第5章 空间计量模型的贝叶斯MCMC估计

层次贝叶斯模型-空间分析

1.1 层次贝叶斯模型 经典的推断分析模型、空间回归模型、空间面板模型有一个共同的特点:这些模型的求解完全依赖所采集的样本信息。然而,在业务实践中,在收集样本之前,研究者往往会对研究对象的变化或分布规律有一定的认识。这些认识或是来自长期积累的经验,也可能来自合理的假设。由于这些认识没有经过样本的检验,所以我们可以称之为先验知识。比如我们要研究某地某疾病月发病人数的概率分布。即使没有进行统计调查,我们根据一些定理和合理假设,也可以知道发病数服从泊松分布。甚至根据医院日常接诊的经验,可以推算出发病人数大概在哪个区间。这种情况下,对于发病人数分布形态和大致区间的认识,属于先验知识。先验知识对我们探索研究对象的变化规律会有很大的帮助。而经典的推断分析模型、空间回归模型、空间面板模型都没有利用先验知识,导致了信息利用的不充分。而本节所要谈到的层次贝叶斯模型,会结合先验知识和样本信息,对数据进行推断分析。由于层次贝叶斯模型能有效利用先验知识和样本信息,因此可以提高推断的准确度或降低抽样的成本。 (1)贝叶斯统计原理简介 在介绍层次贝叶斯模型之前,有必要首先简单阐述一下贝叶斯统计的基本原理。贝叶斯统计的基础是贝叶斯定理: (|)() (|)()P B A P A P A B P B = (1) 其中: ()P A 是事件A 的先验概率(例如,某专家通过经验或之前的研究得出乙肝发病率为10%,这就是一个先验概率),()P B 是事件B 发生的概率,且()0P B ≠,(|)P A B 是给出事件B 后事件A 的后验概率。(|)/()P B A P B 是事件A 发生对事件B 的支持程度,即似然函数。对(|)/()P B A P B 可以有如下的理解:设(|)/()P B A P B n =,则在事件A 发生的条件下,事件B 发生的概率是不知A 是否发生的条件下的n 倍。 使用贝叶斯方法的一个重要目的,就在于得出随机变量的概率分布及各因素对分布的影响。要实现这一目的,首先按如下公式进行参数反演: (|)(|)()f D Cf D f θθθ= (2)

贝叶斯空间计量模型

贝叶斯空间计量模型集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

贝叶斯空间计量模型一、采用贝叶斯空间计量模型的原因 残差项可能存在异方差,而ML估计方法的前提是同方差,因此,当残差项存在异方差时,采用ML方法估计出的参数结果不具备稳健性。二、贝叶斯空间计量模型的估计方法 (一)待估参数 对于空间计量模型(以空间自回归模型为例) 假设残差项是异方差的,即 上述模型需要估计的参数有: 共计n+2个参数,存在自由度问题,难以进行参数检验。 服从自由度为r的卡方分布。如为此根据大数定律,增加了新的假设:v i 此以来,待估参数将减少为3个。 (二)参数估计方法 采用MCMC(MarkovChainMonteCarlo)参数估计思想,具体的抽样方法选择吉布斯抽样方法(Gibbssamplingapproach) 在随意给定待估参数一个初始值之后,开始生成参数的新数值,并根据新数值生成其他参数的新数值,如此往复,对每一个待估参数,将得到一组生成的数值,根据该组数值,计算其均值,即为待估参数的贝叶斯估计值。 三、贝叶斯空间计量模型的类型 空间自回归模型far_g()

空间滞后模型(空间回归自回归混合模型)sar_g() 空间误差模型sem_g() 广义空间模型(空间自相关模型)sac_g() 四、贝叶斯空间模型与普通空间模型的选择标准 首先按照参数显着性,以及极大似然值,确定普通空间计量模型的具体类型,之后对于该确定的类型,再判断是否需要进一步采用贝叶斯估计方法。 标准一:对普通空间计量模型的残差项做图,观察参数项是否是正态分布,若非正态分布,则考虑使用贝叶斯方法估计。 技巧:r=30的贝叶斯估计等价于普通空间计量模型估计,此时可以做出v的分布图,观察其是否基本等于1,若否,则应采用贝叶斯估计方法。 标准二:若按标准一发现存在异方差,采用贝叶斯估计后,如果参数结果与普通空间计量方法存在较大差异,则说明采用贝叶斯估计是必要的。 例1:选举投票率普通SAR与贝叶斯SAR对比: loadelect.dat; loadford.dat; y=elect(:,7)./elect(:,8); x1=elect(:,9)./elect(:,8); x2=elect(:,10)./elect(:,8); x3=elect(:,11)./elect(:,8);

第五章贝叶斯估计

第五章贝叶斯统计 5.1 简介 到目前为止,我们已经知道了大量的不同的概率模型,并且我们前面已经讨论了如何用它们去拟合数据等等。前面我们讨论了如何利用各种先验知识,计算MAP参数来估计θ=argmax p(θ|D)。同样的,对于某种特定的请况,我们讨论了如何计算后验的全概率p(θ|D)和后验的预测概率密度p(x|D)。当然在以后的章节我们会讨论一般请况下的算法。 5.2 总结后验分布 后验分布总结关于未知变量θ的一切数值。在这一部分,我们讨论简单的数,这些数是可以通过一个概率分布得到的,比如通过一个后验概率分布得到的数。与全面联接相比,这些统计汇总常常是比较容易理解和可视化。 5.2.1最大后验估计 通过计算后验的均值、中值、或者模型可以轻松地得到未知参数的点估计。在5.7节,我们将讨 论如何利用决策理论从这些模型中做出选择。典型的后验概率均值或者中值是估计真实值的恰当选择,并且后验边缘分布向量最适合离散数值。然而,由于简化了优化问题,算法更加高效,后验概率模型,又名最大后验概率估计成为最受欢迎的模型。另外,通过对先验知识的取对数来正 则化后,最大后验概率可能被非贝叶斯方法解释(详情参考6.5节)。 最大后验概率估计模型在计算方面该方法虽然很诱人,但是他有很多缺点,下面简答介绍一下。在这一章我们将更加全面的学习贝叶斯方法。 图5.1(a)由双峰演示得到的非典型分布的双峰分布,其中瘦高蓝色竖线代表均值,因为他接近 大概率,所以对分布有个比较好的概括。(b)由伽马绘图演示生成偏态分布,它与均值模型完全不同。 5.2.1.1 无法衡量不确定性 最大后验估计的最大的缺点是对后验分布的均值或者中值的任何点估计都不能够提供一个不确定性的衡量方法。在许多应用中,知道给定估计值的置信度非常重要。我们在5.22节将讨论给出后验估计置信度的衡量方法。 5.2.1.2 深耕最大后验估计可能产生过拟合

贝叶斯空间计量模型

贝叶斯空间计量模型 Prepared on 22 November 2020

贝叶斯空间计量模型 一、采用贝叶斯空间计量模型的原因 残差项可能存在异方差,而ML估计方法的前提是同方差,因此,当残差项存在异方差时,采用ML方法估计出的参数结果不具备稳健性。 二、贝叶斯空间计量模型的估计方法 (一)待估参数 对于空间计量模型(以空间自回归模型为例) 假设残差项是异方差的,即 上述模型需要估计的参数有: 共计n+2个参数,存在自由度问题,难以进行参数检验。 为此根据大数定律,增加了新的假设:v i服从自由度为r的卡方分布。如此以来,待估参数将减少为3个。 (二)参数估计方法 采用MCMC(Markov Chain Monte Carlo)参数估计思想,具体的抽样方法选择吉布斯抽样方法(Gibbs sampling approach) 在随意给定待估参数一个初始值之后,开始生成参数的新数值,并根据新数值生成其他参数的新数值,如此往复,对每一个待估参数,将得到一组生成的数值,根据该组数值,计算其均值,即为待估参数的贝叶斯估计值。

三、贝叶斯空间计量模型的类型 空间自回归模型 far_g() 空间滞后模型(空间回归自回归混合模型) sar_g() 空间误差模型 sem_g() 广义空间模型(空间自相关模型) sac_g() 四、贝叶斯空间模型与普通空间模型的选择标准 首先按照参数显着性,以及极大似然值,确定普通空间计量模型的具体类型,之后对于该确定的类型,再判断是否需要进一步采用贝叶斯估计方法。 标准一:对普通空间计量模型的残差项做图,观察参数项是否是正态分布,若非正态分布,则考虑使用贝叶斯方法估计。 技巧:r=30的贝叶斯估计等价于普通空间计量模型估计,此时可以做出v的分布图,观察其是否基本等于1,若否,则应采用贝叶斯估计方法。 标准二:若按标准一发现存在异方差,采用贝叶斯估计后,如果参数结果与普通空间计量方法存在较大差异,则说明采用贝叶斯估计是必要的。 例1:选举投票率普通SAR与贝叶斯SAR对比: load ; load ; y=elect(:,7)./elect(:,8);

贝叶斯决策模型及实例分析

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下内容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之内。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果的概

率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

贝叶斯空间计量模型

贝叶斯空间计量模型 一、采用贝叶斯空间计量模型的原因 残差项可能存在异方差,而ML 估计方法的前提是同方差,因此,当残差项存在异方差时,采用ML 方法估计出的参数结果不具备稳健性。 二、贝叶斯空间计量模型的估计方法 (一)待估参数 对于空间计量模型(以空间自回归模型为例) ερ+=Wy y 假设残差项是异方差的,即 ),,() ,0(~212n v v v diag V V N =σε 上述模型需要估计的参数有: n v v v 21σ ρ 共计n+2个参数,存在自由度问题,难以进行参数检验。 为此根据大数定律,增加了新的假设:v i 服从自由度为r 的卡方分布。如此以来,待估参数将减少为3个。

(二)参数估计方法 采用MCMC(Markov Chain Monte Carlo)参数估计思想,具体的抽样方法选择吉布斯抽样方法(Gibbs sampling approach)在随意给定待估参数一个初始值之后,开始生成参数的新数值,并根据新数值生成其他参数的新数值,如此往复,对每一个待估参数,将得到一组生成的数值,根据该组数值,计算其均值,即为待估参数的贝叶斯估计值。 三、贝叶斯空间计量模型的类型 空间自回归模型far_g() 空间滞后模型(空间回归自回归混合模型)sar_g() 空间误差模型sem_g() 广义空间模型(空间自相关模型)sac_g() 四、贝叶斯空间模型与普通空间模型的选择标准 首先按照参数显著性,以及极大似然值,确定普通空间计量模型的具体类型,之后对于该确定的类型,再判断是否需要进一步采用贝叶斯估计方法。 标准一:对普通空间计量模型的残差项做图,观察参数项是否是正态分布,若非正态分布,则考虑使用贝叶斯方法估计。 技巧:r=30的贝叶斯估计等价于普通空间计量模型估计,此时可以做出v的分布图,观察其是否基本等于1,若否,则应

贝叶斯预测模型

贝叶斯预测模型 贝叶斯预测模型的概述 贝叶斯预测模型是运用贝叶斯统计进行的一种预测.贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。 托马斯·贝叶斯(Thomas Bayes)的统计预测方法是一种以动态模型为研究对象的时间序列预测方法。在做统计推断时,一般模式是: 先验信息+总体分布信息+样本信息→后验分布信息 可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观因素和主观因素结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。 [编辑] Bayes预测模型及其计算步骤 此处使用常均值折扣模型,这种模型应用广泛而且简单,它体现了动态现行模型的许多基本概念和分析特性。 常均值折扣模型 对每一时刻t常均值折模型记为DLM{1,1,V,δ},折扣因子δ,O<δ

推论2:μt的后验分布()~N [m t,C t],其中m t = m t? 1 + A t e t,C t = A T v t,A t = R t / Q t,e t = y t? f t 由于Rt=Ct-1+Wt=Ct-1/δ,故有W? t = C t? 1(δ? 1? 1) 其计算步骤为: (1)R t = C? t/ δ;(2)Q t = R t + V; (3)A t = R t / Q t;(4)f t? 1 = m t? 1; (5)e t? y t? f t? 1;(6)C t = A t V; (7)m t? m t? 1 + A t e t [编辑] 计算实例 根据The SAS System for Windows 9.0所编程序,对美国出口额(单位:十亿元)变化进行了预测。选取常均值折扣模型和抛物线回归模型。 美国出口额的预测,预测模型的初始信息为m0=304,Co=72,V=0.Ol,δ=0.8得到的1960—2006年的预测结果。见表2中给出了预测的部分信息(1980—2006年的预测信息)。

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

由传递函数转换成状态空间模型(1)

由传递函数转换成状态空间模型——方法多!!! SISO 线性定常系统 高阶微分方程化为状态空间表达式 SISO ()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211 )(2 211110n n n n m m m a s a s a s b s b s b s G +++++++=--- 假设1+=m n 外部描述 ←—实现问题:有了内部结构—→模拟系统 内部描述 SISO ???+=+=du cx y bu Ax x 实现问题解决有多种方法,方法不同时结果不同。 一、 直接分解法 因为 1 0111 11()()()() ()()()() 1m m m m n n n n Y s Z s Z s Y s U s Z s U s Z s b s b s b s b s a s a s a ----?=? =?++++++++ ???++++=++++=----) ()()() ()()(11 11110s Z a s a s a s s U s Z b s b s b s b s Y n n n n m m m m 对上式取拉氏反变换,则 ???++++=++++=----z a z a z a z u z b z b z b z b y n n n n m m m m 1) 1(1)(1)1(1)(0 按下列规律选择状态变量,即设)1(21,,,-===n n z x z x z x ,于是有 ?????? ?+----===-u x a x a x a x x x x x n n n n 12113 221

空间计量

空间经济计量和普通计量的区别: (1)设立的地区数据模型中存在空间异质性; (2)观测中存在空间依赖性 空间异质性,即空间差异性,是指每一个空间区位上的事物和现象都具有区别于其他事物和现象的特点。从统计学的角度看,空间异质性是指研究对象在空间上非平稳,这违背了经典统计学所要求的所有样本都来源于同一总体的假设 空间依赖性(其较弱形式是空间关联)是事物和现象在空间上的相互依赖、相互制约、相互影响和相互作用,是实物和现象本身所固有的属性,是地理空间现象和空间过程的本质特征。 地理学第一定律:任何事物在空间上都是关联的;距离越近。关系程度就越强;距离越远。关系程度就越弱 Moran指数可以看做是观测值与它的空间滞后之间的相关系数 空间计量经济模型主要有空间误差和空间滞后模型,这两者都属于空间自回归模型 理论空间计量经济学主要研究空间圈中的设定及如何运用。改造和发展数理统计的方法,使之成为测量空间随机经济关系的特殊方法,包括各类空间自回归模型——特别是截面数据和面板数据回归模型——的设定。估计和检验方法 应用空间计量经济学是在一定的空间经济理论指导下,以反映湿湿的空间数据为依据,用经济计量方法研究空间经济数学模型的实用化或探索实证空间经济规律,具体研究内容包括方法应用及软件平台开发 空间滞后模型通过引入变量的空间滞后形式,将一个空间位置上的变化与周边邻居位置上的变量联系在一起,这在一定程度上揭示了由于空间扩散、空间溢出等相互作用造成的空间依赖;而空间误差模型通过将误差项设定为某种空间过程(如空间自回归)的形式,能够将由于测量误差等原因造成的冗余空间依赖加以显示表达 局域地理溢出指位于一个区域的企业的生产过程仅仅受益于该地区知识的积累,在这种情况下,将出现经济行为的不平衡空间分布及经济增长的趋势(发散);全域地理溢出指一个区域的知识积累将提高不管位于什么地方或区位的所有企业的生产力 分别计算出LM LAG R-LM LAG LM err R- LM err 如果LM LAG显著而LM err不显著,则用空间滞后模型;如果LM LAG不显著而LM err显著,则用空间误差模型;如果两个在统计上都显著,则由R- LM err R-LM LAG的显著性决定

贝叶斯预测方法

贝叶斯预测模型的概述 贝叶斯预测模型是运用贝叶斯统计进行的一种预测。贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。 托马斯·贝叶斯(Thomas Bayes)的统计预测方法是一种以动态模型为研究对象的时间序列预测方法。在做统计推断时,一般模式是: 先验信息+总体分布信息+样本信息→后验分布信息 可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观因素和主观因素结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。 Bayes预测模型及其计算步骤 此处使用常均值折扣模型,这种模型应用广泛而且简单,它体现了动态现行模型的许多基本概念和分析特性。 常均值折扣模型 对每一时刻t常均值折模型记为DLM{1,1,V,δ},折扣因子δ,O<δ

推论2:μt的后验分布()~N [m t,C t],其中f t = m t? 1,Q t = R t + V。 由于Rt=Ct-1+Wt=Ct-1/δ,故有W?t = C t? 1(δ? 1? 1) W 其计算步骤为: (1)R t = C?t / δ; (2)Q t = R t + V; (3)A t = R t / Q t; (4)f t? 1 = m t? 1; (5)e t?y t?f t? 1; (6)C t = A t V; (7)m t?m t? 1 + A t e t 计算实例 根据The SAS System for Windows 9.0所编程序,对美国出口额(单位:十亿元)变化进行了预测。选取常均值折扣模型和抛物线回归模型。 美国出口额的预测,预测模型的初始信息为m0=304,Co=72,V=0。Ol,δ=0。8得到的1960—2006年的预测结果。见表2中给出了预测的部分信息(1980—2006年的预测信息)。 通过The SAS System for Windows 9.0软件回归分析得到抛物线预测方程: 表示年份见表3给出了1980-2006年的预测信息。 计算结果分析 对预测结果的准确度采用平均绝对百分误差(MAPE)分析。公式如下: 根据表l和表2对1980-2005年出口额的预测结果可知,常均值折扣模型所得结果的平均绝对百分误差MAPE=8。1745%,而由抛物线回归模型所得结果的平均绝对百分误差为9。5077%。由此可见这组数据中,使用贝叶斯模型预测的结果更为精确。

层次贝叶斯模型-空间分析

f(r |D)二Cf (D |Rf (巧 (2) 1.1层次贝叶斯模型 经典的推断分析模型、空间回归模型、空间面板模型有一个共同的特点: 这 些模型的求解完全依赖所采集的样本信息。 然而,在业务实践中,在收集样本之 前,研究者往往会对研究对象的变化或分布规律有一定的认识。 这些认识或是来 自长期积累的经验,也可能来自合理的假设。由于这些认识没有经过样本的检验, 所以我们可以称之为先验知识。比如我们要研究某地某疾病月发病人数的概率分 布。即使没有进行统计调查,我们根据一些定理和合理假设, 也可以知道发病数 服从泊松分布。甚至根据医院日常接诊的经验,可以推算出发病人数大概在哪个 区间。这种情况下,对于发病人数分布形态和大致区间的认识,属于先验知识。 先验知识对我们探索研究对象的变化规律会有很大的帮助。而经典的推断分析模 型、空间回归模型、空间面板模型都没有利用先验知识, 导致了信息利用的不充 分。而本节所要谈到的层次贝叶斯模型, 会结合先验知识和样本信息,对数据进 行推断分析。由于层次贝叶斯模型能有效利用先验知识和样本信息, 因此可以提 高推断的准确度或降低抽样的成本。 (1)贝叶斯统计原理简介 在介绍层次贝叶斯模型之前,有必要首先简单阐述一下贝叶斯统计的基本原 理。贝叶斯统计的基础是贝叶斯定理: 其中:P(A)是事件A 的先验概率(例如,某专家通过经验或之前的研究得 出乙肝发病率为10%,这就是一个先验概率),P(B)是事件B 发生的概率,且 P(B)=O ,P(A|B)是给出事件B 后事件A 的后验概率。P(B|A)/P(B)是事件A 发生对事件B 的支持程度,即似然函数。对 P(B|A)/P(B)可以有如下的理解: 设P(B|A)/P(B)二n ,贝恠事件A 发生的条件下,事件B 发生的概率是不知A 是 否发生的条件下的n 倍。 使用贝叶斯方法的一个重要目的,就在于得出随机变量的概率分布及各因素 对分布的影响。要实现这一目的,首先按如下公式进行参数反演: P(A|B)二 P(B | A)P(A) P?B) (1)

空间计量经济学模型归纳

空间计量经济学模型 空间相关性是指 () ,i j y f y i j =≠即i y 与j y 相关 模型可表示为() (),1i j j i i y f y x i j βε=++≠ 其中,()f g 为线性函数,(1)式的具体形式为 () ()2,0,2i ij j i i i i j y a y x N βεεδ≠=++∑: 如果只考虑应变量空间相关性,则(2)式变为(3)式 ()()21 ,0,,1,2...3n i ij j i i i y W y N i n ρεεδ==+=∑: 式中 1 n ij j i W y =∑为空间滞后算子,ij W 为维空间权重矩阵n n W ?中的元素,ρ为待估的空间自相 关系数。0ρ≠,存在空间效应 (3)式的矩阵形式为() ()21, 0,4u n y Wy N I ρεδ?=: (4)式称为一阶空间自回归模型,记为FAR 模型 当在模型中引入一系列解释变量X 时,形式如下 () ()2,0,5n y Wy X N I ρβεεδ=++: (5)式称为空间自回归模型,记为SAR 模型 当个体间的空间效应体现在模型扰动项时有 () ()21,,0,6u n y X u u Wu N I βλεδ?=+=: (6)式成为空间误差模型,记为SEM 模型 当应变量与扰动项均存在空间相关时有 () ()2121,,0,7u n y W y X u u W u N I ρβλεεδ?=++=+: (7)式称为一般空间模型,记为SAC 模型 当0X =且20W =时,SAC →FAR ;当20W =时,SAC →SAR 当10W =时,SAC →SEM

贝叶斯统计读书笔记

第五章 贝叶斯统计 葛鹏飞 1、贝叶斯统计学回顾 定理1:贝叶斯定理的形式如下: 它让我们能够通过后验概率,在观测到D 之后估计w 的不确定性。 贝叶斯定理右侧的量)(ωD p 由观测数据集D 来估计,可以被看成参数向量w 的函数,被称为似然函数(likelihood function )。它表达了在不同的参数向量w 下,观测数据出现的可能性的大小。在观察到数据之前,我们对参数的一些假设,通过先验分布)(ωp 体现。 给定似然函数的定义,贝叶斯定理按照自然语言如下: 2、几个问题的引入 观察贝叶斯定理,在将贝叶斯方法用到统计问题以及更进一步的机器学习问题中,很直观的我们有以下问题需要考虑: (1)似然函数的选择; (2)先验分布的选择; (3)在确定似然函数和先验分布之后,得到后验分布,如何根据后验分布做出统计推断以及决策; (4)如何评价我们的前三步的选择。 之后我们将逐步解决以上四个问题。 3、似然函数的选择 前面的章节中,已经介绍过过拟合和欠拟合的概念:复杂的模型会导致过拟合,而简单的模型又会有欠拟合的忧虑。在贝叶斯方法中同样如此,似然函数包含着我们对数据D 所了解的全部信息,合理的选择似然函数的形式,将直接影响模型的好坏,将这个问题称作贝叶斯模型选择。

假设我们想比较L 个模型}{M i ,其中i=1,...,L 。 给定一训数据集D ,由贝叶斯定理,我们有模型的后验分布: 先验分布让我们能够表达不同模型之间的优先级,假设我们对任意一个模型都没有偏爱,我们发现关于模型分布正比于模型的似然函数,因此最大化后验分布等价于最大化似然函数。由此,我们引入模型证据的概念,或者称作边缘似然函数。下面给出相应定义: 定义2:(模型证据的定义) 使用模型证据的概念,我们就可以进行贝叶斯模型选择,其中的合理性,有以下的近似结论: 最大化模型证据的结果将使得我们选择一个复杂度适中的模型。 关于这点将给出近似的证明,为便于理解,我们使用到如下两图:

空间计量

空间计量 1974年5月2日J.Paelinck在荷兰统计协会年会(Tilburg,蒂尔堡)大会致词时提出“空间经济计量学”(SpatialEconometrics)的名词。 概况 自从Paelinck提出“空间经济计量学”这个术语,Cliff和Ord(1973,1981)对空间自回归模型的开拓性工作,发展出广泛的模型、参数估计和检验技术,使得经济计量学建模中综合空间因素变得更加有效。 Anselin (1988)对空间经济计量学进行了系统的研究,它以及Cliff和Ord(1973,1981)这三本著作至今仍被广泛引用。Anselin对空间经济计量学的定义是:“在区域科学模型的统计分析中,研究由空间引起的各种特性的一系列方法。”Anselin所提到的区域科学模型,指明确将区域、位置及空间交互影响综合在模型中,并且它们的估计及确定也是基于参照地理的(即:截面的或时-空的)数据,数据可能来自于空间上的点,也可能是来自于某个区域,前者对应于经纬坐标,后者对应于区域之间的相对位置。 发展得益于 国外近几年空间经济计量学得以迅速发展,如Anselin和Florax(1995)指出的,主要得益于以下几点: 对于空间及空间交互影响的作用的重新认识 对空间的重新关注并不局限于经济学,在其它社会科学中也得以反映。 与地理对应社会经济大型数据库的逐步实用性 在美国以及欧洲,官方统计部门提供的以区域和地区为统计单元的大型数据库很容易得到,并且价格低廉。这些数据可以进行空前数量的截面或时空观测分析,这时,空间(或时空)自相关可能成为标准而非一种特殊情况。 地理信息系统(GIS)和空间数据分析软件

实验八MATLAB状态空间分析

实验八 线性系统的状态空间分析 §8.1 用MATLAB 分析状态空间模型 1、状态空间模型的输入 线性定常系统状态空间模型 x Ax Bu y Cx Du =+=+ 将各系数矩阵按常规矩阵形式描述。 [][][]11 121120 10 1;;;n n n nn n n A a a a a a a B b b b C c c c D d ==== 在MATLAB 里,用函数SS()来建立状态空间模型 (,,,)sys ss A B C D = 例8.1 已知某系统微分方程 22d d 375d d y y y u t t ++= 求该系统的状态空间模型。 解:将上述微分方程写成状态空间形式 0173A ??=??--??,01B ??=???? []50C =,0D = 调用MATLAB 函数SS(),执行如下程序 % MATLAB Program example 6.1.m A=[0 1;-7 -3]; B=[0;1]; C=[5 0]; D=0; sys=ss(A,B,C,D) 运行后得到如下结果 a = x1 x2 x1 0 1

x2 -7 -3

b = u1 x1 0 x2 1 c = x1 x2 y1 5 0 d = u1 y1 0 Continuous-time model. 2、状态空间模型与传递函数模型转换 状态空间模型用sys 表示,传递函数模型用G 表示。 G=tf(sys) sys=ss(G) 状态空间表达式向传递函数形式的转换 G=tf(sys) Or [num,den]=ss2tf(A,B,C,D) 多项式模型参数 [num,den]=ss2tf(A,B,C,D,iu) [z,p,k]=ss2zp(A,B,C,D,iu) 零、极点模型参数 iu 用于指定变换所需的输入量,iu 默认为单输入情况。 传递函数向状态空间表达式形式的转换 sys=ss(G) or [A,B,C,D]=tf2ss(num,den) [A,B,C,D]=zp2ss(z,p,k) 例 8.2 11122211220.560.050.03 1.140.2500.1101001x x u x x u y x y x -??????????=+??????????-????????????????=??????? ????? 试用矩阵组[a ,b ,c ,d]表示系统,并求出传递函数。 % MATLAB Program example 6.2.m

贝叶斯数据分析

步骤: 1 序列的比对,然后将比对好的序列转化成.nex格式 2 运行MrBayes,简单步骤如下:(依次输入命令,完成简单也最常用的分 析):Execute filename.nex,打开待分析文件,文件必须和mrbayes程序在同一目录下。Lset nst=6 rates=invgamma,该命令设置进化模型为with gamma-distributed rate variation across sites和a proportion of invariable sites的GTR模型。模型可根据需要更改,不过一般无须更改。 3 mcmc ngen=10000 samplefreq=10,保证在后面的可能性分布中probability distribution至少取到1000个样品。默认取样频率:every 100th generation。 4 如果分裂频率分支频率split frequencies的标准偏差standard deviation在100,000代generations以后低于0.01,当程序询问:“Continue the analysis? (yes/no)”,回答no;如果高于0.01,yes继续直到该值低于0.01。 5 sump burnin=250(在此为1000个样品,即任何相当于你取样的25%的值),参数总结summarize the parameter,程序会输出一个关于样品(sample)的替代模型参数的总结表,包括mean,mode和95 % credibility interval of each parameter,要保证所有参数PSRF(the potential scale reduction factor)的值接近1.0,如果不接近,分析时间要延长。 6 sumt burnin=250,总结树summarize tree。程序会输出一个具有每一个分支的posterior probabilities的树以及一个具有平均枝长mean branch lengths的树。这些树会被保存在一个可以由treeview等读取的树文件中。

状态空间模型

状态空间模型概述 状态空间模型是动态时域模型,以隐含着的时间为自变量。状态空间模型在经济时间序列分析中的应用正在迅速增加。其中应用较为普遍的状态空间模型是由Akaike提出并由Mehra进一步发展而成的典型相关(canonical correlation)方法。由Aoki等人提出的估计向量值状态空间模型的新方法能得到所谓内部平衡的状态空间模型,只要去掉系统矩阵中的相应元素就可以得到任何低阶近似模型而不必重新估计,而且只要原来的模型是稳定的,则得到的低阶近似模型也是稳定的。 状态空间模型起源于平稳时间序列分析。当用于非平稳时间序列分析时需要将非平稳时间序列分解为随机游走成分(趋势)和弱平稳成分两个部分分别建模。含有随机游走成分的时间序列又称积分时间序列,因为随机游走成分是弱平稳成分的和或积分。当一个向量值积分序列中的某些序列的线性组合变成弱平稳时就称这些序列构成了协调积分(cointegrated)过程。非平稳时间序列的线性组合可能产生平稳时间序列这一思想可以追溯到回归分析,Granger提出的协调积分概念使这一思想得到了科学的论证。Aoki和Cochrane等人的研究表明:很多非平稳多变量时间序列中的随机游走成分比以前人们认为的要小得多,有时甚至完全消失。 协调积分概念的提出具有两方面的意义:

①如果一组非平稳时间序列是协调积分过程,就有可能同时考察他们之间的长期稳定关系和短期关系的变化; ②如果一组非平稳时间序列是协调积分过程,则只要将协调回归误差代入系统状态方程即可纠正系统下一时刻状态的估计值,形成所谓误差纠正模型。 Aoki的向量值状态空间模型在处理积分时间序列时,引入了协调积分概念和与之相关的误差纠正方法,因此向量值状态空间模型也是误差纠正模型。一个向量值时间序列是否为积分序列需判断其是否含有单位根,即状态空间模型的动态矩阵是否含有量值为1的特征值。根据动态矩阵的特征值即可将时间序列分解成两个部分,其中特征值为1的部分(包括接近1的“近积分”部分)表示随机游走趋势,其余为弱平稳部分,两部分分别建模就得到了两步建模法中的趋势模型和周期模型。 状态空间模型的假设条件是动态系统符号马尔科夫特性,即给定系统的现在状态,则系统的将来与其过去独立。 [编辑] 状态空间模型的分类 状态空间模型包括两个模型:一是状态方程模型,反映动态系统在输入变量作用下在某时刻所转移到的状态;二是输出或量

贝叶斯公式公式在数学模型中的应用

哈尔滨学院本科毕业论文(设计)题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师张俊超职称讲师 2013 年6月1日

目录 摘要 (1) Abstract (2) 前言 (2) 第一章贝叶斯公式及全概率公式的推广概述....................................... 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ...................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................ 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

【原创】R语言使用贝叶斯 层次模型进行空间数据分析报告论文(附代码数据)

咨询QQ:3025393450 有问题百度搜索“”就可以了 欢迎登陆官网:https://www.360docs.net/doc/b413067166.html,/datablog R语言使用贝叶斯层次模型进行空间数据分析报告 介绍 在本节中,我将重点介绍使用集成嵌套拉普拉斯近似方法的贝叶斯推理。 可以估计贝叶斯层次模型的后边缘分布。鉴于模型类型非常广泛,我们将重点关注用于分析晶格数据的空间模型。 数据集:纽约州北部的白血病 为了说明如何与空间模型拟合,将使用纽约白血病数据集。该数据集记录了普查区纽约州北部的许多白血病病例。数据集中的一些变量是: ?Cases:1978-1982年期间的白血病病例数。 ?POP8:1980年人口。 ?PCTOWNHOME:拥有房屋的人口比例。 ?PCTAGE65P:65岁以上的人口比例。 ?AVGIDIST:到最近的三氯乙烯(TCE)站点的平均反距离。 可以按以下方式加载数据集: library(spdep) library(DClusterm)

咨询QQ:3025393450 有问题百度搜索“”就可以了 欢迎登陆官网:https://www.360docs.net/doc/b413067166.html,/datablog data(NY8) 鉴于有兴趣研究纽约州北部的白血病风险,因此首先要计算预期的病例数。这是通过计算总死亡率(总病例数除以总人口数)并将其乘以总人口数得出的: rate <- sum(NY8$Cases) / sum(NY8$POP8) NY8$Expected <- NY8$POP8 * rate 一旦获得了预期的病例数,就可以使用标准化死亡率(SMR)来获得原始的风险估计,该标准是将观察到的病例数除以预期的病例数得出的: NY8$SMR <- NY8$Cases / NY8$Expected 疾病作图 在流行病学中,重要的是制作地图以显示相对风险的空间分布。在此示例中,我们将重点放在锡拉库扎市以减少生成地图的计算时间。因此,我们用锡拉丘兹市的区域创建索引: # Subset Syracuse city syracuse <- which(NY8$AREANAME == "Syracuse city") 可以使用函数spplot(在包中sp)简单地创建疾病图: library(viridis) ## Loading required package: viridisLite spplot(NY8[syracuse, ], "SMR", #at = c(0.6, 0.9801, 1.055, 1.087, 1.125, 13), col.regions = rev(magma(16))) #gray.colors(16, 0.9, 0.4))

相关文档
最新文档