 图8 图9

大学物理计算题

第3大题: 计算题( 分) 3.1 (10分)如图所示,一个劲度系数为k 的轻弹簧与一轻柔绳相连接,该绳跨过一半径为R ,转动惯量为I 的定滑轮,绳的另一端悬挂一质量为m 的物体。开始时,弹簧无伸长,物体由静止释放。滑轮与轴之间的摩擦可以忽略不计。当物体下落h 时,试求物体的速度v ? Mg-T1=ma (T1-T2)R=I β T2-kx=0 a=βR 联立解得a=(mg-kx)/(m+I/R2) d )(1 d 0 2 ??-+= h v kx mg R I m v v 解得v=genhao (2mgh-kh2)/ (m+I/R2) 3.2 (10分)一皮带传动装置如图所示, B A,两轮上套有传动皮带。外力矩M 作用 在A 轮上,驱使其转动,并通过传动皮带带动B 轮转动。B A,两轮皆可视为质量均匀分布的圆盘,其质量分别为1m 和2m ,半径分别为1R 和2R 。设皮带在轮上不打滑,并略去转轴与轮之间的摩擦。试求B A,两轮的角加速度1β和2β。解 12 111212 1)(βR m R T T M = -- (1)……………………….2分 22222212 1)(βR m R T T = - (2)………………..2分 由于皮带不打滑,切向速度相同,其变化率即切相加速度相同: 2211ββR R = 由式(2)(3)得 2 1211)(2R m m M += β 代入式(3)得2 1212 )(2R R m m M += β 3.3 (10分)如图所示,一根细棒长为L ,总质量为m ,其质量分布与离O 点的距离成正比。现将细棒放在粗糙的水平桌面上,棒可绕过其端点O 的竖直轴转动。已知棒与桌面间的摩擦系数为μ,棒的初始角度为0ω。求: (1) 细棒对给定轴的转动惯量 (2) 细棒绕轴转动时所受的摩擦力矩; (3) 细棒从角速度0ω开始到停止转动所经过的时间。 解 (1)由题意可知细棒的质量线密度为 kr =λ 式中k 为常数。由于细棒的总质量为m ,所以 m r kr L =? d 0 … 由此得 22L m k = 故 r L m kr 22= =λ ……… 得一并代入式得由式得由式)1()3(21)2(1 21 222221???? ???== -βββR R R m T T

高考物理计算题

考前题 1.(18分)如图所示,O 点为固定转轴,把一个长度为l 的细绳上端固定在O 点,细绳下端系一个质量为m 的小摆球,当小摆球处于静止状态时恰好与平台的右端点B 点接触,但无压力。一个质量为M 的小钢球沿着光滑的平台自左向右运动到B 点时与静止的小摆球m 发生正碰,碰撞后摆球在绳的约束下作圆周运动,且恰好能够经过最高点A ,而小钢球M 做平抛运动落在水平地面上的C 点。测得B 、C 两点间的水平距离DC=x ,平台的高度为h ,不计空气阻力,本地的重力加速度为g ,请计算: (1)碰撞后小钢球M 做平抛运动的初速度大小; (2)小把球m 经过最高点A 时的动能; (3)碰撞前小钢球M 在平台上向右运动的速度大小。 1.解析 (1)设M 做平抛运动的初速度是v , 2 21,gt h vt x = = h g x v 2= (2)摆球m 经最高点A 时只受重力作用, l v m mg A 2 = 摆球经最高点A 时的动能为A E ; mgl mv E A A 2 1212= = (3)碰后小摆球m 作圆周运动时机械能守恒, mgl mv mv A B 22 12 1 22+= gl v B 5= 设碰前M 的运动速度是 v ,M 与m 碰撞时系统的动量守恒 B mv Mv Mv +=0 gl M m h g x v 52+ = 2.如图,光滑轨道固定在竖直平面内,水平段紧贴地面,弯曲段的顶部切线水平、离地高为h ;滑块A 静止在水平轨道上, v 0=40m/s 的子弹水平射入滑块A 后一起沿轨道向右运动,并从轨道顶部水平抛出.已知滑块A 的质量是子弹的3倍,取g=10m/s 2,不计空气阻力.求: (1)子弹射入滑块后一起运动的速度; (2)水平距离x 与h 关系的表达式; (3)当h 多高时,x 最大,并求出这个最大值.

2018年全国高考1卷理综物理WORD含答案

)2018年普通高等学校招生全国统一考试(Ⅰ理科综合能力测试(物理:满分110)14~1886题只有一小题,每小题二、选择题:本题共分。在 每小题给出的四个选项中,第619~21选对但不全的全部选对的得分,项符合题目要求,第题有多项符合题目要求。03分。得分,有选错的得14.高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能)( B A .与它的位移成正比.与它所经历的时间成正比 D C.与它的动量成正比.与它的速度成正比P15,系统处于静止状态,现用一.如图,轻弹簧的下端固定在水平桌面上,上端放有物块PPxF离开静止位置上,使其向上做匀加速直线运动,以竖直向上的力表示作用在Fx之间关系的图像可能正确的是的位移,在弹簧恢复原长前,下列表示和 cb16a,相互间的距离分别为、.如图,三个固定的带电小球和c=4 cm=3 ab=5 cm bc cm ca所受库仑力的合力的,,。小球baab所带电荷量的比值的、、方向平衡于的连线。设小球k)绝对 值为,则(1616??kk b A ab a B的电荷异号,.的电荷同号,、.、996464?kk?b C D aba的 电荷同号,的电荷异号,..、、2727OQ17OPQSPQS为圆心。轨.如图,导体轨道固定,其中为半圆弧的中心,是半圆弧,OPQSOMOM上,转动的金属杆。是有一定电阻。可绕端位于道的电阻忽略不计。BM,与轨道接触良好。空间存在半圆所在平面垂直的匀强磁场,磁感应强度的大小为OSOQ位置并固定(过程Ⅰ);再使磁感应强度现使位置以恒定的角速度逆时针转到B'BⅡ中,在过程Ⅰ、。(的大小以一定的变化率从过程Ⅱ)增加到

高考物理计算题(共29题)

高考物理计算题(共29 题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

学生错题之计算题(共29题) 计算题力学部分:(共12题) (2) 计算题电磁学部分:(共13题) (15) 计算题气体热学部分:(共3题) (35) 计算题原子物理部分:(共1题) (38) 计算题力学部分:(共12题) 1.长木板A静止在水平地面上,长木板的左端竖直固定着弹性挡板P,长木板A的上表面分为三个区域,其中PO段光滑,长度为1 m;OC段粗糙,长度为1.5 m;CD段粗糙,长度为1.19 m。可视为质点的滑块B静止在长木板上的O点。已知滑块、长木板的质量均为1 kg,滑块B与OC段动摩擦因数为0.4,长木板与地面间的动摩擦因数为0.15。现用水平向右、大小为11 N的恒力拉动长木板,当弹性挡板P将要与滑块B相碰时撤去外力,挡板P与滑块B发生弹性碰撞,碰后滑块B最后停在了CD段。已知质量相等的两个物体发生弹性碰撞时速度互换,g=10 m/s2,求: (1)撤去外力时,长木板A的速度大小; (2)滑块B与木板CD段动摩擦因数的最小值; (3)在(2)的条件下,滑块B运动的总时间。 答案:(1)4m/s (2)0.1(3)2.45s 【解析】(1)对长木板A由牛顿第二定律可得,解得; 由可得v=4m/s; (2)挡板P与滑块B发生弹性碰撞,速度交换,滑块B以4m/s的速度向右滑行,长木板A静止,当滑上OC段时,对滑块B有,解得 滑块B的位移; 对长木板A有; 长木板A的位移,所以有,可得或(舍去) (3)滑块B匀速运动时间;

滑块B在CD段减速时间; 滑块B从开始运动到静止的时间 2.如图所示,足够宽的水平传送带以v0=2m/s的速度沿顺时针方向运行,质量m=0.4kg的小滑块被光滑固定挡板拦住静止于传送带上的A点,t=0时,在小滑块上施加沿挡板方向的拉力F,使之沿挡 板做a=1m/s2的匀加速直线运动,已知小滑块与传送带间的动摩擦因数,重力加速度g=10m /s2,求: (1)t=0时,拉力F的大小及t=2s时小滑块所受摩擦力的功率; (2)请分析推导出拉力F与t满足的关系式。 答案: (1)0.4N;(2) 【解析】(1)由挡板挡住使小滑块静止的A点,知挡板方向必垂直于传送带的运行方向; t=0时对滑块:F=ma 解得F=0.4N;t=2s时, 小滑块的速度v=at=2m/s摩擦力方向与挡板夹角,则θ=450 此时摩擦力的功率P=μmgcos450v, 解得 (2)t时刻,小滑块的速度v=at=t, 小滑块所受的摩擦力与挡板的夹角为 由牛顿第二定律 解得(N)

初二物理密度典型计算题(含答案)

密度的应用 1.有一个瓶子装满油时,总质量是1.2kg ,装满水时总质量是1.44kg ,水的质量是1.2kg ,求油的密度. 2.甲物体的质量是乙物体的3倍,使甲、乙两个物体的体积之比3:2,求甲、乙两物体的密度之比. 3.小瓶内盛满水后称得质量为210g ,若在瓶内先放一个45g 的金属块后,再装满水,称得的质量为251g ,求金属块的密度. 4.两种金属的密度分别为21ρρ、,取质量相同的这两种金属做成合金,试证明该合金的密度为 2 12 12ρρρρ+?(假设混合过程中体积不变). 5.有一件标称纯金的工艺品,其质量100g ,体积为6cm 3,请你用两种方法判断它是否由纯金(不含有其他常见金属)制成的?(33kg/m 103.19?=金ρ) 6.设有密度为1ρ和2ρ的两种液体可以充分混合,且212ρρ=,若取体积分别为1V 和 2V 的这两种液体混合,且212 1 V V =,并且混合后总体积不变.求证:混合后液体的密度 为123ρ或23 4 ρ. 7.密度为0.8g/cm 3的甲液体40cm 3和密度为1.2g/cm 3的乙液体20cm 3混合,混合后的体积变为原来的90%,求混合液的密度. 8.如图所示,一只容积为34m 103-?的瓶内盛有0.2kg 的水,一只口渴的乌鸦每次将一块质量为0.01kg 的小石子投入瓶中,当乌鸦投了25块相同的小石子后,水面升到瓶口,求:(1)瓶内石声的总体积.(2)石块的密度. 9.某冰块中有一小石块,冰和石块的总质量是55g ,将它们放在盛有水的圆柱形容器中恰好悬浮于水中(如图21甲所示)。当冰全部熔化后,容器里的水面下降了0.5cm (如图21乙所示),若容器的底面积为10cm 2,已知ρ冰=0.9×103kg/m 3,ρ水=1.0×103kg/m 3。 求:(1)冰块中冰的体积是多少立方厘米? (2)石块的质量是多少克? (3)石块的密度是多少千克每立方米? 1.解:空瓶质量0.24kg 1.2kg kg 44.120=-=-=水总m m m . 油的质量0.96kg 0.24kg kg 2.101=-=-=m m m 总油. 甲 乙 图21

2020年高考物理计算题强化专练-热学解析版

计算题强化专练-热学 一、计算题(本大题共5小题,共50.0分) 1.如图所示,质量为m=6kg的绝热气缸(厚度不计),横截面积为S=10cm2,倒扣在 水平桌面上(与桌面有缝隙),气缸内有一绝热的“T”型活塞固定在桌面上,活塞与气缸封闭一定质量的理想气体,活塞在气缸内可无摩擦滑动且不漏气.开始时,封闭气体的温度为t0=27℃,压强P=0.5×105P a,g取10m/s2,大气压强为 P0=1.0×105P a.求: ①此时桌面对气缸的作用力大小; ②通过电热丝给封闭气体缓慢加热到t2,使气缸刚好对水平桌面无压力,求t2的值 . 2.如图所示,用质量为m=1kg、横截面积为S=10cm2的活塞在气 缸内封闭一定质量的理想气体,活塞与气缸壁之间的摩擦忽 略不计。开始时活塞距气缸底的高度为h=10cm且气缸足够 高,气体温度为t=27℃,外界大气压强为p0=1.0×105Pa,取 g=10m/s2,绝对零度取-273℃.求: (i)此时封闭气体的压强; (ii)给气缸缓慢加热,当缸内气体吸收4.5J的热量时,内能 的增加量为2.3J,求此时缸内气体的温度。

3.如图所示,竖直放置的U形管左端封闭,右端开口,左管横截面积为右管横截面 积的2倍,在左管内用水银封闭一段长为l,温度为T的空气柱,左右两管水银面高度差为hcm,外界大气压为h0cmHg . (1)若向右管中缓慢注入水银,直至两管水银面相平(原右管中水银没全部进入水平 部分),求在右管中注入水银柱的长度h1(以cm为单位); (2)在两管水银面相平后,缓慢升高气体的温度至空气柱的长度变为开始时的长度l ,求此时空气柱的温度T′. 4.一内壁光滑、粗细均匀的U形玻璃管竖直放置,左端开口,右端封闭,左端上部 有一轻活塞.初始时,管内水银柱及空气柱长度如图所示.已知大气压强p0=75cmHg ,环境温度不变. (1)求右侧封闭气体的压强p右; (2)现用力向下缓慢推活塞,直至管内两边水银柱高度相等并达到稳定.求此时右侧封闭气体的压强p右; (3)求第(2)问中活塞下移的距离x.

2018年高考全国卷1理综物理(含解析)

2018 年普通高等学校招生全国统一考试 理科综合能力测试 二、选择题:本题共8 小题,每小题 6 分,共48 分。在每小题给出的四个选项中,第 14~18 题只有一项符合题目要求,第19~21 题有多项符合题目要求。全部选对的得6 分,选对但不全的得 3 分,有选错的得0 分。 14.高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。在启动阶段,列 车的动能 A.与它所经历的时间成正比B.与它的位移成正比 C.与它的速度成正比D.与它的动量成正比 解析:列车做初速度为零的匀加速直线运动规律,列车动能: 1 2 E k mv ,又因为: 2 1 v at ,所以 2 2 E k ma t ,动能跟速度平方成正比, A 选项错误;根据动能定理 2 E k W合mas ,故动能与位移成正比, B 选项正确;动能与速度平方成正比,故 C 选项错误;由E k 2 p 2m ,可知动能与动量的平方成正比, D 选项错误。正确答案: B。 考点:匀变速直线运动,动能和动量数值关系,动能定理 15.如图,轻弹簧的下端固定在水平桌面上,上端放有物块P,系统处 F 于静止状态。现用一竖直向上的力 F 作用在P 上,使其向上做匀加 P 速直线运动。以x表示P 离开静止位置的位移,在弹簧恢复原长前, 下列表示 F 和x 之间关系的图像可能正确的是 F F F F O x O x O x O x A B C D 解析:物块静止时受到向上的弹力和向下的重力,处于平衡状态有:kx0 mg ,施加拉力 F 后,物块向上做匀加速直线运动,有牛顿第二定律有: F k( x0 x) mg ma , 理科综合试题第 1 页(共13 页)

高考物理复习计算题专练

计算题专练(一)] 近四年全国Ⅰ卷计算题涉及的考点与内容[分值题分值年份第24题第25两辆玩具小车牵(运动学19分 (滑轨、动力学13分)电磁感应2013年)连运动问题类平抛运动、带电粒子在运动学(公路上两车安全20分分2014年 12)(距离问题)动力学电场中运动两物体多阶段板块模型:安培力电路和力学问题(年12分匀变速运动组合问题(动2015分20)作用下导体棒平衡)力学轻弹簧+斜面+光滑圆电(双棒模型+三角体)(乙卷年2016()力的平磁感应定律应用、弧轨道18)平抛运动、牛顿14分分定律、动能定理衡方程 例题展示abθ仅(上沿相连,1.(2016·全国乙卷·24)如图1两固定的绝缘斜面倾角均为,.两细金属棒maLcdmc;用两根不可伸长的柔软轻导,质量分别为2和))和(仅标出端长度均为标出端abdca并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,,线将它们连成闭合回路B,方向垂直于斜面向上,已知.使两金属棒水平右斜面上存在匀强磁场,磁感应强度大小为μR,重力加两根导线刚好不在磁场中,回路电阻为,两金属棒与斜面间的动摩擦因数均为abg求:.速度大小为,已知金属棒匀速下滑 图1 ab上的安培力的大小;作用在金属棒 (1)(2)金属棒运动速度的大小. abcdabcdcd也做匀速由于、、棒被平行于斜面的导线相连,故速度总是相等,(1)解析 FabFab棒上,右斜面对,作用在棒的支持力的大小为直线运动.设导线的张力的大小为N1T FcdFab 棒,受力分析如图甲所示,棒的支持力大小为,对于左斜面对的安培力的大小为,N2由力的平衡条件得 6 / 1 乙甲 mgθμFFF =++2①sin TN1 F mg θcos 2 =②N1cd棒,受力分析如图乙所示,由力的平衡条件得对于

中考物理必做10道经典电学计算题(附答案)

1.饮水机是一种常见的家用电器,其工作电路可简化为如图1所示的电路,其中S是一个温控开关,当开关S接a时,饮水机正常工作,将水迅速加热;当水达到一定温度时,开关S 自动换到b,饮水机处于保温状态,若饮水机正常工作时发热板的电功率为550 W,而保温时的发热板的功率是正常工作时电热板功率的0.1倍,求电阻R1的阻值. 【答案】190Ω 图1 2.在如图2的电路中,已知滑动变阻器的最大阻值为18Ω,电流电压恒为6 V,灯泡上有“6 V3 W”的字样. 图2 (1)闭合S1、S2滑片P滑到b端时,电流表示数为1 A,求电阻R1的值. (2)闭合S1断开S2,滑片P滑到a端时,电压表的示数为多少?电阻R上消耗的电功率是多大? 【答案】(1)12Ω(2)2.4 V,0.48 W 3.如图3所示的电路中,滑动变阻器R3的最大阻值是20Ω,电源电压为8 V且保持不变,当滑动变阻器的滑片P移至a端时,将S1闭合,S2断开,电流表的示数为0.8 A,当滑动变阻器滑片P移至b端时,将S1、S2都闭合,电流表的示数为2A,求:R1、R2的阻值. 图3

ΩΩ.I U R 108082=== 则解:(1)当滑片P 移至a 端,闭合S1, 断开S2时,R3连入电路的阻值 为0,R1短路,只有R2连入电路, 其等效电路为图4(a)所示 (2)当滑片P 移至b 端,闭合S1、S2时, R2短路,R1与R3并联,且R3=20Ω, 其等效电路如图4(b)所示 I3=8/20 A=0.4 A I2=2A-0.4 A=1.6 A R3=U/I3=8/1.6Ω=5Ω 图4 4.如图5所示电路,电源电压U=4.5 V 且保持不变,R 1=5Ω,变阻器R2的最大阻值为20Ω,电流表量程为0~0.6 A ,电压表量程为0~3 V ,通过分析计算:说明变阻器R2允许的取值范围 图5 解:(1)当滑片P 向左端移动时,R2减小,电路中电流增大,R2两端的电压减小,电流表的量程为0~0.6 A ,即电路中的电流最大值为0.6 A ,那么此时R2接入电路中的值为最小值、R2min U1=I1·R1=0.6×5 V=3 V U2=4.5 V-3V=1.5 V ∴R2min=U2/I2=1.5/0.6Ω=2.5Ω (2)当滑片P 向右端移动时,R2增大,R2两端的电压增大,电压表的量程为0~3 V ,即R2两端的电压最大值为3 V ,此时R2接入电路中的阻值为最大值R2max U ′1=4.5 V-3 V=1.5 V I ′1=1.5/5 A=0.3 A ∴R2max=U ′/I ′2=3/0.3Ω=10Ω 综上所述R2的取值范围为2.5Ω≤R2≤10Ω.

(完整版)2018年广东高考理综物理试题及答案

2018年普通高等学校招生全国统一考试<广东卷物理)一、单项选择题:本大题共4小题,每小题4分,共16分。在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分 (2018广东理综·13>如图3所示,两个接触面平滑的铅柱压紧后悬挂起来,下面的铅柱不脱落,主要原因是3u9vVSIotS A.铅分子做无规则热运动 B.铅柱受到大气压力作用 C.铅柱间存在万有引力作用 D.铅柱间存在分子引力作用 【答案】D 【解读】考查分子力、大气压力、万有引力之间的区别。选D (2018广东理综·14>图4为某种椅子与其升降部分的结构示意 图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,在M向下滑动的过程中 3u9vVSIotS A.外界对气体做功,气体内能增大 B.外界对气体做功,气体内能减小 C.气体对外界做功,气体内能增大 D.气体对外界做功,气体内能减小 【答案】A 【解读】由热力学第二定律△U=Q+W,Q=0,W>0,△U>0.选A

(2018广东理综·15>将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是3u9vVSIotS A.感应电动势的大小与线圈的匝数无关 B.穿过线圈的磁通量越大,感应电动势越大 C.穿过线圈的磁通量变化越快,感应电动势越大 D.感应电流产生的磁场方向与原磁场方向始终相同 【答案】C 【解读】由E=t B NS t N ??=??φ,AB 错,C 正确。B 原与B 感的方向可相同亦可相反。D 错。选C (2018广东理综·16>如图5所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点P 在F1、F2和F3三力作用下保持静止。下列判断正确的是3u9vVSIotS A.F1>F2>F3 B.F3>F1>F2 C.F2>F3>F1 D.F3>F2>F1 【答案】B 【解读】由力的平行四边形法则及三角形知识得B 正确。选B 二、双项选择题:本大题共5小题,每小题6分,共30分。在每小题给出的四个选项中,有两个选项符合题目要求,全部选对的得6

北京高考物理 第一道计算题 力学

力学计算题汇编——动力学、曲线运动 例1.(2016年西城期末)如图所示,斜面AC长L= 1m,倾角θ=37°,CD段为与斜面平滑连接的水平地面。一个质量m = 2kg的小物块从斜面顶端A由静止开始滑下。小物块与斜面、地面间的动摩擦因数均为μ = 0.5。不计空气阻力,g = 10m/s2,sin37°= 0.6,cos37°= 0.8。求: (1)小物块在斜面上运动时的加速度大小a; (2)小物块滑到斜面底端C点时的速度大小v; (3)小物块在水平地面上滑行的最远距离x。 练习1-1、如图所示,斜面AC长L = 1m,倾角θ =37°,CD段为与斜面平滑连接的水平地面。一个质量m = 2kg的小物块从斜面顶端A点由静止开始滑下。小物块与斜面、地面间的动摩擦因数均为μ= 0.5。不计空气阻力,重力加速度g取10m/s2,sin37° = 0.6,cos37° = 0.8。求: (1)小物块在斜面上运动时的加速度大小a; (2)小物块滑到斜面底端C点时的速度大小v; (3)小物块在水平地面上滑行的时间t。 练习1-2.(2018年潞河期中)如图所示,一个质量m=10 kg的物体放在水平地面上。对物体施加一个F =50N的拉力,使物体做初速为零的匀加速直线运动。已知拉力与水平方向的夹角θ=37°,物体与水平地面间的动摩擦因数μ=0.50,sin37°=0.60,cos37°=0.80,取重力加速度g=10m/s2。 (1)求物体运动的加速度大小; (2)求物体在 2.0 s末的瞬时速率; (3)若在 2.0 s末时撤去拉力F,求此后物体沿水平地面可滑行的最大距离。 F

练习1-3、(2016东城一模)某次对新能源汽车性能进行的测试中,汽车在水平测试平台上由静止开始沿直线运动。汽车所受动力随时间变化关系如图1所示,而速度传感器只传回第10 s 以后的数据(如图2所示)。已知汽车质量为1000 kg ,汽车所受阻力恒定。求: (1)汽车所受阻力的大小; (2)10 s 末汽车速度的大小; (3)前20 s 汽车位移的大小。 例2、(2010年北京高考题)如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0 s 落到斜坡上的A 点。已知O 点是斜坡的起点,斜坡与水平面的夹角 =37°,运动员的质量m =50 kg 。不计空气阻力。(取sin37°=0.60,cos37°=0.80;g 取10 m/s 2 )求: (1)A 点与O 点的距离L ; (2)运动员离开O 点时的速度大小; (3)运动员落到A 点时的动能。 练习2-1、(2016年海淀二模)如图所示,一个少年脚踩滑板沿倾斜街梯扶手从A 点由静止滑下,经过 一段时间后从C 点沿水平方向飞出,落在倾斜街梯扶手上的D 点。已知C 点是一段倾斜街梯扶手的起点,倾斜的街梯扶手与水平面的夹角θ= 37°,CD 间的距离s =3.0m ,少年的质量m =60kg 。滑板及少年均可视为质点,不计空气阻力。取sin37° = 0.60,cos37° = 0.80,重力加速度g =10 m/s 2 ,求: (1)少年从C 点水平飞出到落在倾斜街梯扶手上D 点所用的时间t ; (2)少年从C 点水平飞出时的速度大小v C ; (3)少年落到D 点时的动能E k 。 第22题图2 0 5 10 15 v /m·s -1 20 t /s 第22题图1 0 5 10 3.0 15 F /×103N 20 t /s 1.0 2.0 A B C D θ

初二物理速度计算题

初二物理速度计算题分类 一.路线垂直(时间相同)问题 1.子弹在离人17m处以680m/s的速度离开枪口,若声音在空气中的速度为340m/s,当人听到枪声时,子弹己前进了多少? 2.飞机速度是声速的1.5倍,飞行高度为2720m,,当你听到飞机的轰鸣声时,抬头观看飞机已飞到你前方多远的地方?(15℃) ------------------------------------------------------------- 二.列车(队伍)过桥问题(总路程=车长+桥长) 3.一列队长360m的军队匀速通过一条长1.8km的大桥,测得军队通过大桥用时9min,求:(1)军队前进的速度;(2)这列军队全部在大桥上行走的时 间。 4.长130米的列车,以16米/秒的速度正在行驶,它通过一个隧道用了48秒,这个隧道长多少米< 5.长20m的一列火车,以36km/h的速度匀速通过一铁桥,铁桥长980m.问这列火车过桥要用多少时间< ------------------------------------------------------------- 三.平均速度问题(总路程/总时间) 6.汽车先以4米/秒的速度开行20秒,接着又以 7.5米/秒的速度开行20秒,最后改用36千米/小时的速度开行5分种到达目的地, 求:(1)汽车在前40秒内的平均速度;(2)整个路程的平均速度 7.汽车从A站出发,以90Km/h的速度行驶了20min后到达B站,又以60Km/h的速度行驶了10min到达C站, 问(1)两站相距多远< (2)汽车从A站到C站的平均速度<

8.汽车在出厂前要进行测试。某次测试中,先让汽车在模拟山路上以8米/秒的速度行驶500秒,紧接着在模拟公路上以20米/秒的速度行驶100秒。 求:(1)该汽车在模拟公路上行驶的路程。 (2)汽车在整个测试中的平均速度。 四.回声问题(时间相同) 9.一辆汽车以15m/s的速度正对山崖行驶,鸣笛后2s听到回声,问: (1)鸣笛处距山崖离多远? (2)听到回声时,距山崖多远< 10.一辆匀速行驶的汽车在离高楼500m处鸣笛,汽车直线向前行驶20m后,司机刚好听到鸣笛的回声,求汽车的速度(15℃) 11.一辆汽车以36Km/h的速度朝山崖匀速行驶,在离山崖700m处鸣笛后汽车直线向前行驶一段路程听到刚才鸣笛的回声,求:(1)听到回声时汽车离山崖有多远. (15℃) ------------------------------------------------------------- 五.声速问题 12.一门反坦克炮瞄准一辆坦克,开炮后经过0.6s看到炮弹在坦克上爆炸,经过2.1s听到爆炸的声音, 求:(1)大炮距坦克多远< (2)炮弹的飞行速度多大< 13.甲同学把耳朵贴在长铁管的某一端,乙同学在长铁管的另一端敲一下这根铁管,甲同学先后听到两次响声,其时间差0.7s,试计算铁管有多长(声音在铁中速度为5100m/s,空气的速度为340m/s)? ------------------------------------------------------------- 六.声速测距问题 14.已知超声波在海水找能够传播速度是1450米/秒,若将超声波垂直想海底发射出信号,经过4秒钟后收到反射回来的波,求海洋深度是多少? 15.在一次爆破中,用一根长1m的导火线引爆炸药,导火线以0.5cm/s的速度燃烧,点火者点着导火线后以4m/s的速度跑开,他能否在爆炸前跑到离爆炸地点600m 的安全地区<

【高考快递】2019高考物理总复习计算题增分练五含答案

计算题增分练(五) (满分32分 20分钟) 1.如图所示,半径为l 的金属圆环水平放置,圆心处及圆环边缘通过导线分别与两条平行的倾斜金属轨道相连.圆环区域内分布着磁感应强度为B ,方向竖直向下的匀强磁场,圆环上放置一金属棒a ,一端在圆心处,另一端恰好搭在圆环上,可绕圆心转动.倾斜轨道部分处于垂直轨道平面向下的匀强磁场中,磁感应强度大小也为B ,金属棒b 放置在倾斜平行导轨上,其长度与导轨间距均为2l .当棒a 绕圆心以角速度ω顺时针(俯视)匀速旋转时,棒b 保持静止.已知棒b 与轨道间的动摩擦因数为μ=0.5,可认为最大静摩擦力等于滑动摩擦力;棒b 的质量为m ,棒a 、b 的电阻分别为R 、2R ,其余电阻不计;斜面倾角为θ=37°,sin 37°=0.6,cos 37°=0.8,重力加速度为g ,求 (1)金属棒b 两端的电压; (2)为保持b 棒始终静止,棒a 旋转的角速度大小的范围. 解析:(1)E =Bl v ① v =0+l ω2 ② U =2R R +2R ·E ③ ①②③式联立,解得:U =13Bl 2ω ④ (2)I =E R +2R ⑤ F 安=BI ·2l ⑥ 由①②⑤⑥式联立,解得:F 安=B 2l 3ω3R ⑦ 为保持b 棒始终静止,棒a 旋转的角速度最小设为ω1,最大为ω2: mg sin θ=μmg cos θ+B 2l 3ω13R ⑧ mg sin θ+μmg cos θ=B 2l 3ω23R ⑨

3mgR 5B 2l 3≤ω≤3mgR B 2l 3 ⑩ 答案:(1)13Bl 2ω (2)3mgR 5B 2l 3≤ω≤3mgR B 2l 3 2.如图甲所示,光滑斜面OA 与倾斜传送带AB 在A 点相接,且OAB 在一条直线上,与水平面夹角α=37°,轻质弹簧下端固定在O 点,上端可自由伸长到A 点.在A 点放一个物体,在力F 的作用下向下缓慢压缩弹簧到C 点,该过程中力F 随压缩距离x 的变化如图乙所示.已知物体与传送带间动摩擦因数μ=0.5,传送带AB 部分长为5 m ,顺时针转动,速度v =4 m/s ,重力加速度g 取10 m/s 2 .(sin 37°=0.6,cos 37°=0.8)求: (1)物体的质量m ; (2)弹簧从A 点被压缩到C 点过程中力F 所做的功W ; (3)若在C 点撤去力F ,物体被弹回并滑上传送带,问物体在传送带上最远能到何处? 解析:(1)由图象可知:mg sin 37°=30 N ① 解得m =5 kg (2)图乙中图线与横轴所围成的面积表示力F 所做的功: W =390×? ????0.5-1282 J -30×1282 J =90 J ② (3)撤去力F ,设物体返回至A 点的速度大小为v 0, 从A 出发到第二次返回A 处的过程应用动能定理: W =12mv 2 ③ 解得:v 0=6 m/s 由于v 0>v ,物体所受摩擦力沿传送带向下,设此阶段加速度大小为a 1,由牛顿第二定律:mg sin 37°+μmg cos 37°=ma 1 ④ 解得:a 1=10 m/s 2 速度减为v 时,设沿斜面向上发生的位移大小为x 1,由运动学规律: x 1=v 2 0-v 22a 1 ⑤ 解得:x 1=1 m 此后摩擦力改变方向,由于mg sin 37°>μmg cos 37°,所以物块所受合外力仍沿传送带向下,设此后

相关文档
最新文档