注意:傅里叶变换微分性质

注意:傅里叶变换微分性质

变换法解微分方程

题目: 变换法在求解常微分方程中的应用姓名: 学院: 数学与统计学院 专业: 数学与应用数学 年级班级: 2011级1班 指导教师: 刘伟 2015年 5 月 31 日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。 本毕业论文内容不涉及国家机密。 论文题目:变换法在求解常微分方程中的应用 作者单位:数学与统计学院 作者签名: 2015 年5 月31 日

目录 摘要 (1) 引言 (2) 1.在一阶方程中的应用 (3) 1.1变量分离方程 (3) 1.2齐次与可以经过变量代换化为齐次的常微分方程: (3) 1.3一阶线性方程 (7) 1.4几种特殊类型的一阶常微分方程 (8) 1.5伯努利方程 (9) 1.6黎卡提方程 (10) 2.在n阶微分方程中的应用 (10) 2.1 在n阶非齐次线性微分方程 (10) 2.2 非齐次线性微分方程 (12) 3.变系数齐次方程 (13) 3.1尤拉方程 (13) 3.2二阶变系数线性方程 (13) 3.3三阶变系数微分方程 (14) 结束语 (14) 参考文献 (16) 致谢 (17)

变换法在求解常微分方程中的应用 摘要:变换法是常微分方程中的一种计算方法. 它可以起到简化问题的作用,变量变换思想也是一种常微分方程中的重要思想. 应用原始变量的变换与新的变量代换, 使原始方程的类型相对简单的解决方案,从而达到解决的目的. 在常微分方程中, 变换法在许多类型的常微分方程的求解中起到及其重要的作用. 本文就应用变换法在求解几类微分方程进行探究, 通过陈述理论与联系实例结合阐述变量变换法以及变量变换思想在求解常微分方程的应用. 关键词:常微分方程;变量分离;变换法; Application of transform method in solving the differential equation Abstract: Transform method is a calculation method of ordinary differential equation. It can play a role to simplify the problem, the idea of variable transformation is an important thought in ordinary differential equation. The application of the original variable transform and the new type of variable substitution, the original equation solution is relatively simple, so as to achieve the purpose of solving. In the differential equation, variable substitution plays its important role in the ordinary solution differential equations in many types of. This paper explores the solutions for several classes of differential equations on the application of variable substitution, through the statement of theory and examples combined with variable transformation method and the application of variable transformation thought in the solution of ordinary differential equations. Key Words: Ordinary differential equation;Separable variable;Transform method

用拉普拉斯变换方法解微分方程

2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的 dt d ,2 s 代替 2 2dt d ,…就可得到。 应用拉氏变换法解微分方程的步骤如下: (1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量s 的代数方程(称为变换方程) (2)求解变换方程,得出系统输出变量的象函数表达式。 (3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。 (4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。 举例说明 【例2-7】 设RC 网络如图2-24所示,在开关K 闭合之前,电容C 上有初始电压 )0(c u 。试求将开关瞬时闭合后,电容的端电压c u (网络输出)。 解 开关K 瞬时闭合,相当于网络有阶跃电压0)(u t u c =·)(1t 输入。故网络微分方程为 ?? ? ??=+=?idt C u u Ri u c c r 1 消去中间变量i ,得网络微分方程为 )(t u u dt du RC r c c =+ (2-44) 对上式进行拉氏变换,得变换方程 )()()0()(s U s U RCu s RCsU r c c c =+- 将输入阶跃电压的拉氏变换式s u s U r 0)(= 代入上式,并整理得电容端电压的拉氏变换式

傅里叶变换的性质

§3–4傅里叶变换的性质 设f(t) ←→F(jω),f1(t) ←→F1(jω),f2(t) ←→F2(jω);α、α1、α2为实数, 则有如下性质: 一、线性:α1 f1(t) + α2 f2(t)←→α1F1(jω) + α2 F2(jω) 二、对称性:F(jt)←→2πf(-ω) 证明: 将上式中的t换为ω,将原有的ω换为t, 或: , 即:F(jt)←→2π f(-ω) P.67例3-3:已知 , 再令 ==> ←→2πG(-ω) 三、尺度变换: (α≠0的实数) 可见信号持续时间与占有频带成反比(此性质易由积分变量代换证得)。 推论(折叠性):f(-t) ←→F(-jω) 四、时移性: (此性质易由傅氏变换的定义证得) 推论(同时具有尺度变换与时移): P.69-70例3-4请大家浏览。

五、频移性:

(此性质易由傅氏变换的定义证得) π.70例3-5请大家浏览。 频移性的重要应用——调制定理: 欧拉公式 ? 例如门信号的调制:

显然,当ω0足够大时,就可使原频谱密度函数被向左、右复制时几乎不失真。 六、时域卷积: f1(t)* f2(t) ←→F1(jω)F2(jω) 证明: 时域卷积的重要应用——求零状态响应的频域法: 时域:yf(t) = f(t)* h(t) ==> 频域:Y f(jω) = F(jω)H(jω) 七、频域卷积:f1(t). f2(t) ←→1/2π[F1(jω)*F2(jω)] 八、时域微分性:df(t)/dt←→ jωF(jω) (其证明请自学P.72-73有关内容) 推论: 条件: 例如:d(t) ←→1 ==>δ'(t) ←→jω 九、时域积分性:

用拉普拉斯变换方法解微分方程

拉普拉斯变换是解常系数线性微分方程中经常采用的一种较简便的方法.其基本思想是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解. 一拉普拉斯变换的概念 定义设函数f(t)的定义域为[0,+∞),若广义积分∫0+∞f(t)e-pt dt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=∫0+∞f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=L[f(t)]. 若F(p)是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1[F(p)]. 例1 求指数函数f(t)=e at(t≥0,a是常数)的拉氏变换. 解根据定义,有L[e at]=∫0+∞e at e-pt dt=∫0+∞e-(p-a)t dt 这个积分在p>a时收敛,所以有 L[e at]=∫0+∞e-(p-a)t dt=1/(p-a) (p>a) (1) 例2 求一次函数f(t)=at(t≥0,a是常数)的拉氏变换. 解L[at]=∫0+∞ate-pt dt=-a/p∫0+∞td(e-pt) =-[at/p e-pt]0+∞+a/p∫0+∞e-pt dt 根据罗必达法则,有 lim t0+∞(-at/p e-pt)=-lim t0+∞at/pe pt=-lim t0+∞a/p2 e pt 上述极限当p>0时收敛于0,所以有lim t0+∞(-at/pe-pt)=0 因此L[at]=a/p∫0+∞e-pt dt

=-[a/p2e-pt]0+∞=a/p2(p>0) (2) 例3 求正弦函数f(t)=sinωt(t≥0)的拉氏变换. 解L[sinωt]=∫0+∞sinωte-pt dt =[-1/(p2+ω2) e-pt(psinωt+ωcosωt]0+∞ =ω/(p2+ω2) (p>0) (3) 用同样的方法可求得 L[cosωt]=p/(p2+ω2) (p>0) (4) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四拉普拉斯变换的应用 2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求

4-3拉普拉斯变换解微分方程

變換解微分方程 題過程: 分方程 題 02///=--y y y …..(*) 0)0(,1)0(/==y y 式等號兩邊做拉普拉斯變換 L {=--}2///y y y L }0{ 性性質,得 L {}//y - L {}/y -2 L {0}=y 2L {)}(t y -s y sy --)0()0(/L 2)0()}({-+f t y L 0)}({=t y 始條件,得L )}({t y 之代數方程 2s L )}({t y s -L 2)}({-t y L 1)}({-=s t y --------- (a) 數方程(a),得 簡 單 L 1-L ODE L {})()(s t y 之代數方程或低階ODE )(t y L {})()(s t y

L )}({t y 21 2---=s s s 上式兩邊做反拉普拉斯變換,得 =) L -1 {L {)(t y }}= L -1 ??????---212s s s ??? ??++??? ??-11322131s s 及L {} at e = a s -1 , 解為 =)t 31 L -1 ??????-21s + 32 L -1 ??????+11s 31= +t e 2 32 t e - 題t y y 2sin //=+ , …..(**) 1)0(,2)0(/==y y *)式等號兩邊做拉普拉斯變換 L {} =+y y // L {}t 2sin 換的微分性質以及L 22}{sin a s a at += ,得 L {}y +--)0()0(/y sy L 42 }{2+=s y 入初始條件,得L )}({t y 之代數方程 )1+L {}y 42122+=--s s --------- (b) 代數方程(b),得 {}y ??? ??+-??? ??+++=+++++=4132113512)4)(1(6822222223s s s s s s s s s 在上式兩邊做反拉普拉斯變換,得初始值問題的解為 t t t 2sin 31sin 35cos 2-+ (由 L 22}{sin a s a at += ,L 22}{cos a s s at += )

实验3 傅里叶变换及其性质

实验3 傅里叶变换及其性质 1. 实验目的 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 2. 实验原理及实例分析 傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞==?, 傅里叶反变换定义为:11()[()]()2j t f t F F f e d ωωωωπ ∞--∞==?。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方 法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函 数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1) F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2) F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω, 即()()jvt F v f t e dt ∞ --∞=?。 (3) F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的 函数,即()()jvu F v f t e du ∞ --∞=?。 傅里叶反变换的语句格式也分为三种。 (1) f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默 认返回是关于x 的函数。 (2) f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3) f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。 值得注意的是,函数fourier( )和ifourier( )都是接受由sym 函数所定义的符号 变量或者符号表达式。

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常 需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。 因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若-'1 ' 一 1 一八 餐丄I 则 嗽(0 +罰⑷ G 迅(j 由)+ 碍(Jtu ) (3-55) 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数 ,; 「" 由式(3-55)得 =侔7(/)}=-屛1} + - (sgn( /)}=丄 K 刼罠珂 + 丄用2 二足飢也)+ — 2 2 2 2 JtD J QJ 、对称性 (3-56) 则」 将上式中变量少换为x ,积分结果不变,即 证明因为 fC )二丄「EQ 讣叫田 N J 2^(i) = f F(J 噪叫 a 2^(-1)=「F(j 嫌小咕 J —TO

」一 再将t用夕代之,上述关系依然成立,即 2戒(―型)-[ Jr-CD 最后再将x用t代替,则得—Lm—? ” 所以,fl- —■-'■ ■■* 证毕 若八」是一个偶函数,即-'二丿■,相应有-,:"J,则式(3-56) 尺〔血—2对'(创)C3-57) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数二丁。式中的-兰表示频谱函数坐标轴必须正负对调。例如:/(0 =郭)一S)=l FS)= 1一2才㈣=2斶眄 例3-7若信号;二的傅里叶变换为 < r 72 G3> r <2 试求。 解将中的"换成t,并考虑;-";1为兰的实函数,有 M |r|G 戈 0 |t|>r/2 该信号的傅里叶变换由式(3-54)可知为 頁恥)卜2氓旳(号)

用拉普拉斯变换方法解微分方程

例1求指数函数f(t)=e at(t > 0,a是常数)的拉氏变换. 解根据定义,有L[e at]= j o+ e at e-pt dt= e-(p-a)t dt 这个积分在p> a时收敛,所以有 L[e at]= / T e(p-a)t dt=1/(p-a) (p > a) (1) 例2求一次函数f(t)=at(t > 0,a是常数)的拉氏变换. 解L[at]= / o+ra ate-pt dt=- a/p / o+"td(e -pt) =-[at/p e -pt ] o+ra+a/p / T e-pt dt 根据罗必达法则, 有 lim to+ °°(-at/p e )=-lim to+ °° at/pe =-lim to+ a/p e 上述极限当p> 0时收敛于0,所以有lim to+ - (-at/pe -pt )=0 因此L[at]=a/p / o+ra e-pt dt 2 -pt +m 2 =-[a/p e p ]o =a/p (p > (2) 0) 例3求正弦函数f(t)=sin 3 t(t > 0)的拉氏变换解L[sin 31]= / 0+ra sin 3 te -pt dt 2 2 -pt +m =[-1/(p +3 ) e (psin 3 t+ 3 cos3 t] 0

2 2 2 =3 /(P +3 ) (p > 0) ⑶ 用同样的方法可求得 2 2 L[cos 3t]=p/(p +3 ) (p > 0) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四 拉普拉斯变换的应用 2-5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方 程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查 得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两 部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利 用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初 始条件已自动地包含在微分方程的拉氏变换式之中了。 而且,如果所有初始条件都为零,那么求 取微分方程的拉氏变换式就更为方便, 只要简单地用复变量s 来代替微分方程中的 —,s 2 代替 dt dt 应用拉氏变换法解微分方程的步骤如下: d 2 …就可得到。

拉普拉斯变换在求解微分方程中的应用

目录 拉普拉斯变换在求解微分方程中的应用 物理系0801班学生岳艳林 指导老师韩新华 摘要:拉普拉斯变换在求解微分方程中有非常重要的作用,本文首先介绍拉普拉斯变换的定义及性质; 其次给出拉普拉斯变换求解微分方程的一般步骤;然后重点举例拉普拉斯变换在求解常微分方程(初值问题与边 函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程值问题、常系数与变系数常微分方程、含 特解中的应用、拉普拉斯变换在求解高阶微分方程的推广)与典型偏微分方程(齐次与非齐次偏微分方程、有界 与无界问题)中的应用举例;最后综合比较、归纳总结拉普拉斯变换在求解微分方程中的优势以及局限性。 关键词:拉普拉斯变换;拉普拉斯逆变换;常微分方程;偏微分方程;特解

引言 傅里叶变换和拉普拉斯变换是常用的积分变换,但对函数进行傅里叶变换时必须满足狄里希利和在+∞<<∞-t 内绝对可积,但是在物理、无线电技术等实际应用中,许多以时间t 为自变量的函数通常在0t <时不需要考虑或者没有意义,像这样的函数不能取傅里叶变换。为避免上述两个缺点,将函数进行适当改造,便产生了拉普拉斯变换[1]。 1 拉普拉斯变换以及性质 拉普拉斯变换的定义 设函数()f t 当0t ≥时有定义,而且积分 ()st f t e dt +∞ -? (s 是一个复参量)在s 的某一区域内收 敛,则此积分所确定的函数可写为0 ()()st F s f t e dt +∞ -= ? .我们称上式为函数()f t 的Laplace 变换 式.记为()[()]F s L f t =,()F s 称为()f t 的Laplace 变换(或称为象函数). 若()F s 是()f t 的Laplace 变换,则称()f t 为()F s 的Laplace 逆变换(或称为象原函数),记为1()[()]f t L F s -=[2]. Laplace 变换的存在定理 若函数()f t 满足下列条件: 1?在0t ≥的任一有限区间上分段连续; 2?当t →+∞时,()f t 的增长速度不超过某一指数函数,亦即存在常数0M >及0c ≥,使得c ()0f t Me t ≤≤<+∞t,成立(满足此条件的函数,称它的增大是不超过指数级的,c 为它的增长指数). 则()f t 的Laplace 变换0 ()st F f t e dt +∞ -?(s )=在半平面Re()s c >上一定存在,右端的积分在1Re()s c c ≥>的半平面内,()F s 为解析函数[2]. 拉普拉斯变换的性质 ⑴线性性质 若αβ,是常数,11[()]()L f t F s =, 22[()]()L f t F s =, 则有1212[()()][(t)]+[()]L f t f t L f L f t αβαβ+=, 1111212[()()][(s)]+[()]L F s F s L F L F s αβαβ---+=. ⑵微分性质 若[()]()L f t F s =,则有'[()]()(0)L f t sF s f =-. 高阶推广 若[()]()L f t F s =,则有2'[()]()(0)(0)L f t s F s sf f ''=--.

傅里叶变换的基本性质 (2)

3-5 傅里叶变换的基本性质 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需 要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、 线性 傅里叶变换是一种线性运算。若 则 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6 利用傅里叶变换的线性性质求单位阶跃信号的频谱函数)(ωj F 。 解 因 由式(3-55)得 二、对称性 若 证明 因为 有 将上式中变量ω换为x ,积分结果不变,即 再将t 用ω代之,上述关系依然成立,即 最后再将x 用t 代替,则得 所以 证毕 若)(t f 是一个偶函数,即)()(t f t f =-,相应有)()(ωωf f =-,则式(3-56)成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数π2。式中的ω-表示频谱函数坐标轴必须正负对调。例如

例3-7 若信号)(t f 的傅里叶变换为 试求)(t f 。 解 将)(ωj F 中的ω换成t ,并考虑)(ωj F 为ω的实函数,有 该信号的傅里叶变换由式(3-54)可知为 根据对称性 故 再将)(ω-f 中的ω-换成t ,则得 )(t f 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 观看动画 若 则 证明 因a >0,由 令at x =,则adt dx =,代入前式,可得 函数)(at f 表示)(t f 沿时间轴压缩(或时间尺度扩展) a 倍,而 ) (a j F ω 则表示 )(ωj F 沿频率轴扩展(或频率尺度压缩) a 倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8 已知 ,求频谱函数)(ωj F 。 解 前面已讨论了

用拉普拉斯变换方法解微分方程

拉普拉斯变换就是解常系数线性微分方程中经常采用的一种较简便的方法、其基本思想就是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解、 一拉普拉斯变换的概念 定义设函数f(t)的定义域为[0,+∞),若广义积分∫0+∞f(t)e-pt dt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=∫0+∞f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=L[f(t)]、 若F(p)就是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1[F(p)]、 例1 求指数函数f(t)=e at(t≥0,a就是常数)的拉氏变换、 解根据定义,有L[e at]=∫0+∞e at e-pt dt=∫0+∞e-(p-a)t dt 这个积分在p>a时收敛,所以有 L[e at]=∫0+∞e-(p-a)t dt=1/(p-a) (p>a) (1) 例2 求一次函数f(t)=at(t≥0,a就是常数)的拉氏变换、 解L[at]=∫0+∞ate-pt dt=-a/p∫0+∞td(e-pt) =-[at/p e-pt]0+∞+a/p∫0+∞e-pt dt 根据罗必达法则,有 lim t0+∞(-at/p e-pt)=-lim t0+∞at/pe pt=-lim t0+∞a/p2 e pt 上述极限当p>0时收敛于0,所以有lim t0+∞(-at/pe-pt)=0 因此L[at]=a/p∫0+∞e-pt dt

=-[a/p 2e -pt ]0+∞=a/p 2(p >0) (2) 例3 求正弦函数f(t)=sinωt(t≥0)的拉氏变换、 解 L[sinωt]=∫0+∞sinωte -pt dt =[-1/(p 2+ω2) e -pt (psinωt+ωcosωt]0+∞ =ω/(p 2+ω2) (p >0) (3) 用同样的方法可求得 L[cosωt]=p/(p 2+ω2) (p >0) (4) 二 拉普拉斯变换的基本性质 三 拉普拉斯变换的逆变换 四 拉普拉斯变换的应用 2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法就是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点就是在求解微分方程时,可同时获得的瞬态分量与稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解就是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的dt d ,2s 代替

傅里叶变换和拉普拉斯变换的性质及应用

1.前言 1.1背景 利用变换可简化运算,比如对数变换,极坐标变换等。类似的,变换也存在于工程,技术领域,它就是积分变换。积分变换的使用,可以 使求解微分方程的过程得到简化,比如乘积可以转化为卷积。什么是积 分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属 于B函数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要积分变 换。分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成 分,也能够利用成分合成信号。可以当做信号的成分的波形有很多,例 如锯齿波,正弦波,方波等等。傅立叶变换是利用正弦波来作为信号的 成分。Pierre Simon Laplace 拉普拉斯变换最早由法国数学家天文学家 (拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他 的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理 论》之中。即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉 斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理 学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛 (1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少 方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理 论的严格化的兴趣。之后才创立了现代算子理论。算子理论最初的理论 依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展 也是得益于算理理论的更进一步发展。这篇文章就是针对傅里叶变换和 拉普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论, 并且分析傅里叶变换和拉普拉斯变换的区别与联系。 1.2预备知识 定理1.2.1(傅里叶积分定理) 若在(-∞,+∞)上,函数满足一下条件:

二维傅里叶变换变换、性质和频域滤波

实验三二维傅里叶变换变换、性质和频域滤波 一、实验目的 1、了解图像傅里叶变换的物理意义; 2、掌握频域滤波原理; 3、熟悉傅里叶变换的基本性质; 4、熟练掌握FFT的变换方法及应用; 5、通过实验了解二维频谱的分布特点; 二、实验平台 计算机和Matlab语言环境 三、实验内容 1、数字图像二维傅里叶变换及其对数显示 2、频域滤波器处理图像 3、二维傅里叶变换的性质(比例变换性、旋转、可分性) 四、实验步骤 1、二维傅里叶变换的性质 1> 二维傅里叶变换 构造一幅图像,在64×64的黑色背景中产生一个5个白条纹,对其进行傅里叶变换 f = zeros(64,64); for j=1:5 f(:,j*10:j*10+1)=1; end F=fft2(f);Fc=fftshift(F); subplot(1,2,1),imshow(f,[ ]);title('原始图像'); subplot(1,2,2),imshow(abs(Fc),[ ]);title('图像傅里叶变换'); 2> 比例变换性 将图像扩大到原来的2倍后对其进行傅里叶变换,观察图像与原始图像的差异、频谱的差异 fresize=imresize(f,2); fresize=fresize(31:94,31:94);

Fresize=fft2(fresize);Fc1=fftshift(Fresize); subplot(1,2,1),imshow(fresize,[ ]);title('图像扩大2倍'); subplot(1,2,2),imshow(abs(Fc1),[ ]);title('图像扩大2倍后傅里叶'); 3> 旋转 将图像旋转45度后对其进行傅里叶变换,观察图像与原始图像的差异、频谱的差异 frotate=imrotate(f,45);%图像旋转 Frotate=fft2(frotate);Fc2=fftshift(Frotate);%图像旋转后做傅里叶变换subplot(1,2,1),imshow(frotate,[ ]);title('图像旋转'); subplot(1,2,2),imshow(abs(Fc2),[ ]);title('图像旋转后傅里叶'); 4> 可分性 首先沿着图像的每一行计算一维变换,然后沿着中间结果的每一列计算一维变换,以此计算二维傅里叶 for i=1:64 fft_row(i,:)=fft(f(i,:));%沿着图像的每一行计算一维变换 end for j=1:64 fft_col(:,j)=fft(fft_row(:,j));%沿着中间结果的每一列计算一维变换 end Fc3=fftshift(fft_col); figure,imshow(abs(Fc3),[ ]);title('两次fft');

傅里叶变换性质证明

2.6傅里叶变换的性质 2.6.1线性 若信号「和J的傅里叶变换分别为「"和F』-, 则对于任意的常数a和b,有 将其推广,若- - - 「出■,则 其中匚为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即卩 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 砒心?]的?卜伽)1 2.6.2反褶与共轭性 设f(t) 的傅里叶变换为F面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换

(1)反褶

f(-t)是f(t)的反褶,其傅里叶变换为 綁new九 (2) 共轭 =匸施)时论匸加門(幼 因为曲是实数,所以(dtr=dt 彳 寻共觇提到积分之外根据傅里 叶变换的定义 (3) 既反褶又共轭 町(卯訂:厂(号叫fe 本性质还可利用前两条性质来证明: 设g(t)=f(-t) ,h(t)=g*(t),则 *曾筍%芳遛凸■_苗苫 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质

FLTH)] = F? 町甘D FLH 心FH) 2.6.3奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示 成模与相 位或者实部与虚部两部分,即 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t) 为实函数 对比式(2-33)与(2-34),由FT 的唯一性可得 尺(耐=][/(f)cosaf 址 (1.1)f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X( )=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 匚】:’匚° :左边反褶,右边共轭 (1.2)f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R( )=0,于是 FQ)=卩(询片 眄' =盹)+歼询) 根据定义,上式还可以写成 (2-33) 呎弊)=arc tan [制 (曲)=2[

用拉氏变换法解线性微分方程

用拉氏变换法解线性微分方程 一 基本定义 若函数f(t),t 为实变量,线积分 ∫ f(t)e -st dt (s 为复变量)存在, 则称其为f(t)的拉氏变换,记为F(s)或£[f(t)],即F(s)=£[f(t)]=∫ f(t)e -st dt 常称:F(s)→f(t)的象函数; f(t) →F(s)的原函数。 二 基本思路 用拉氏变换解线性微分方程,可将经典数学中的微积分运算转化成代数运算 三 典型函数的拉氏变换 1、单位阶跃函数 f(t)=1(t)= 1 t ≧0 t <0 F(s)=£[f(t)]= ∫ f(t)e -st dt =∫ 1 e -st dt =1/s 2、单位斜坡函数 f(t)= t 1(t) = t t ≥0 0 t <0 F(s)=£[f(t)]= ∫ t e -st dt =1/s 2 3、等加速度函数 ∞ 0 ∞ ∞ ∞ 0 ∞

f(t) = 1/2 t 2 t ≥0 0 t <0 F(s) = ∫ 1/2 t 2 e -st dt = 1/s 3 4、指数函数 t ≥0 t <0 F(s)= ∫ 1/2 t 2 e -st dt =1 / (s-α) 5、正弦函数 f(t)= sinwt t ≥0 0 t <0 F(s) =∫sinwt e -st dt = w/(s 2+w 2) 四 拉氏变换的几个法则 对于一些简单原函数,可根据拉氏变换定义求象,但对于较复杂的原函数,必须用到下面几个定理求取其象函数: 1、线性定理 若:£[f 1(t)]=F 1(s) , £[f 2(t)]=F 2(s) (a 、b 为常数) 则 £[a f 1(t) + b f 2(t)] = aF 1(s) + bF 2(s) 2、微分定理 若:£[f(t)]=F(s) 则 £[d ? f(t)/dt ? ]=s ?F(s) - ∑s n-i-1 f (i) (0) 式中f (i) (0)为f(t)及其各阶导数在t=0时的值 ∞ ∞ ∞ n-1 i=0

傅立叶变换

傅里叶变换 ●傅里叶变换 ?傅里叶变换及其反变换 ?傅里叶变换的性质 ?快速傅里叶变换(FFT)

傅里叶变换 ?可以利用频率成分和图像外表之间的对应关系。一些在空间域表述困难的增强任务,在频率域中变得非常普通 ?滤波在频率域更为直观,它可以解释空间域滤波的某些性质 ?可以在频率域指定滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导 ?一旦通过频率域试验选择了空间滤波,通常实施都在空间域进行

● 一维连续傅里叶变换及反变换 ?单变量连续函数f(x)的傅里叶变换F(u)定义为 其中,?给定F(u),通过傅里叶反变换可以得到f(x) ?∞ ∞-=f u F )(1 -=j ?∞ ∞-=x f )(

● 二维连续傅里叶变换及反变换 ?二维连续函数f(x,y)的傅里叶变换F(u,v)定义为 ?给定F(u,v),通过傅里叶反变换可以得到f(x,y) () dy dx e y x f v u F vy ux j ??∞∞-∞∞-+-=π2),(),(() dv du e v u F y x f vy ux j ??∞∞-∞∞-+=π2),(),(傅里叶变换

● 一维离散傅里叶变换(DFT)及反变换?单变量离散函数f(x)(x=0,1,2,..,M-1)的傅里叶变换F(u)定义为 u=0,1,2,…,M-1?给定F(u),通过傅里叶反变换可以得到f(x) x=0,1,2,…,M-1∑-==1 1 )(M x f M u F ∑-==1 0)(M u x f

● 一维离散傅里叶变换及反变换 ?从欧拉公式()(∑-=-=1 2cos(1 M x x f M θcos e j =()∑-=-=1 )2(1)(M x ux j e x f M u F π()(∑-==1 02cos 1 M x x f M π

常用函数傅里叶变换

附录A 拉普拉斯变换及反变换 .

.

. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

傅里叶变换性质证明

傅里叶变换性质证明The final revision was on November 23, 2020

傅里叶变换的性质 2.6.1线性 若信号和的傅里叶变换分别为和, 则对于任意的常数a和b,有 将其推广,若,则 其中为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即

叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和? 2.6.2 反褶与共轭性 设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。 (1)反褶 f(-t)是f(t)的反褶,其傅里叶变换为 (2)共轭 (3)既反褶又共轭 本性质还可利用前两条性质来证明: 设g(t)=f(-t),h(t)=g*(t),则

在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质2.6.3 奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即 ? 根据定义,上式还可以写成 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t)为实函数对比式(2-33)与(2-34),由FT的唯一性可得 ()f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X()=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 左边反褶,右边共轭 ()f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故

相关文档
最新文档