氟元素的生物效应

氟元素的生物效应
氟元素的生物效应

氟元素的生物效应
李慧兰 药学系二班 华北煤炭医学院 药学系二班 摘要:本文通过检索本领域相关资料文献并经过深入分析整理和归纳,总结氟元素生物、工业、 环境作用 关键词:微量元素 工业科技 环境影响 综述 氟元素是原子半径很小,电子亲和能大和电负性很大的元素,在自然界中主要以难溶化合物的 形式存在,如萤石、冰晶石等,下面是氟元素的生物效应。
一、 人体不可或缺的微量元素 1、氯的营养机制
1.1 氟在机体中的分布 各种动物软组织中氟的浓度在正常情况下较低, 且不随年龄而增加。 除骨骼和牙齿外,任何组织都不具浓缩氟的作用。畜体内 95%以上的氟集中于骨骼和牙齿。正 常成年放牧动物, 其全部脱脂干骨里氟的浓度是 300~600 mg/kg 之间, 牙齿的氟浓度在 200~ 550mg/kg 之间(无脂干物质基础)。由于氟不易通过胎盘和乳腺屏障,故动物胚胎及新生幼畜 的组织器官含氟量较母体低。正常牛乳中仅含 1~2 mg/kg 氟(干物质基础)。与家畜相反, 禽类若采食高氟日粮,其摄入之氟很易转移至蛋中,尤其是蛋黄中。采食正常含氟量日粮的母 鸡,其蛋黄氟含量为 0.8~0.9 mg/kg,若补饲 2%磷酸盐矿石粉后,则氟可高达 3 mg/kg。 牙齿对血浆氟浓度变化非常敏感,当浓度达 0.5 mg/kg 时,牙齿会出现严重损害,尿中氟含 量基本上能反映动物的日粮氟浓度。 l.2 氯的代谢 饲料中的氟化物很易被胃肠吸收,小肠为氟吸收的主要部 位,吸收的氟都是以氟离子的形式很快地分布于整个机体内。氟离子很易通过细胞膜,骨骼对 氟的摄取主要决定于其生长活性。氟的排泄途径主要通过肾脏随尿排出,少量在汗和粪便中排 出。 1.3 氟的营养机理 氟在骨骼中的贮藏实质上是被组合进入羟基磷灰石的晶体中, F-不能 但 代替骨中的 PO3-4,不过骨的氟化可使其中的碳酸盐降低,即 F-可置换骨中的 CO2-3,而有利于 骨骼组织的成熟,提高骨骼硬度,防止骨骼空洞。氟对牙齿的形成也有类似作用。氟磷灰石结 晶能取代牙齿形成期间一些正常贮存的羟基磷灰石结晶,氟还可以使由碳水化合物产生的酸性 细菌酶失去活性,因此能保持牙齿健康及抑制牙齿表面酶和酸细菌的代谢过程。 关于氟的其他功能,尤其是对动物生长方面的作用,最近有人用鼠进行了饲养研究,饲喂 含氟 0.04 mg/kg 的饲料,发现添加氟可促进鼠的生长,还能降低钙在动物主动脉中的沉积。
2、
氟与各种营养物质代谢的关系
2.1 氟与水 水是生命之源,任何动物每天必需摄入一定量的水分。江河水含氟量在 0.l~ 0.5mg/kg,地下水由于受地理环境的影响含氟量变化较大,在我国含氟低的地区为 0.007~ 0.2 mg/kg,高的地区则达 32~40 mg/kg,一般温泉中含氟较高,有的高达 300 mg/kg。饮 水中的氟一般以游离形式存在,极易被动物吸收,其吸收率大于饲料中的氟。在实际应用中我 们应注意高氟区的水,若不经过脱氟措施,长期摄入高氟水可引起动物慢性中毒和氟骨症、氟 斑牙等,对氟敏感的动物如牛则可直接诱发急性中毒。 2.2 氟与蛋白质 蛋白质对氟起抑制作用,但在动物体内到底以何种方式起抑制作用,还待进 氟与蛋白质 一步研究(Parker,1979;Rao,1984;Carol,1987)。氟的增加也能影响蛋白质在组织器官 中的沉积(Kath-palia,1978)。Kahpalia(1978)等报道,家兔喂以 50mg/kg 体重的氟,软 组织中蛋白质含量降低 10%~46 %, 胃中蛋白质降低最多, 可能是因为胃是氟最先作用的靶器 官。 2.3 氟与脂类 脂类促进氟的吸收,高氟日粮则降低脂质的吸收(Suttie,1960)氟通过影响

一些参与脂类代谢的酶的活性而影响脂类代谢,氟被确认为脂酶、骨源性磷酸酶和酯酶等多种 酶系统的抑制剂。 2.4 氟与维生素 多年来,人们发现氟骨症和 VC 缺乏症存在相关性。孩子患氟斑牙最明显的 是 VC 缺乏地区。Barnes(1972)等研究证明,VC 参与赖氨酸和蛋白质合成骨胶原,而氟作用的 靶组织也是胶原。VD 可促进钙的吸收,钙和氟在肠道内具拮抗作用,当过量氟结合钙过多时, VD 会促进钙的主动运输,诱导小肠内膜细胞中钙结合蛋白的形成,从而更利于促进氟的排出。 近年来, 人们通常添加 VD、 钙和氟来弥补动物体的矿化不完全但得出结果不一致。 Aliew 等 (1981) 多个试验说明,VE 的摄入能明显防止氟对大鼠骨髓细胞染色体的破坏作用。VE 缺乏症与氟中毒 的病症, 如肌肉无力。 血管易脆和血胆红素升高等症状一致。 后两种病在人医中用 VE 已能治愈, 其原因可能是 VE 具有保护细胞免受自由基氧化的作用,而氟离子反过来影响细胞氧化过程,促 进自由基氧化,因此 VE 能防止氟中毒引起的某些病症。 2.5 氟与矿物质 氟与钙之间具有拮抗作用。Rogler(1972)的研究表明,钙的添加可降低血浆中和骨 灰分中氟的含量,具有减缓氟中毒的作用。通常畜禽饲料中 80%的氟能被吸收,如果加入钙, 氟的吸收降至 50%。氟与钙的拮抗机理主要是钙通过影响氟的吸收来完成的。
镁能拮抗氟化物的毒性。当饲料中镁的含量较低时,即使氟的含量不高,也会引起氟 。
中毒,但是加入镁之后,即使氟的含量较高,也不会中毒。目前一般认为,过量的氟可抑制体 内某些酶的活性,而镁是某些酶的激活剂,添加镁可使氟对酶的影响减弱。此外镁与氟还具有 互补作用。有研究表明,氟化物的投入可预防因缺镁而产生的软组织钙化和大动脉损伤。 人们在 20 世纪 50 年代就发现铝可以缓解氟中毒。Weddle 的研究表明,水和食物中铝含量 较高,可干扰氟在肠道内的吸收。Hokbs 等认为,铝和氟强烈络合,抑制氟在肠道内吸收,降低 骨骼中氟的浓度,并可减轻动物氟中毒的病情。因此一般认为铝的抗氟作用在于降低消化道对 氟的吸收。 Elsair 等 (1979) 研究表明, 硼对急性和慢性氟中毒均有缓解作用。 同济大学 (1989)发现, 硼能减轻氟对肾功能和其结构的损伤,促进机体排毒。学者们认为,硼与氟可形成毒性较低的 络合物(BF4),不仅在胃肠道进行该反应,而且在动物机体内其他部位也可能发生,从而减少 氟的生物学毒性。 硒能使血钙升高,血氟排出量增加,促进尿氟排出,胃氟含量降低。杜晓认为饲料中添加 2mg/kg 硒,排氟能力最佳。王俊东等的研究说明,硒可通过细胞膜的完整性与免疫功能来提高 对氟的拮抗能力。边建朝等(1994)报道,低硒高氟地区补硒后,可提高动物机体抗氧化能力, 减轻脂质过氧化对机体的损伤,同时能抬抗其体内的高氟。
3 、氟对免疫功能的影响
3.1 动物体液免疫功能的影响 体液免疫为 B 细胞介导的免疫应答反应。许多试验证明,NaF 能明显抑制小鼠和大白兔的抗体反应。血循环中抑制抗体产生的氟浓度为 0.788 mg/L。丁晓 红等发现,慢性氟中毒大鼠血清中抗绵羊红细胞抗体、脾溶血空斑形成细胞均较对照组显著降 低(P<0.01),表明慢性氟中毒大鼠合成抗体能力降低,血清抗体水平下降。立端等用小剂 量氟短时间对小鼠免疫功能影响的研究发现,低剂量氟短时间使机体抗体水平升高,高剂量长 时间则使机体抗体水平下降。吴岩等认为,氟可能通过抑制 DNA 和蛋白质合成以及抑制体内多 种酶系的活性,致使 B 淋巴细胞发育受阻,导致能分泌免疫球蛋白的 B 淋巴细胞数量减少,浆 细胞产生抗体过程受到抑制,从而导致体液免疫功能下降。 3.2 氟对细胞免疫的影响 细胞免疫主要是指由 T 淋巴细胞及其淋巴因子介导的免疫应答,以 及吞噬细胞的吞噬作用等。Sein 试验显示,高剂量 NaF(30 mg/kg)组小鼠脾细胞对辅酶 A 诱 导的增殖反应显著增强(P<0.05),NaF 免疫毒性以细胞免疫功能最为敏感,在 NaF 剂量为 10 mg/kg·d 时,即可引起动物外周血淋巴细胞转化功能下降。Dulac 等(199)研究结果显示,

氟化物可使 T 淋巴细胞数量降低,酸性 α 一醋酸萘酯酶(ANAE)活性下降,损害机体细胞免疫 功能。吴岩等(1995)认为,氟对细胞免疫毒性的作用可通过以下途径实现:1)通过抑制 DNA 和蛋白质合成,使淋巴细胞代谢和增殖受到抑制,从而使机体淋巴细胞产生减少;2)氟能诱发 淋巴细胞染色体发生形态上的改变,从而影响细胞正常增殖,导致淋巴细胞减少;3)通过氟对 机体多种酶的抑制作用,使淋巴细胞免疫活性降低。 细胞因子是指由细胞分泌的、能调节细胞功能的多肽。在免疫 3.3 对细胞因子产生的影响 应答中,细胞因子对细胞间的相互作用、细胞生长和分化起重要调节作用。白细胞介素 (InterLeukins,IL)在细胞因子的研究中占重要地位,在免疫系统中起重要调控作用。白细 胞介素-2(IL-2)由 T 细胞产生,可促进 T 细胞和 B 细胞的增殖和分化,加强 T 细胞抗病毒活 性。IL-2 在免疫缺损状态下可增进免疫功能,目前已被应用于肿瘤免疫治疗中。白细胞介素-6 (IL-6)可作为 B 细胞分化因子促进 B 细胞分化,产生抗体 IgG、IgI、IgM 等。丁晓红(1995) 等研究表明,慢性氟中毒大鼠脾脏细胞分泌 IL-2 和 IL-6 活性均显著下降(P<0.01),进 一步加重抗体免疫功能受损害的程度。
二、工业生产、科学研究上的作用 工业生产、
元素氟的直接利用和原子能工业的发展有着密切的关系。自从发现 U-235 的原子核具有裂 变性质之后,科学家们立即研究分离 U-235 和 U-238 两种同位素的方法,在铀化物中 UF6 具有 挥发性,因而可以用 F2 将 UF4 氧化成 UF6,然后用气体扩散法将两种铀的同位素分离 。 SF6 是很稳定的材料,在高温下也不分解,是理想的气体绝缘材料。许多机氟新结构的出现 引人注目,由于氟元素和氟基团导入分子后许多有机氟新使其电子效应加强,在有机体内的脂 溶性和渗透性大大增强、生物活性往往有很大改进。例如氟酰胺是优良的杀鼠剂,氟氯氰菊酯 是一种新杀螨剂、CCl3F 是很好的杀虫剂。兰索拉唑为一新型抑制胃酸分泌药物,其结构特点 是侧链中导入氟元素的取代苯并咪唑化合物,使其生物利用度较奥美拉唑提高了 30%以上,而 对幽门螺杆菌的抑菌活性比奥美拉唑提高了 4 倍。CBr2F2 是高效的灭火剂,聚四氟乙烯是塑料 王,液态氟也是火箭、导弹和发射人造卫星所用的高效燃料。
三、
环境的影响
因氟利昂稳定,不易燃烧也无毒,比热相对较高,被广泛用作冰箱和空调的冷却剂,当氟 利昂从产品中释放到大地,并上升到平流层,氟利昂被紫外线分解,生成氯原子,氯原子会催 化臭氧,而臭氧量减少,使射入地表的辐射剂量增加,对地球上的生命造成极大危害,如破坏 人体内的脱氧核糖核酸,是人类患皮肤癌、白内障和免疫系统疾病的危害。 全氟烃和六氟化硫会引起温室效应。 综述:氟元素作为人体不可缺少的微量元素使人体必不可少的元素,我们在日常生活中必 须注意氟元素的量的问题,少了多了均会对人体产生有害影响,同时氟元素科学前景是相 当广泛的,但它所造成的环境污染也不可忽略。 参考文献: 【1】吴晴斋. 微量元素与人体健康.北京:人民卫生出版社,1989 【2】张继剀,毛淑贤.人体必需微量元素与人类健康.甘肃科技,2005(3) 【3】嘉义;基础化学,人民卫生出版社,2000 【4】 [韩]李钟镐著李婷婷译;漫游诺贝尔奖创造的世界 化学之旅, :接力出版社,2004 【5】刘新锦,朱亚先,高飞:无机元素化学,人民卫生出版,2000 【6】刘国艳;鸡氟中毒的毒理学研究 [D];东北农业大学;2000 年 【7】郭晓英; 氟对大鼠肝脏功能和形态的影响及与氧化应激关系的实验研究 [D];中国医科大 学;2003 年 【8】张传强;抗氟复方当归散最佳组方的筛选及其作用机理研究 [D];内蒙古农业大学;2007 年

【9】焦有,杨占平,付庆,王留好. 氟的危害及控制. 生态学杂志,2000 年第 5 期 【10】张维东; 氟诱发甲状腺肿的分子病理学研究 [D];甘肃农业大学;2008 年相似外文 相似会议 【11】李雨民,李玉坤,张宇光,孙元明,邱明才; 氟化钠对大鼠破骨样细胞及其凋亡的影响 [J];中国骨 质疏松杂志;2001 年 04 期 【12】王振刚. 环境卫生学.北京:人民卫生出版社,2000 【13】 何英华,冯志民,姚晓玲. 饮水中氟含量对人体健康影响的调查报告.中国卫生工程 学,2000(1) 【14】郑华,安志华. 氟及其化合物的污染与人体健康.职业技术(上半月),2003 【15】胡晓春,王万成,于维先,申玉芹. 锌硼钡锰与氟在脱涎鼠龋病形成过程中的作用. 口腔医学研 究,2004 年第 4 期 【16】何汉. 氟对人胎儿的影响.中国地方病防治杂志,1989(3) 【17】 白云,刘凤贞.镁与氟相互作用的研究近况.环境与健康杂志,2001(1) 【18】 郄文娟,黄鸿雁,李素娟,王希军.两种必需微量非金属元素的生物功能.微量元素与健康研 究,2001(3) 【19】 曹学义. 地方病学导论.乌鲁木齐:新疆人民出版社,1987 【20】曹静祥,严本武,张淑兰,方钦,孙淑庄. 高硒高氟环境与人体健康关系的研究.卫生研 究,1996(5) 【21】 曾昭华,曾雪萍. 氟、氯、溴、碘等卤族元素与人体健康的关系.湖南地质,2002(3) 【22】 聂志文,黄长青. 地方性氟中毒神经系统病理学研究进展.中国地方病学杂志,1999(3) 【23】刘晓莉,范中学,郑来义,李晓茜,李平安,李跃,白爱梅. 燃煤型氟中毒病区食物储存和加工对氟 污染的影响.地方病通报,2003(1) 【24】罗媛. 氟元素与人体健康. 广东微量元素科学,2002 年第 11 期 【25】李黎. 氟元素与正畸治疗中牙釉质脱矿的关系探究. 微量元素与健康研究,2001 年第 3 期 【26】 许强,石四箴. 电子探针测定乳牙釉质氟元素及其与龋病的关系. 口腔医学研究,2008 年第 5 期 【27】王子华,石四箴. 牙和唾液的氟元素分析方法. 上海医学,2001 年第 z1 期

生物学中常见化学元素及作用

生物学中常见化学元素及作用

————————————————————————————————作者:————————————————————————————————日期: ?

一、生物学中常见化学元素及作用: 1、Ca:人体缺之会患骨软化病,血液中Ca2+含量低会引起抽搐,过高则会引起肌无力。血液中的Ca2+ 具有促进血液凝固的作用,如果用柠檬酸钠或草酸钠除掉血液中的Ca2+,血液就不会发生凝固。属于 植物中不能再得用元素,一旦缺乏,幼嫩的组织会受到伤害。 2、Fe:血红蛋白的组成成分,缺乏会患缺铁性贫血。血红蛋白中的Fe是二价铁,三价铁是不能利用的。 属于植物中不能再得用元素,一旦缺乏,幼嫩的组织会受到伤害。 3、Mg:叶绿体的组成元素。很多酶的激活剂。植物缺镁时老叶易出现叶脉失绿。 4、B:促进花粉的萌发和花粉管的伸长,缺乏植物会出现花而不实。 5、I:甲状腺激素的成分,缺乏幼儿会患呆小症,成人会患地方性甲状腺肿。 6、K:血钾含量过低时,会出现心肌的自动节律异常,并导致心律失常。 7、N:N是构成叶绿素、蛋白质和核酸的必需元素。N在植物体内形成的化合物都是不稳定的或易溶于 水的,故N在植物体内可以自由移动,缺N时,幼叶可向老叶吸收N而导致老叶先黄。N是一种容易造 成水域生态系统富营养化的一种化学元素,在水域生态系统中,过多的N与P配合会造成富营养化, 在淡水生态系统中的富营养化称为“水华”,在海洋生态系统中的富营养化称为“赤潮”。动物体 内缺N,实际就是缺少氨基酸,就会影响到动物体的生长发育。 8、P:P是构成磷脂、核酸和ATP的必需元素。植物体内缺P,会影响到DNA的复制和RNA的转录, 从而影响到植物的生长发育。P还参与植物光合作用和呼吸作用中的能量传递过程,因为ATP和AD P中都含有磷酸。P也是容易造成水域生态系统富营养化的一种元素。植物缺P时老叶易出现茎叶暗 绿或呈紫红色,生育期延迟。 9、Zn:是某些酶的组成成分,也是酶的活化中心。如催化吲哚和丝氨酸合成色氨酸的酶中含有Zn, 没有Zn就不能合成吲哚乙酸。所以缺Zn引起苹果、桃等植物的小叶症和丛叶症,叶子变小,节间 缩短。 二、生物学中常用的试剂: 1、斐林试剂:成分:0.1g/ml NaOH(甲液)和0.05g/ml CuSO4(乙液)。用法:将斐林试剂甲液和乙液等体 积混合,再将混合后的斐林试剂倒入待测液,水浴加热或直接加热,如待测液中存在还原糖,则呈砖红 色。 2、班氏糖定性试剂:为蓝色溶液。和葡萄糖混合后沸水浴会出现砖红色沉淀。用于尿糖的测定。 3、双缩脲试剂:成分:0.1g/ml NaOH(甲液)和0.01g/mlCuSO4(乙液)。用法:向待测液中先加入 2ml甲液,摇匀,再向其中加入3~4滴乙液,摇匀。如待测中存在蛋白质,则呈现紫色。 4、苏丹Ⅲ:用法:取苏丹Ⅲ颗粒溶于95%的酒精中,摇匀。用于检测脂肪。可将脂肪染成橘黄色(被苏 丹Ⅳ染成红色)。 5、二苯胺:用于鉴定DNA。DNA遇二苯胺(沸水浴)会被染成蓝色。 6、甲基绿:用于鉴定DNA。DNA遇甲基绿(常温)会被染成蓝绿色。 7、50%的酒精溶液 8、75%的酒精溶液 9、95%的酒精溶液:冷却的体积分数为95%的酒精可用于凝集DNA 10、15%的盐酸:和95%的酒精溶液等体积混合可用于解离根尖。 11、龙胆紫溶液:(浓度为0.01g/ml或0.02g/ml)用于染色体着色,可将染色体染成紫色,通常染色3~5 分钟。(也可以用醋酸洋红染色) 12、20%的肝脏、3%的过氧化氢、3.5%的氯化铁:用于比较过氧化氢酶和Fe3+的催化效率。(新鲜的 肝脏中含有过氧化氢酶) 13、3%的可溶性淀粉溶液、3%的蔗糖溶液、2%的新鲜淀粉酶溶液:用于探索淀粉酶对淀粉和蔗糖的作 用实验。 14、碘液:用于鉴定淀粉的存在。遇淀粉变蓝。 15、丙酮:用于提取叶绿体中的色素

微量元素

一.人类对生物微量元素的认识 1 有一个漫长而又逐步加快的过程。铁是最早发现的人体必需生物微量元素,150年前发现了碘,其后以十年左右发现两个必需生物微量元素的速度前进,至七、八十年代,人们开始进一步重视生物微量元素,同时对生物微量元素在生命过程中的意义、生理功能,代谢过程、缺乏时的表现及防治、过量时的中毒及防治等,有了更详细的了解,到目前为止,已知人体必需生物微量元素有14种,它们是:铁、锌、铜、碘、锰、硒、氟、钼、钴、铬、镍、钒、钖、硅。 随着科学研究的进展,有生物功能的人体微量元素的数目还将增加,而不仅限于目前已知的数目。 2生物无机化学为基础,从微量元素的概念入手,系统讲授常见必需微量元素的生物学功能、吸收、人体需要量、缺乏和过多引起的疾病与防治,有害元素的分布、接触途径、毒性和毒性机制、预防和治疗等。并以专题形式就“微量元素与肿瘤”、“微量元素与抗衰老”、“微量元素与膳食”、“微量元素与化妆品”等热门话题或研究热点进行详细的讲解。要求学生能够系统掌握微量元素的概念、功能、缺乏和过多引起的疾病以及防治、有害元素的危害及与某些疾病的关系,了解微量元素研究的一些最新动态以及与肿瘤、衰老等的可能关系,建立正确的膳食观、养生观和环保意识,对化妆品中微量元素的作用有一定了解。 微量元素的定义 ?宇宙万物都是由物质构成的,构成物质的基本单元是百余种化学元素。人体也是如此,据科学研究,现已证实人体是由蛋白质、脂类、碳水化合物、维生素、水和矿物质(无机盐)。这些化学元素或物质,在人体内现已发现有60多种,如按化学元素的重量百分比计算,氧约占65%、碳约占18%、氢约占10%、氮约占3%,以上4种元素约占人体重量的96%;其余7种元素:钙约占1.94%、磷约占1.15%、钾约占0.34%、硫约占0.23%、钠约占0.13%、氯约占0.12%、镁约占0.04%,这7种加起来,约占人体重量的3.95%,以上两组合计11种,占人体总重量的99.95%,称为人体必需常(宏)量元素;另外还有14种元素,在人体内只占百万分之一(ppm)~万万分之一(ppb),铁、锌、铜、碘、钴、硒、氟、钼、锡、铬、镍、钒、锰、硅。 这十几种元素加在一起,仅占人体重量的0.05%,称之为生物微量元素(biological trace elements )。凡含量占人体重量0.01%以下,即万分之一以下的元素,统称为与人体有关的生物微(痕)量元素。这些微量元素与人的健康、疾病、长寿、智力、美容等相关。 目前对人体必需生物微量元素公认的定义是: 1.它是维持人体生命、发育、繁殖所必需的元素。 2.它是成人的日摄取量在100毫克以下的元素。 二.生物微量元素的功能及对人体的关系 人体是由蛋白质、脂肪、碳水化合物、水、无机盐、生物微量元素、维生素等物质组成的有生命和思维活动的人,这些化学物质或元素,在人体内均占有一定的比例,人体必需的常量元素,主要用于构成人体的机体和起电解质作用,而生物微量元素则是人类生存不可缺少的营养成份,在人体内成为某些激素、核酸、维生素等的活性中心,维持着生命的代谢过程,如缺乏某种生物微量元素,就会引起生理功能及结构异常,发生种种病变及疾病,通常虽不直接危及生命,但为生命活动所必需,故又称为必需微量元素,适量时对身体有益,但过量

红外线的生物学效应

红外线(Infrared rays)是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现,又称为红外热辐射(Infrared radiation).太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm.红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm 之间.近年来,由于检测设备的完善及研究的深入,人们对红外线的物理性能及其生物学效应有了比较全面的认识,获得了许多进展.红外线特别是远红外线已被广泛运用在医疗保健产业中,与日常生活有关的各种红外线产品也大量出现.本文在此主要对红外线的生物学效应机理及其临床应用研究的现况进行介绍. 一、红外线生物学效应的机理 红外线是一种电磁波,当它通过放射方式辐射到物体时,被物体吸收的辐射能传递给物体内的原子、分子等粒子,使这些粒子发生不规则运动,引起物体的升温作用,称为远红外线的一次效应,也称为增温效应.产生一次效应的同时,物体也随之发生其他的化学、物理等改变,这称之为物体吸收远红外线辐射后产生的二次效应,也称为继发效应. 红外线对人体皮肤、皮下组织具有强烈的穿透力.外界红外线辐射人体产生的一次效应可以使皮肤和皮下组织的温度相应增高,促进血液的循环和新陈代谢,促进人的健康[1] .红外线理疗对组织产生的热作用、消炎作用及促进再生作用已为临床所肯定,通常治疗均采用对病变部位直接照射.近红外微量照射治疗对微循环的改善效果显著,尤以微血流状态改善明显.表现为辐照后毛细血管血流速度加快,红细胞聚集现象减少,乳头下静脉丛淤血现象减轻或消失,从而对改善机体组织、重要脏器的营养、代谢、修复及功能有积极作用[2]. 红外线对人体产生二次效应的机理目前尚未完全清楚. 有学者认为远红外线可对细胞产生共振作用,主要是引起细胞内外水分子的振动,使细胞活化,发生一系列有益于健康的细胞生物化学及细胞组织化学改变[1].也有人认为波长8~14微米的远红外线可称为“生命光线”,能够显著改善人体微循环.它作用于人体水分子时可对人体内老化了的大分子团产生共振使之裂化,重新组合成较小的水分子团,在这个过程中,吸附在老化的分子团表面的污染物质得以去除,水的比重上升,附着于细胞膜表面的水分子增加,增强了细胞的活性和表面张力.由于渗透细胞膜的水分子增加,细胞内钙离子活性加强,因此增强了人体细胞的正常机能,使杀菌能力、免疫能力等均有所提高.此外,生命光线还可以使血液中不饱和脂肪酸的二重键或三重键被切断,饱和脂肪酸不容易再被氧化成血脂[过氧化脂质],减少了血管内脂质的沉积,使血管壁光滑,从而减少动脉硬化、白内障等心血管疾病或眼科疾病的发生,对人体健康起着良好的促进功效[3]. 庞小峰研究了由ATP 分子水解释放的生物能量传递的机制和特点,认为红外线对生物(包括人)所具有的生物效应和医学功能主要来自红外线的非热生物效应.1~7μm 的红外线波可以透射过皮肤到细胞上,被蛋白质分子吸收.蛋白质分子能够而且也只能吸收或发射出1~3.5μm 和5~7μm 波长的红外线,这一范围波长的红外线吸收后能导致蛋白质分子中的酰胺键的量子振动,从而可使生物能量顺利地从一处传递到另一处,使生命体处于正常状态,保持生命体的生长、发育及健康.维持生命系统正常运行的生物能量是由ATP 的水解提供的,但是,一旦ATP 分子或ATP 酶(ATP 的水解需要酶的参与) 或水不足,或者蛋白质的结构和构象改变或畸变等等原因,便可使提供的生物能量不足以引起酰胺键的正常振动或生物能量不能正常传递. 生物组织在得不到足够能量时,便不能正常生长,会诱发出各种疾病. 在这种情况下,若能用具有上述波长的红外线照射,并能被蛋白质吸收,就可以使蛋白质分子恢复正常和正常传递生物能量,从而可能使生物组织从病态恢复到正常状态,使疾病得到治疗. 在红外线医疗仪的临床试验中也证明,对生物体或人有一定医疗效果的红外线也正好是

微量元素的功效

1、微量元素与生长发育 铁、铜、锌、锰形成的酶和碘形成的甲状腺素,均有促进生长发育的作用, 缺乏,均引起生长发育的停滞,补充,可以加速生长发育和体重的增长,增强体质。 缺锌:可发生先天性畸形 缺铜:小脑发育不全,大脑萎缩,贫血。 缺碘:先天性可汀病,甲状腺肿,呆小症。 由于微量金属元素在体内缺乏或过量而引起的病症如下表: 1)微量元素不足或过多,都会干扰内分泌的功能。 2)缺锌铜降低脑垂体、肾上腺内分泌 3)缺铬影响胰腺的分泌等等

4)微量元素与感染和免疫 微量元素的含量变化既影响着人体也影响着微生物。机体的铁铜锌等微量元素的不足和过多,均可减弱免疫机制,降低抵抗力,助长 细菌感染。因此,机体需要一个“营养免疫”的适宜的微量元素浓度。 3、微量元素与心血管、血液系统 Zn/Cd比值增大,抑制高血压的发生 Zn/Cu比值增大,诱发冠心病缺Cu可引起咼尿酸血症 Cr、Mn Se可防治动脉粥样硬化 Si可维持动脉内膜完整、通透性、弹性 Li、Sr等可降低心血管疾病的死亡率 Fe、Cu Zn等影响创伤的愈合 4、微量元素与神经系统 缺铁可以引起行为的改变缺碘可以引起中枢神经的系统的病变缺锌儿童智力发 育不良缺铜可以引起大脑皮质萎缩,智力降低缺Li、Co会影响智力的发展铅 镉锰量过多干扰智力的发育 5、微量元素与肿瘤 微量元素不能由人体组织合成,环境中微量元素的分布和含量,直接影响人的摄入量和体内的储存量,不同的摄入量和储存量影响着人的健康状况,同样影响着人的肿瘤的发生和发展,同时具有地理和地域性的分布特征。 6微量元素协同与拮抗作用 锰能促进铜的利用,铜能加速铁的吸收和利用,铁、锰、铜、钻有生血协同作用。 镉能减少锌的吸收和生物学功能,锌能拮抗镉的毒性;铜能拮抗钼的毒性; 硒能拮抗镉的毒性,砷能减弱硒的毒性,而钻能增强硒的毒性。铁和锰既能相互干扰在消化道的吸收过程,又能协同生血效果。

铜对人体及动物的生物学效应

铜对人体及动物的生物学效应 张录强(河北师范大学生物系石家庄050016) 铜是生物正常生长发育所必需的微量元素之一。1928年威斯康星大学哈特(Hart)的研究证明,由于喂饲乳汁而患贫血症的大白鼠饲料中添加铜和铁,对血红素的形成是必要的。 铜在生物体中的作用主要是参与构成体内具有特殊生理机能的物质,是多种酶系统的活化剂、辅因子或组织成分,参与和调节生物的多种生命活动过程。 1.动物对铜的吸收代谢 铜在动物饲料中多以难溶或不溶状态存在,饲料铜是以复合物的形式被小肠粘膜吸收,仅有极少部分以离子状态进入体内。研究资料表明,大部分铜是与肠粘膜内的含巯基金属蛋白和过氧化物歧化酶结合携带进入体内的,小部分铜与小分子的蛋白质和氨基酸结合转运入小肠粘膜细胞而被吸收到体内。 进入血液的铜存在于血清和血红细胞中,铜先与血清蛋白形成松散结合,在肝脏内铜再与a2-球蛋白形成牢固结合而合成铜蓝蛋白(约占成人血浆铜的95%)。血浆铜蓝蛋白与铜含量可以调节小肠粘膜对铜的吸收,二者含量的高低与存在于肠道食物中的铜维持着某种平衡关系。当血浆铜蓝蛋白和铜含量超过正常值时,肠道中的铜不吸入体内。如果这种平衡被打破,就会导致大量铜被吸收到体内,在机体蓄积产生危害。 动物体对铜的吸收还受饲料中的钼含量高低的影响。在落基山脉区域土壤中钼含量很高,水中钼含量也很高,在当地发生的一种病叫“羊缺铜症”,可通过皮下注射铜螯合物,如铜甘氨酸或日粮中含有8~11×10-7水平铜即可预防。钼干扰铜的吸收机理被认为是:钼干扰硫化物氧化酶,使动物体内硫化物增多,而导致硫化铜沉积,使铜不能为代谢所利用,造成铜缺乏。 铜在动物体内主要以结合态的形式存在,小部分呈游离态存在,机体中铜总量的50%~70%存在于肌肉与骨骼中,20%的铜贮存在肝脏中,5%~10%的铜分布于血液中,微量铜存在于酶分子中。在机体的各组织器官中,在肝、肾及脑铜浓度较高、肝组织中铜浓度最高,是铜最大的贮存器官,而且肝中铜的含量反映出对饲料铜的摄取情况,给予高铜饲料,肝中铜含量能增加数倍。 对于动物而言,食物中铜的吸收率是较低的,大约只有摄取量的5%~10%被吸收和存留,不被吸收的部分随粪排出,体内的铜又以胆汁的形式随粪排出,其他途径仅排出少量。 2.铜在动物体内的生理功能 2.1铜与铁代谢铜与铁代谢密切相关,它影响动物对铁的吸收、运输以及利用。在体内铜通过参与细胞色素氧化酶系统和血红蛋白的合成以及解除抑制铁吸收的因子,从而促进机体对铁的吸收。由肠粘膜进入血浆中的Fe2+不能直接与血浆中的运铁蛋白结合,需在铜蓝蛋白的氧化作用下由Fe2+→Fe3+后,再与运铁蛋白结合,并随运铁蛋白运送到骨髓、肝脏及全身组织。用于合成血红蛋白、肌红蛋白和含铁酶类,或在骨髓和肝脏内形成铁贮备。铜蓝蛋白还参与机体内贮存铁动员,使其迅速释放出来,并与血浆中的β1-球蛋白结合形成运铁蛋白,参与铁的运输和代谢。 铜还是血红蛋白的合成、红细胞的成熟与释放(即造血过程)的原料和调节因子,缺铜时,降低了铜对血红蛋白的催化作用,就可能导致贫血。 2.2铜参与超氧化物歧化酶和单胺氧化酶的系统的构成。主要催化弹性蛋白肽键中赖氨酸酰残基、氨基氧化脱氨为醛基,并与分子内或分子间的另一肽键的类似醇基或氨基进行醛醇缩合或醛氨缩合、而形成胶原纤维及弹性蛋白共价交联结构,使弹性纤维形成不溶性状态,从而使机体组织维持正常弹性和韧性。 2.3铜影响一些动物的生殖机能与生长发育将适量的铜盐注入孵化的鸡蛋内,雏鸡可

综述--磁场的生物学效应(以人为对象)

磁场的生物学效应(以人为对象) 摘要:磁场作用于生物体后产生一系列的生物学效应, 这种观点已被多年来的许多实脸所证实。早在1896年, 磁场对神经系统作用的研究就已被报道出来。后来, 磁场杭炎,促进骨生成,促进血管神经再生等作用相继被发现。近几十年来,关于磁场对生物体的作用,从流行病学调查到实脸室研究也都有了一定进展。如今,磁场的生物学效应研究已成为物理医学研究的热点。本文就近年来以人为对象的磁场生物学效应研究的热点与进展作一简要综述。 关键词: 磁场; 生物学效应 生物磁学是研究物质磁性和磁场与生物特性及生命活动之间相互联系相互影响的一门新兴边缘学科。随着研究的深入,磁场作用于生物的效应与机理有了新的更深刻的认识。 1 应用于生物处理的外磁场类型 不同磁场的类型及其物理参数(场强大小、均匀性、方向性、作用时间等)会导致不同的磁场生物效应。变化磁场又因频率高低不同、作用时间长短不一也会产生不同的生物效应。[1] 2 磁场基本的生物学特性 磁场能在机体内引起电动势而作用于机体,从而对生物体产生不同的生物学效应。这里所谓的生物效应包括正生物效应和负生物效应。磁场并非越大越好,也不是越小越好,而是特定的强度和作用时间会产生不同的效果,称为“窗口效应(window effect)”,而这个恰到好处的窗口是要靠不断的摸索才能找到的。

另外,生物是具有磁性的,从分子、细胞、组织器官中任一层次分析看,其体内都存在着顺磁性物质与逆磁性物质。每个生物细胞都可以看做一个微型电池,也可以看做一个微型磁极子。首先,体内存在着带电离子(表2),电荷运动产生磁场。其次,由于细胞膜内外各种离子具有不同的通透性,且分布不均匀,膜内外存在电位差,离子在细胞膜上离子通道中迁移时也会产生一定的生物电流。生物体的磁性、组成、种类、敏感性等同样会影响到生物学效应。 生物体内存在着顺磁性物质与逆磁性物质。顺磁性物质与磁场弱相吸引,在外加磁场作用下产生与外加磁场方向一致的磁场,比如脱氧血红蛋白等。逆磁性物质与磁场弱相斥,在外加磁场作用下产生与外加磁场方向相反的磁场,比如水和脂肪等。由于这种磁性,外加磁场、环境磁场和生物体内的磁场都会对生物组织和生命活动产生影响,即磁场的生物效应。 [2] 磁生物效应一般具有几个特点1)窗口性:生物体只对某一特定强度的磁场产生效应2)阈值性:磁场在某一范围内才能引起生物效应3)滞后性:生物体必须经过一段时间才能表现出相对应的磁场作用4)协同性:很弱的外加磁场能激发很强的生物响应。 3静磁场曝露限值导则(2009)国际非电离辐射防护委员会 工业用和医用静磁场技术的快速发展,导致人体静磁场曝露增加,并促进了许多对其可能产生的健康影响的科学研究。世界卫生组织(WHO)最近在环境健康准则项目(WHO 2006)中提出了关于静态电场和磁场的健康准则文献,文献包括对静场曝露生物效应的复核。[3] 1)曝露源 地球的自然静磁场约为50μT,根据地理位置不同在30~70μT间波动。较高的直流输电线下方产生的磁通密度量级为20μT。快速磁悬浮客运列车在靠近电动机处产生的磁通密度较高。然而,无论磁悬浮列车还是常规电气化列车,乘客车厢内的场强都相对较低——低于100μT,但是乘客车厢地板下的感应电机会导致车厢地板水平区域的局部磁场达几个mT(WHO 2006;ICNIRP 2008)。其他在居所和职业环境中的静磁场源包括磁夹扣和磁附件(如箱包、纽扣、磁性的项链和手链、磁性腰带、磁性玩具等中的)中的小型永磁体产生的局部静态场超过0.5 mT。 在磁共振过程中,磁通密度通常为0.15~3T,且曝露时间限制在1小时以内,但也可能会持续数个小时(Gowland 2005)。这类医疗过程同样会增加职业曝露,尤其是对医疗专业人士(外科医生、放射科医师、护士和技术人员)而言。在医疗专业人员必须非常近距离处理病人的紧急情况下,工作人员遭受的曝露也会增加。此外,当移动病人进/出MR系统时,工作人员也会遭受短时间的曝露。最后,参与制造或维修此类MR系统的工作人员也会职业性地曝露于高静磁场中。 诸如热核反应堆、磁流体动力系统、超导发电机等高能技术也会产生强场。在研究机构使用的气泡室、粒子加速器、超导光谱仪、同位素分离装置等设备的周围,也会出现高磁通

10.2生物微量元素与健康

第十章食品、药品与健康 课题2 生物微量元素与健康 【教学目标】 通过已有的生活经验理解化学元素与人体健康的关系,感悟化学知识的重要性。 【教学重点】 1.了解人体元素的组成。 2.了解一些元素对人体健康的作用。 【教学方法】 学生主动参与,师生双向互动。 【教学过程】 【引入】俗话说“民以食为天”,随着生活水平的提高,我们的饮食水平也逐渐提高。吃得好是否就身体好呢? 如果饮食不合理会引起营养不良。如何才能使身体更健康呢? 【多媒体显示】化学元素和人体健康(健康报报道) 【讲解】同学们,你们知道么,色彩斑斓的大千世界的万物是由100多种元素组成的,而我们人体中的元素约有50多种,含量较多的有11种,约占人体质量的99.5%。 【多媒体显示】(佝偻病患者) 【设问】怎么会得这种病呢? 【指导阅读】 1.人体中含量最多的金属是什么? 2.该金属对人体有何影响? 【讨论】学生四人一组进行讨论,教师对讨论进行指导,师生共同得出结论。 【归纳小结】1.成人体内约含有钙1.2kg。钙是构成骨、牙齿的重要成分,它使得骨骼和牙齿具有坚硬的结构支架。 2.幼儿及青少年缺钙会引起生长迟缓、骨骼变形,出现佝偻病、牙齿发软,易患龋齿等症状。成人缺钙,发生骨质软化和骨质疏松,容易骨折,因此人体必须摄入足够的钙。幼儿、青少年处于生长发育阶段,需要摄入比成年人更多的钙。我国营养学会1998

年对每日膳食中的钙供给量提出建议:婴幼儿400 mg~800 mg,青少年1 000 mg~1 200 mg,成年人800 mg,老年人1 000 mg~1 200 mg。 【设问】哪些食物中含有钙元素呢? 【学生活动】学生抢答(对答得最多的学生给予表扬。) 【多媒体显示】常用食物中的钙含量(mg/100 g) 【讲解】在食物中钙的来源以奶及奶制品最好,不但含量丰富而且吸收率高。不知大家有没有听说过“一杯牛奶拯救一个民族”的故事,故事说的是多年前日本人的平均身高比较矮小,但是近几年日本青少年的身高已经远远超过了中国青少年,这是为什么呢?当然,除了生活水平存在差异以外,我想最值得一提的是这样两个数据:日本目前每年人均牛奶消耗量达到68 L,而中国仅为6.6 L。造成身高差异的一个主要原因就是两国青少年自牛奶中获取的钙量存在差别。 【设问】食物中含有如此丰富的钙,怎样才能合理吸收呢?前两天报纸上曾登过这样一篇文章。 【多媒体显示】 晚餐最好这样吃 晚餐早吃:晚餐早吃是医学专家向人们推荐的保健良策。有关研究表明,晚餐早吃可大大降低尿路结石病的发病率。 人的排钙高峰期常在进餐后4到5小时,若晚餐过晚,当排钙高峰期到来时,人已经上床入睡,尿液便滞留在输尿管、膀胱、尿道等尿路中,不能及时排出体外,致使尿中钙的含量不断增加,容易沉淀下来形成小晶体,久而久之,逐渐扩大形成结石。所以下午6点左右吃晚餐较合适。 晚餐素吃:晚餐一定要偏素,以富含碳水化合物的食物为主,而蛋白质、脂肪类吃得越少越好。 据美国研究报告,晚餐时吃大量的肉、蛋、奶等高蛋白食品,会使尿中钙量增加,一方面降低体内的钙贮存,诱发儿童的佝偻病、青少年近视和中老年骨质疏松症,另一方面尿中钙浓度高,患尿路结石病的可能性就会大大的提高。 【复习提问】氯化钠在人的正常生理活动中的作用。 【多媒体显示】 钠和钾元素对人体起着重要的作用。

微量元素

微量元素与健康 班级:生物师范班 姓名:田佩隐 学号:2012221107110089 摘要 人体内必需的微量元素有铁、锌、铜、锰、铬、钼、钴、硒、镍、钒、锡、氟、碘、硅。微量元素是人体中酶、激素、维生素等活性物质的核心成份,对人体的正常代谢和健康起着重要作用。人体所含微量元素的多少与癌症、心血管疾病及人类的寿命有着密切的关系。微量元素的检测还可用作某些疾病的诊断指标,对于某些微量元素缺乏症还可用补充微量元素的方法进行治疗。 关键词微量元素,疾病,健康 正文 1、人体必需微量元素的简要介绍 人体内必需的微量元素有铁、锌、铜、锰、铬、钼、钴、硒、镍、钒、锡、氟、碘、硅;非必需的微量元素中属于可能必需的有铷、砷、锶、硼、锗; 属于无害的则有钡、钛、铌、锆等;有害的微量元素有铋、锑、铍、镉、汞、铅、铝等。微量元素虽然在体内含量很少,但它们在生命过程中的作用不可低估。没有这些必需的微量元素,酶的活性就会降低或完全丧失,激素、蛋白质、维生素的合成和代谢也就会发生障碍,人类生命过程就难以继续进行1.1铁的分布与作用 铁在人体中的含量只有0.004% ,但铁是组成血红蛋白的一个不可缺少的成员。一个成年人,全身含铁约3--5g,除以血红蛋白形式存在外,还有约10%,分布在肌肉和其它细胞中,是酶的构成成分之一。还有一部分称做贮备铁,约占总量的15%--20%。此外,还有少量的铁,以与蛋白质相结合的形式,存在于血浆中,称为血浆铁。 铁的生理作用有构成血红素,预防贫血;参与细胞色素合成,调解组织呼

吸和能量代谢以及维持机体的免疫力和抗感染能力。 1.2铜的分布与作用 铜在成年正常人体内含量约为60—120mg,分布在身体各部分,在肝、脑、心脏及肾内浓度较高。在血液中铜主要存在于红细胞和血清中。铜也参与人体内的造血过程,催化血红蛋白的合成,同时又是人体内的一些金属酶的组成成分。 人体里的铜元素,对人体骨架的形成,有十分重要的作用。铜元素在机体组织发生癌变过程中还起着抑制作用。 1.3锌的分布与作用 正常成人含锌1.5--2.5g,其中60%存在于肌肉中,30%存在于骨胳中。身体中锌含量最多的器官是眼、毛发和睾丸。。锌可促进生长发育、性成熟,影响胎儿脑的发育。缺锌可使味觉减退、食欲不振或异食癖、免疫功能下降,伤口不易愈合。 1.4碘的分布与作用 人体含碘量约为11mg,每日成人需摄入50-100μg的碘。缺碘对人体会造成巨大损害,特别是对儿童、婴儿和孕妇。如果婴幼儿时期严重缺碘,其骨骼生长和大脑的发育将会受到严重影响,患呆小症,表现为身材矮小、行动迟缓、食欲不振、智力低下。 1.5氟的分布与作用 氟在人体内的分布主要集中在骨骼、牙齿、指甲和毛发中,尤以牙釉质中含量最多。男性骨骼中氟含量高于女性,且随年龄增长而升高。人的内脏、软组织、血浆中含氟量较低。 微量的氟在人体中有利于钙和磷的利用及在骨骼中沉积,可加速骨骼的形成,增加骨骼的硬度,并能刺激成骨细胞增生。 1.6 硅的分布与作用 硅在骨骼化过程中具有生理上的作用,促进骨骼发育生长。硅还参与多糖的代谢,是构成一些葡萄糖氨基多糖羧酸的主要成分。硅与心血管病有关,人如果缺硅,可引起关节炎、动脉硬化、冠心病等心血管病。人体每日需摄入硅3mg左右。

我国空气离子生物学效应的研究综述

我国空气离子生物学效应的研究综述 空气离子作为物质体而存在它对机体产生良好的生物效应用大气压电离四级质谱仪对空气离子进行分析其主要成份为 NO-2NO2H2O a,CO-n HNO2 (H2O)n,HC-2HNO2 (H2O)a,NO-2HNO2 (H2O)a, 当气压小于大气压时由电晕放电产生的负离子是NO-2H2O a,CO-3(H2O)a,NO-2(H2O)a;由射线产生的负离子是O-2(H2O)a,空气离子成份取决于气压离子漂移时间湿度和电场强度与气压比值E/P 一对生物体酶的影响 1单胺氧化本酶MAO主要存在肝肾脑细胞线料体内MAO的氧化脱氨基作用使用5-HT变为5-HIAA因而使游离的5-HT减少负离子促进MAO活性而正离子相反抑制其活性烧伤病人5-HIAA增多反映游离5-HT增多用负离子治疗烧伤病人疼痛减轻创面愈合快是由于负离子促进MAO活性使5-HT转化为5-HIAA的缘故用CS2染毒家兔兔血清肺脑组织中MAO活性降低吸入负离子可恢复其血清肺脑组织中MAO活性2细胞色素氧化酶Cyto-o负离子能促进Cyto-o活性加速细胞色素C的氧化还原作用使琥珀酸转化为延胡索酸负离子使应激后处于抑制的大鼠肝线粒体细胞色素氧化酶活性迅速恢复到正常水平3过氧化物酶pero与过氧化氢酶peroH参与体内氧化毒性产物H2O2的分解H2O2是具有强毒性羟自由(OH-)的前身因此这二种酶视为自由基清除剂对维持正常机体健康起重要作用负离子促进Pero及PeroH的合成4超氧化物歧化酶 SOD是O- 2自由基清除剂对于抗辐射损伤防治肿痛抗衰老抗类症等起重要作用 小暴露负离子7.5×104个/cm3 7天每天8个小时测定肺肝脑心的SOD活性结果都明显增强对小鼠暴露负离子15天每天4小时离子浓度4108个/cm3血中SOD 活性高于对照组419.5>334.5u/ml大鼠暴露负离子6.5-8.5×106个/cm3 230每天4小时结果大鼠红细胞及肝脏SOD活性大大增强血浆MDA丙二醛降低表示LPO脂质过氧化物减弱负离子参与SOD的诱导或通过呼吸链上的Cyto-o及Pero并促使氧化磷酸化 偶联更加紧密从而使O-2等自由减少保护了SOD继而使LPO减弱MDA减少MDA 是自由基导致LPO的终产物反映脂质过氧化损伤程度SOD MDA与炎症衰老肿瘤动脉粥样硬化工业中毒等密切相关提示负离子增强SOD活性降低MDA含量可能是负离子防治疾病的机理总之负离子所影响的酶很多但大部分均与生物氧化能量代谢生长发育抗衰老抗肿瘤抗炎症有关自由基换伤有关在酶活性受到其它因柴油干扰时负离子有调节其它活性的作用对正常机体内酶的影响似乎不明显 二缺氧反应 实验在低压氧舱中模拟进行小鼠暴露无遗负离子5-7104个/cm3, 在1000m高度急性缺氧条件下存活率和存活时间明显提高和延长3000m 高度缺氧条件下游泳耐力增强游泳时间延长长时间吸入负离子可加强急性缺氧条件下小鼠血中5-HT代谢使高水平5-HT超于正常人吸入高浓度负离子处于4000m高度缺氧的人体功能呈现善与提高趋势在7500m高度急性缺氧时可使有效意识时间延长因此负离子可作为飞行和高原特殊条件下医学保健新方法噪声性耳聋与缺氧有关负离子有增进内耳供氧提高听力的效应19只雄豚鼠观察负离子对其正常听域改变的生物效应另选26只分吸离子与对照组观察负离子对听觉保护作用处理8天后进行急性噪声暴露1小时用听觉电生物方法及微机电脑信息处理系统测试两组皮层反应域听阈结果吸入负离子后听阈平均降低 3.9dB(P<0.01)负离子有提高听力的效应预防性吸入3106个cm3三天每天3小时对急性暴露后的听力恢复比对照组快到第2天即恢复正常空气负离子改善内耳血流增进供氧和有氧能量代谢减轻内耳细胞疲劳

生物学中常见化学元素及作用

一、生物学中常见化学元素及作用: 1、Ca:人体缺之会患骨软化病,血液中Ca2+含量低会引起抽搐,过高则会引起肌无力。血液中的Ca2+ 具有促进血液凝固的作用,如果用柠檬酸钠或草酸钠除掉血液中的Ca2+,血液就不会发生凝固。属于 植物中不能再得用元素,一旦缺乏,幼嫩的组织会受到伤害。 2、Fe:血红蛋白的组成成分,缺乏会患缺铁性贫血。血红蛋白中的Fe是二价铁,三价铁是不能利用的。 属于植物中不能再得用元素,一旦缺乏,幼嫩的组织会受到伤害。 3、Mg:叶绿体的组成元素。很多酶的激活剂。植物缺镁时老叶易出现叶脉失绿。 4、B:促进花粉的萌发和花粉管的伸长,缺乏植物会出现花而不实。 5、I:甲状腺激素的成分,缺乏幼儿会患呆小症,成人会患地方性甲状腺肿。 6、K:血钾含量过低时,会出现心肌的自动节律异常,并导致心律失常。 7、N:N是构成叶绿素、蛋白质和核酸的必需元素。N在植物体内形成的化合物都是不稳定的或易溶于 水的,故N在植物体内可以自由移动,缺N时,幼叶可向老叶吸收N而导致老叶先黄。N是一种容易 造成水域生态系统富营养化的一种化学元素,在水域生态系统中,过多的N与P配合会造成富营养 化,在淡水生态系统中的富营养化称为“水华”,在海洋生态系统中的富营养化称为“赤潮”。动 物体内缺N,实际就是缺少氨基酸,就会影响到动物体的生长发育。 8、P:P是构成磷脂、核酸和ATP的必需元素。植物体内缺P,会影响到DNA的复制和RNA的转录,从 而影响到植物的生长发育。P还参与植物光合作用和呼吸作用中的能量传递过程,因为ATP和ADP中 都含有磷酸。P也是容易造成水域生态系统富营养化的一种元素。植物缺P时老叶易出现茎叶暗绿或 呈紫红色,生育期延迟。 9、Zn:是某些酶的组成成分,也是酶的活化中心。如催化吲哚和丝氨酸合成色氨酸的酶中含有Zn,没 有Zn就不能合成吲哚乙酸。所以缺Zn引起苹果、桃等植物的小叶症和丛叶症,叶子变小,节间缩 短。 二、生物学中常用的试剂: 1、斐林试剂:成分:0.1g/ml NaOH(甲液)和0.05g/ml CuSO4(乙液)。用法:将斐林试剂甲液和乙液等体 积混合,再将混合后的斐林试剂倒入待测液,水浴加热或直接加热,如待测液中存在还原糖,则呈 砖红色。 2、班氏糖定性试剂:为蓝色溶液。和葡萄糖混合后沸水浴会出现砖红色沉淀。用于尿糖的测定。 3、双缩脲试剂:成分:0.1g/ml NaOH(甲液)和0.01g/ml CuSO4(乙液)。用法:向待测液中先加入2ml甲 液,摇匀,再向其中加入3~4滴乙液,摇匀。如待测中存在蛋白质,则呈现紫色。 4、苏丹Ⅲ:用法:取苏丹Ⅲ颗粒溶于95%的酒精中,摇匀。用于检测脂肪。可将脂肪染成橘黄色(被苏 丹Ⅳ染成红色)。 5、二苯胺:用于鉴定DNA。DNA遇二苯胺(沸水浴)会被染成蓝色。 6、甲基绿:用于鉴定DNA。DNA遇甲基绿(常温)会被染成蓝绿色。 7、50%的酒精溶液 8、75%的酒精溶液 9、95%的酒精溶液:冷却的体积分数为95%的酒精可用于凝集DNA 10、15%的盐酸:和95%的酒精溶液等体积混合可用于解离根尖。 11、龙胆紫溶液:(浓度为0.01g/ml或0.02g/ml)用于染色体着色,可将染色体染成紫色,通常染色3~5 分钟。(也可以用醋酸洋红染色) 12、20%的肝脏、3%的过氧化氢、3.5%的氯化铁:用于比较过氧化氢酶和Fe3+的催化效率。(新鲜的 肝脏中含有过氧化氢酶) 13、3%的可溶性淀粉溶液、3%的蔗糖溶液、2%的新鲜淀粉酶溶液:用于探索淀粉酶对淀粉和蔗糖的 作用实验。 14、碘液:用于鉴定淀粉的存在。遇淀粉变蓝。

砷的化学性质和生物学效应

砷的化学性质和生物学效应 2012级药学3班刘圣均 1210307312 一、砷的化学性质 1、砷单质 砷单质很活泼,在空气中加热至约200℃时,会发出光亮,于400℃时,会有一种带蓝色的火焰燃烧,并形成白色的三氧化二砷烟。金属砷易与氟和氧化合,在加热情况亦与大多数金属和非金属发生反应。不溶于水,溶于硝酸和王水,也能溶解于强碱,生成砷酸盐。 砷可区分为有机砷及无机砷,其中以无机砷毒性强。另外有机砷及无机砷中又分别分为三价砷(三氧化二砷)及五价砷(NaAsO3),在生物体内砷价数可互相转变。 2、砷的化合物 最常见的化合物为砷的氢化物或称胂、五氧化二砷和三氧化二砷,及其对应的水化物-砷酸和亚砷酸。砒霜分子式是是三价砷,亚砷的氧化物。一些重要的生物砷化合物:一甲基胂,二甲基胂,三甲基胂,甲基胂酸,二甲基次胂酸。 二、关于砷的毒性 单质砷无毒性,砷化合物均有毒性。其中三价砷比五价砷毒性大,约为60倍;有机砷与无机砷毒性相似。 毒理:三价砷会抑制含-SH的酵素,五价砷会在许多生化反应中与磷酸竞争,因为键结的不稳定,很快会水解而导致高能键(如ATP)的消失。氢化砷被吸入之后会很快与红血球结合并造成不可逆的细胞膜破坏。低浓度时氢化砷会造成溶血,高浓度时则会造成多器官的细胞毒性。 对各个系统的毒性: 肠胃道、肝脏、肾脏毒性:肠胃道症状通常是在食入砷或经由其它途径大量吸收砷之后发生。肠胃道血管的通透率增加,造成体液的流失以及低血压。肠胃道的黏膜可能会进一步发炎、坏死造成胃穿孔、出血性肠胃炎、带血腹泻。砷的暴露会观察到肝脏酵素的上升。慢性砷食入可能会造成非肝硬化引起的门脉高血压。急性且大量砷暴露除了其它毒性可能也会发现急性肾小管坏死,肾丝球坏死而发生蛋白尿。 心血管系统毒性:因自杀而食入大量砷的人会因为全身血管的破坏,造成血管扩张,大量体液渗出,进而血压过低或休克,过一段时间后可能会发现心肌病变,在心电图上可以观察到QRS 较宽,QT interval较长,ST段下降,T波变的平缓,及非典型的多发性心室频脉。至于流行病学研究显示慢性砷暴露会造成血管痉挛及周边血液供应不足,进而造成四肢的坏疽,或称为乌脚病,在台湾饮用水含量为10-1820ppb 的一些地区曾有此疾病盛行。 神经系统毒性:砷在急性中毒24~72小时或慢性中毒时常会发生周边神经轴突的伤害,主要是末端的感觉运动神经,异常部位为类似手套或袜子的分布。中等程度的砷中毒在早期

微量元素与健康基本完整版.doc

绪 论 绪论 样本的采集:固体(头发、指甲),液体(血液、尿液),组织器官,蛋白质 尿中微量元素的检测:选晨尿中段的尿进行检测 样本的预处理:稀释法,高温消化法,微波消化法 样本的检测方法:1 当辐射照射到物质上 的电化学性质改变,反应出来的某种信号(电压、电流、电阻、电量等)强度变化,确定待测物质含量的分析方法。 3、原子吸收光谱法——原子吸收光谐法又称为原于吸收分光光度法(atomic abmrption spectrometry,AAS)是目前测定微量元素使用最广泛的方法之一。其基本原理为,光源发射的待测元素的特征辐射通过样品蒸气时,被蒸气中待测元素的基态原子所吸收,未被吸收的部分透射过去,根据辐射强度的减弱程度可求得样品中待测元素的含量。根据被测元素的原子化方式的不同,分为火焰原子吸收光谱法、非火焰原子吸收光谱法和低温原子化法。 微量元素:是指含量小于体重0.01%,每人每日需要量在lOOmg以下的元素,仅占人体元素总量的0.05%,包括铁、铜、锌、锰、钼、钴、钒、镍、铬、锡、氟、碘、硒、硅、砷、硼、锶、锂、锗、铝、钡、铊、铅、镉、汞以及稀土元素等数十种 常量元素:是指含量小于体重0.01%,每人每日需要量在lOOmg以下的元素,仅占人体元素总量的0.05%,包括铁、铜、锌、锰、钼、钴、钒、镍、铬、锡、氟、碘、硒、硅、砷、硼、锶、锂、锗、铝、钡、铊、铅、镉、汞以及稀土元素等数十种 微量元素的分类:必须微量元素,非必须微量元素,无毒微量元素,有毒微量元素。 必须微量元素:(定义)在人体或高等动物体内构成细胞或体液的特定生理成分,具有明显营养作用,人体生理过程中必不可少,缺乏该元素后产生特征性生化紊乱、病理变化及疾病,补充该元素能纠正特征性病理变化或治愈,称为必需微量元素。它们是铁、铜、锌、锰、铬、钼、钴、钒、镍、锡、氟、碘、硒、硅。(效用)是维持机体很多具有特殊生理效用酶系的重要成分或激活剂,在维持机体的生长发育、遗传、新陈代谢、能量转换等方面发挥极其重要的作用 非必须微量元素: 无毒微量元素:凡未发现有营养作用,又无明显毒害作用的元素,称为无毒微量元素,如钡、钛、铌、锆等 有毒微量元素:凡无营养作用,人体又对其缺乏精密调节机制,且在体内具有蓄积倾向和明显毒害作用的微量元素归入此类,例如铅、汞、镉、铊、铝、锑 微量元素的分布 地表环境:指在太阳辐射参与下包括地球表面由岩石、空气、水体、土壤和生物组成的一层复杂的物质体系。 生物圈及其构成:是指地球上有生命的部分。包括水圈、岩石圈、大气圈 地球化学背景:自然界中物质含量的自然水平称为地球化学背景 地球化学异常:某种化学元素的含量与地球背景有重大偏离称为地球化学异常。(分类)岩石化学异常、土壤化学异常、水化学异常、大气(空气)化学异常、植物化学异常和动物化学异常。 气溶胶:空气中的固体和液体颗粒被称为气溶胶 微量元素的地质背景: 原始迁移:由于水与岩石的相互作用,在一定的水文地球化学条件下造成岩石(包括其形成的土壤)中的元素向天然水中迁移,使得水中相对富集这些元素的过程称原始迁移。 二次迁移:指在—定条件下,水中的元素向岩石中迁移,岩石中相对富集了这些元素(即所谓沉淀),造成水中这些元素的相对贫化的过程。 影响微量元素迁移的因素:(内在)与微量元素迁移有关的内在因素包括原子的热力性质(键性)、原子和离子的引力性质、元素的理化性质。(外部)气候条件、地质条件、pH条件、氧化还原条件、有机物的浓度和水交替条件等均影响着微量元素的迁移。 水文地球化学垒:指在地壳层的很短距离内,元素的迁移能力急剧降低,水文地球化学条件明显改变,从而引起元素浓集的地段。 水文地球化学垒的种类:可分为吸附垒、酸性—碱性垒、氧化—还原垒、蒸发垒和机械垒。 生物学效应 微量元素的吸收及其影响因素:(途径)微量元素可通过呼吸道、消化道、皮肤黏膜进人体内。例如钴可经消化道和呼吸道进入人体;锰、钒、硅、镍等在职业暴露情况下通过呼吸道进入人体,但其生物学效应可能与消化道吸收有所不同;(影响因素)胃肠道内的pH,机体内环境稳定性调节,微量元素的理化性状,膳食结构和成分,微量元素间的相互作用。 微量元素的生理学效用:微量元素通过参与体内的新陈代谢、生理、生化反应、能量转换等过程,在机体的生命活动中发挥重要作用。突出的特点是微量元素对生命过程的必需性。机体的需要量很小,但作用极大。(一)构成酶和酶的激活剂(二)调控自由基水平及抗氧化作用(三)参与激素及其辅助因子的合成(四)构成体内重要的载体和电子传递系统(五)对金属硫蛋白基因表达的调控(六)微量元素与细胞凋亡(七)对感官效用的作用 微量元素的健康效应:(一)微量元素与机体的生长发育(二)微量元素与生殖(三)微量元素与中枢神经发育(四)微量元素与免疫(五)微量元素与衰老(六)微量元素与癌发生自由基:(定义)生物体内的自由基是指含有一个或多个未配对电子的任何分子或离子。(特点)自由基的配合特点是具有顺磁性、化学反应性极强、作用半径小、生物半减期极短。(危害)自由基可进攻生物膜,使膜上的不饱和脂肪酸产生有害的脂质过氧化物,改变膜的结构和稳定性影响其效用。 金属硫蛋白有哪些生理学效用:一、清除体内自由基、防止基体衰老二、解除重金属的毒性三、参与体内微量元素的代谢:四、增强机体对各种不良状态的适应能力五、锌元素的贮存库:六、防止细胞癌变 铜:铜蓝蛋白的生理学效用:1,参与铜的转运2.铜蓝蛋白作为铁氧化酶,参与铁的代谢及铁的生物学效用的发挥3.铜蓝蛋白有清除O2-自由基的能力 铜:(铜缺乏的临床表现为)①生长发育停滞,瘦小羸弱。②毛发退色、稀疏,不能耐受阳光照射。③面无表情,反应迟钝,精神、运动系统发育迟缓,肌张力低下。④脂溢性皮炎,浅表静脉扩张。 ⑤骨骼发育障碍,因缺铜后骨质中胶原纤维合成受损,表现为骨骼缺损、骨质疏松,长骨和肋骨易骨折,X线检查可见长骨端部张开,干骺分离,形成杯状凹陷,伴有骨刺形成和骨膜增生。⑥中性粒细胞减少。⑦小细胞低色素性贫血。⑧肝、脾肿大。⑨血清白蛋白、丁球蛋白、血清铁降低,血清铜及CP含量减少。⑩免疫力低下,易患呼吸道感染。(铜与疾病)铜为人体必需微量元素,为血浆铜蓝蛋白、超氧化物歧化酶、细胞色素c氧化酶等的构成要素,对造血系统、中枢神经系统的发育,对骨骼及结缔组织的形成具有重要作用。1912年,Wilson报道的、现在称之为Wilson即肝豆状核变性病的疾病,以及1962年Menkes即卷发综合征报道的Menkes病均为人的先天性铜代谢异常疾患。Cordano等于1964年首先报道了儿童营养不良引起的典型铜缺乏病例。 辛(辛在机体生长发育过程中起到点的生理学作用)(一)锌与蛋白、核酸的代谢——锌在体内几乎都是以Zn2+形式结合于细胞蛋白而存在,与多肽内或多肽之间交联,修饰三级蛋白结构及效用,在细胞内代谢中起中心作用。 (二)锌与维生素A、D——锌参与维生素A还原酶及视黄醛结合蛋白的合成,视网膜和肝脏中的维生素A还原酶(一种含锌的醇脱氢酶)积极参与视黄醛的合成和变构,锌可通过增强视网膜上视黄醇脱氢酶的活性,使视黄醛再生或直接作用于视网膜神经细胞上。(三)锌与胎儿的发育。四)锌与脑效用——锌在脑中主要存在于杏仁核、脉络丛、海马回、松果体和血管中,结合于生物膜成分上,是脑组织细胞膜稳定的一个重要因素,它通过抑制γ-氨基丁酸合成酶的活性和活化该辅酶对脑效用起双向调节作用。五)锌与味觉——味蕾和味觉蛋白中含有锌,且含锌的碱性磷酸酶也分布于动物的味蕾中。味觉素(gustin)是一种与味觉有关的蛋白质,有营养和促使味蕾生长的作用,它可作为介质影响味觉和食欲。七、维持正常的生殖效用---锌影响性腺发育。人体缺锌可影响脑垂体释放促性腺激素,使性成熟延迟,性腺效用减退。缺锌特殊病 1.伊朗村病2.肠病性肢皮炎锌与相关疾病的关系锌与人体多个系统的疾病有密切联系,如:心血管系统、造血系统、内分泌系统、泌尿系统、消化系统、免疫系统、生殖系统、神经系统等,直接影响遗传、生长发育及衰老。锌缺乏症常见的病因为:①食物含锌量低。②不良的饮食习惯和医源性供锌不足。③锌吸收障碍。④锌排出过多,如肾病变、肝硬化、透析等。⑤生理或病理需锌量增加。临床表现人类锌缺乏症是一种或多种锌的生物学效用降低的结果,组织锌含量无明显减少。首先的反应是生长缓慢,而后会出现皮炎、腹泻、脱发、视力下降甚至死亡等多种临床并发症。常见缺锌症的临床表现见表8-10。发现缺锌时,必须查出原因才能对因治疗。锌相关疾病的防治原则(一)合理选择食物,保证摄入足够的锌(二)在重视锌营养的同时,应该考虑微量元素之间的平衡营养(三)注意在生理或病理需锌增加的时期及时补锌(四)锌缺乏症的治疗铝:铝的毒性作用:(一)铝的神经毒性作用——这种脑病的特点是猫的学习记忆效用改变,而对视力或辨别力影响不明显。这说明铝是有选择性地损害执行学习记忆效用的神经元区域。随后

相关文档
最新文档