傅氏算法消除衰减直流分量影响的有效方法_余兴祥

傅氏算法消除衰减直流分量影响的有效方法_余兴祥
傅氏算法消除衰减直流分量影响的有效方法_余兴祥

半周积分法 傅氏变换算法

半周积分法傅氏变换算法;几种常用的数字滤波器:差分(减法)滤波器、加法滤波器、积分滤波器。监控系统功能:一、实时数据采集和处理。采集变电站电力运行实时数据和设备运行状态,包括各种状态量、模拟量、脉冲量(电能量)、数字量和保护信号,并将这些采集到的数据去伪存真后存于数据库供计算机处理之用。二、运行监视与报警功能。三、操作控制功能。四、数据处理与记录功能。五、事故顺序记录及事故追忆功能。六、故障录波与测距功能。七、人机联系功能(CRT显示器、鼠标、键盘)。八、制表打印功能。九、运行的技术管理功能。十、谐波的分析及监控功能 一、监控系统的结构 监控系统是由监控机、网络管理单元、测控单元、远动接口、打印机等部分组成。 根据完成的功能不同,变电站监控系统可分为信息收集和执行子系统、信息传输子系统、信息处理子系统和人机联系子系统。 微机保护装置的特点 1.智能化 微机保护装置除了硬件外,还必须具有相应的软件,因此微机保护可以实现智能化。 2. 高可靠性 微机保护可对其硬件和软件连续自检,有极强的综合分析和判断能力。 3. 易于获得附加功能 微机保护装置除了提供常规保护功能外,还可以提供一些附加功能。例如,保护动作时间和各部分的动作顺序记录,故障前后电压和电流的波形记录等。这将有助于运行部门对事故的分析和处理。 4. 调试维护方便 在微机保护应用之前,整流型或晶体管型继电保护装置的调试工作量很大,原因是这类保护装置都是布线逻辑的,保护的功能完全依赖硬件来实现。微机保护则不同,除了硬件外,各种复杂的功能均由相应的软件(程序)来实现。 5.完善的网络通信功能 6.可以采用一些新原理,改善保护的性能。 如:采用模糊识别原理或波形对称原理识别励磁涌流。采用自适应原理改善保护的性能等。 微机保护硬件部分包括: 1.数据采集系统,如:模拟量输入变换与低通滤波回路,采样保持与多路转换,模数转换系统,开关量输入通道等。

傅里叶级数通俗解析

傅里叶级数通俗解析-CAL-FENGHAI.-(YICAI)-Company One1

傅里叶级数 本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。 1.完备正交函数集 要讨论傅里叶级数首先得讨论正交函数集。如果n个函数 ,…构成一个函数集,若这些函数在区间上满足 如果是复数集,那么正交条件是 为函数的共轭复函数。 有这个定义,我们可以证明出一些函数集是完备正交函数集。比如三角函数集和复指数函数集在一个周期内是完备正交函数集。 先证明三角函数集: 设,,把代入(1)得 当n时 = = =0 (n,m=1,2,3,…,n) 当n=m时 = = 再证两个都是正弦的情况 设,,把代入(1)得

当n时 = = =0 (n,m=1,2,3,…,n) 当n=m时 = = 最后证明两个是不同名的三角函数的情况 设,,把代入(1)得 = = =0 (n,m为任意整数) 因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。证毕。 由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。 接着是复指数函数集的证明 设,,则把代入(2)得 当n时,根据欧拉公式

= =0 (n,m=1,2,3,…,n) 当n=m时, =1 (n,m=1,2,3,…,n) 所以,复指数函数集也是正交函数集。因为n,m的取值范围是所有整数,所以复指数函数集是完备的正交函数集。 明明是讨论傅里叶级数,为什么第一部分在阐述完备正交函数集呢。因为,在自然界中,没有规则的信号,比如说找一个正弦信号,是完全不可能找到的。有的是一堆杂乱的信号,无规律的波形。我们要研究它,基本的思想是把它拆分,分解成一个一个有规律的可研究的波形,这些波形能用数学表达式准确表达出来。 把一个复杂的信号分解的过程,可以理解成用已知的可以准确表达的函数表示他,比如一个复杂的信号把它分解,就是 其中,…是我们所熟悉的函数, 比如二次函数,一次函数,三角函数,指数函数等等。我们的任务就是求出所分解出来的函数,以及前方的系数n,然后对其研究。那么怎么求呢。完备正交函数集给了我们提供了一种方法。完备正交函数集就像是空间直角坐标系,集合里面的每一个元素相当于坐标系的一条轴,我们知道空间直角坐标系只有3条轴,3条轴,足够表示空间上所有点的位置,不需要再多一条,但是如果只有两条轴,又不能准确地表达立体空间上所有的点,所以3条就是完备的。对于一个函数集的完备性也可以这么理解,表达任意一个周期信号只需要用不多于函数集里面元素的函数就可以表达清楚。再说其正交性,所谓正交,就是函数集里两个不同函数之乘积的积分为0,正交性可以理解成函数集内任意两函数不相关。 既然三角函数集和复指数函数集是完备的正交函数集,那么用其中的一种函数集都可以表达周期信号。 用复指数函数集来表示一个复杂信号: = 其中,(n=1,2,3,…,n)。 用三角函数集表示一个复杂信号:

微机保护中基于DFT傅氏算法的频率特性研究_李吉德

0前言 计算机继电保护是用数学运算方法实现故障量的测量、分析和判断的。而当电力系统发生故障时,出现的最多的就是周期分量,按照傅立叶级数的定义,任何周期信号都可以描述成一种傅立叶级数形式,而利用傅氏算法[4],能够准确的得到周期信号傅立叶级数的所有系数。然而,为了保证保护的速动性,计算的时间就成为了我们首要考虑的问题。基于DFT的FFT算法,由于其具有的原位性,计算量小且易于流水操作等特点,所以非常适合用数字信号处理器进行处理。利用FFT来实现傅氏算法,可以大大减少计算量,进而加快计算速度,对加快保护动作速度,增强其速动性有明显的效果。 然而,要满足傅立叶算法的条件是比较困难的,因为电力系统发生故障的时候,信号并非只有故障的周期分量,与此同时,还有衰减的直流分量[7]、幅值不断变化的各次斜波和系统的频率偏移[3]等。如果不对这几种情况加以考虑,那么所得到的误差在保护装置中的影响是巨大的,特别是对于幅值比较型和相位比较型的保护,其动作判据就是傅立叶系数之间的关系,误差的增大会造成保护判据的失灵,达不到保护的可靠性要求。 因此,本文就电力系统故障中可能出现的几种情况,给出了基于DFT的傅氏算法应用所需要的必要条件,而后简要介绍了几种消除误差的方法。 1周期信号的傅氏算法及其频率特性按照文献[5]中的要求,将信号模型设定为余弦函数模型,即信号为如下形式 : (1) 参数如下: ω0-系统中的基频角频率; m-1-系统中的最高斜波次数; I k-各次斜波的幅值; φk-各次斜波的相位; A k-各次斜波余弦函数的幅值; B k-各次斜波正弦函数的幅值。 按照文献[5],得到各次斜波的幅值和相位表达 微机保护中基于DFT傅氏算法的频率特性研究Research on the Frequency Character of Fourier Algorithm based on DFT in Microprocessor-based Protection 李吉德赵作斌廖哓波 长岛县供电公司山东长岛265800 【摘要】为了保证微机保护的速动性,大部分微机保护的信号采集装置利用DFT来实现傅氏算 法的系数求解。本文由连续信号的频域出发,推导出了基于DFT的傅氏算法离散信号频率特 性。通过对该频率特性的研究,既给出了基于DFT的傅氏算法在微机保护中的理论依据,又得 到了基于傅立叶算法应用的必要条件。并在最后简要的介绍了某种剔除信号中衰减直流分量 的算法。 【关键词】微机保护DFT傅氏算法频率特性 【中图分类号】TM771【文献标识码】A ·电力工程·

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述 ——老师不会这么讲,书上也不会讲很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,什么是傅里叶变换,它是怎样一种变换,具体有怎么变换,有没有确切一点或者形象一点的物理解释呢?下面笔者将尝试将自己的理解比较本质和形象地讲出来,形式是思考探讨渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基的投影很好理解,那么,傅里

叶变换的正交基函数,也是这样一种相互垂直的关系么???投影也是取余弦值么? 这可以很容易地想清,我们只用余弦或者只用正弦就可以,如cos(2pi*nf0)系列,显然每两个函数图像之间不可能是垂直关系,相反可以看出这是在同一个维度里面的!所以上面两个答案是否定的。 那么,到底是怎么正交、怎么投影的呢。出现这个问题,是因为开始看书的时候我看得太粗心太浅显,没有认真透彻地理解函数正交的含义,没想到那才是最重要最根本的,从那里面再深刻理解一下,问题就迎刃而解。 函数正交和矢量正交完全不一样,是两个概念。函数正交是两个函数,一个不变另一个取共轭值然后逐点相乘再求积分的结果,积分就涉及到一个区间,这也很重要。如果满足:当这两个函数不同时,积分值为0;当两函数相同,积分值不为0。那么这两个函数在这个区间上正交。现在再回过头去看正弦或者余弦函数序列,在各个周期内,都满足上述条件,在正弦和余弦函数之间同样满足,所以这些函数是正交的。至于完备,很明显看出,不去证明了。 第一个问题解决了,现在看怎么去投影了。为更易于理解,我们取指数傅里叶变换为例。众所周知exp(jwt)表示的是一个圆周,我们用来作傅里叶变换的因子,正是这个形式(exp(-jwt)),这里我们还要理解一下傅里叶变换和傅里叶级数的区别,前者求的是复指数傅里叶级数的系数,即每个正交函数的系数(权重),复指数傅里叶级数的正交函数集正是exp(jwt),所以求系数刚好乘以一个共轭

第5篇 傅里叶递推算法

第5篇 傅里叶递推算法 一个以T 为周期的函数()t f T ,若在[]0,T -上满足狄氏条件(电网中的电压、电流满足),那么,在[]0,T -上就可以展成傅氏级数。 在计算电网中的电压、电流的基波时,存在两种算法:一种随截取不同时刻的窗(积分区间),得到不同的初相角;另一种维持初相角不变。 例如,[]11---k k t T t ,的基波值 ()tdt t f T a k k t T t T k ωcos 2111?----= ,()tdt t f T b k k t T t T k ωsin 21 11 ?----=。 计算[]k k t T t ,-的基波值 第一种算法 ()tdt T t f T a S t T t T k k k ωcos 211+= ?---,()tdt T t f T b S t T t T k k k ωsin 21 1+=?---。 ()()dt t t f T a S t T t T k k k ?ω-=?-cos 2,()()dt t t f T b S t T t T k k k ?ω-=?-sin 2。 ()1 第二种算法 ()()dt T t T t f T a S S t T t T k k k ++= ?---ωcos 211,()()dt T t T t f T b S S t T t T k k k ++=?---ωsin 21 1 。 ()tdt t f T a k k t T t T k ωcos 2?-=,()tdt t f T b k k t T t T k ωsin 2?-=。 ()2 k k k b j a c 2 1 21+= 比较()1式与()2式,初相角差()1--==k k S S t t T ωω?。这是由于被分解函数()t f T 与相关函数t ωcos ,t ωsin 的时间差引起的。被分解函数()t f T 后移S T ,而相关函数t ωcos , t ωsin 未移。若相关函数同步后移S T ,就消除了初相角差S ?。 电网的应用中并不关心相量的绝对初相角,只关心它们之间的相对相角(相位差)。因 此,同时刻的相量运算,只要截取相同的窗,采用相同的算法,得到的相位差是正确的。但是,不同时刻的相量运算,也必须坚持正确的相角关系。第一种算法的窗只能相差T n ?,而第二种算法无此要求。例如计算突变量,第一种算法故障前窗超前故障后窗T n ?且随故障后窗同步推移。第二种算法固定故障前窗且靠近故障时刻,故障后窗随时间推移。直观上 ()2式比()1式简单、规整,例如采用第二种算法计算 ()()[]tdt T t f t f T a a k k t t T T k k ωcos 211?---= --,()()[]tdt T t f t f T b b k k t t T T k k ωsin 21 1?---=-- ()3

半波傅氏算法的改进

半波傅氏算法的改进 ——一种新的微机保护交流采样快速算法 丁书文张承学龚庆武肖迎元 摘要提出一种利用半波傅氏算法消除衰减非周期分量对基波分量影响的快速算法,新算法的数据窗是半个周期的采样值加两个采样点,而其滤波效果远远优于半波傅氏算法。该算法理论上可以完全消除任意衰减时间常数τ的非周期分量对基波分量的影响。通过大量的仿真试验表明,新算法滤除衰减非周期分量能力强,计算简单,速度快,具有实际应用价值。 关键词微机保护衰减非周期分量半波傅氏算法快速算法 分类号TM 77 O 174.2 0 引言 大多数微机保护算法的计算可视为对交流信号中参数的估算过程,对算法性能的评价也取决于其是否能在较短数据窗中,从信号的若干采样值中获得基波分量或某次谐波分量的精确估计值。目前广泛采用全波傅氏算法和最小二乘算法作为电力系统微机保护提取基波分量的算法。全波傅氏算法能滤除所有整次谐波分量,且稳定性好,但其数据窗需要1个周期,若再计及微机保护判断和保护出口的延时,一般快速微机保护的动作时间为1~1.5个周期,所以响应速度较慢;最小二乘算法需已知故障信号的模型和干扰信号的分布特性[1,2]。为了克服数据窗暂态带来的附加延时,已有半波傅氏算法[3]和卡尔曼滤波算法[4],但由于半波傅氏算法只用半个周期的采样数据,响应快,但滤波能力相对较弱,故只能用于保护切除出口或近处故障;卡尔曼滤波算法在数据窗暂态条件下能给出基波分量的最优估计,但计算过于复杂,限制了实际应用。为使保护快速动作,选择数据窗较短的快速算法就成为关键。本文从衰减非周期分量对半波傅氏算法的影响分析入手,提出新的计算方法,可完全滤除衰减非周期分量及奇次谐波分量,以提高其滤波能力。 1 半波傅氏算法 为了分析衰减非周期分量对半波傅氏算法的影响,设电力系统故障电流有如下形式: (1) 式中I m (n),φ n 分别为n次谐波的幅值和初相角。

傅里叶级数通俗解析

傅里叶级数 本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。 1.完备正交函数集 要讨论傅里叶级数首先得讨论正交函数集。如果n个函数 φ1t,φ2t,…,φn t构成一个函数集,若这些函数在区间t1,t2上满足 φi tφj t t2 t1dt= 0 ,i≠j K i ,i=j(1) 如果是复数集,那么正交条件是 φi tφj?t t2 t1dt= 0 ,i≠j K i ,i=j(2) φj?t为函数φj t的共轭复函数。 有这个定义,我们可以证明出一些函数集是完备正交函数集。比如三角函数集和复指数函数集在一个周期内是完备正交函数集。 先证明三角函数集: 设φn t=cos nωt,φm t=cos mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt cos mωt dt t0+T t0 当n≠m时 =1 2 cos n+mωt+cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω +sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 再证两个都是正弦的情况 设φn t=sin nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=sin nωt sin mωt dt t0+T t0 当n≠m时

=1 2 cos n+mωt?cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω ?sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 最后证明两个是不同名的三角函数的情况 设φn t=cos nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt sin mωt dt t0+T t0 =1 2 sin n+mωt?sin n?mωt t0+T t0 dt =1 2 ?cos n+mωt (n+m)ω +cos n?mωt (n?m)ωt t0+T =0 (n,m为任意整数) 因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。证毕。 由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。 接着是复指数函数集的证明 设φn t=?jnωt,φm t=?jmωt,则φj?t=??jmωt把φn t,φj?t代入(2)得 φi tφj?t t0+T t0dt=?jnωt t0+T t0 ??jmωt dt =?j(n?m)ωt t0+T t0 dt 当n≠m时,根据欧拉公式 =cos n?mωt+j sin?(n?m)ωt t0+T t0 dt =sin n?mωt n?mω?j cos?(n?m)ωt n?mωt t0+T =0 (n,m=1,2,3,…,n≠m)

FFT离散傅氏变换的快速算法

FFT(离散傅氏变换的快速算法) FFT(离散傅氏变换的快速算法) 目录 1算法简介 2DFT算法 3源码表示 4MATLAB中FFT的使用方法 1算法简介编辑 FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的 FFT算法图(Bufferfly算法) 发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X (m),即N点DFT 变换大约就需要N^2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+(N^2)/2。继续上面的例子, N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二” 的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。 2DFT算法编辑 For length N input vector x, the DFT is a length N vector X, with elements

傅里叶级数的推导

傅里叶级数的推导

————————————————————————————————作者:————————————————————————————————日期:

傅里叶级数的推导 2016年12月14日09:27:47 傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n 倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数:

首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式: 这个公式6就是通常形式的三角级数,接下来的任务就是要把各项系数an和bn及a0用已知函数f(t)来表达出来。 2、三角函数的正交性:

串行FFT递归算法(蝶式递归计算原理)求傅里叶变换

串行FFT递归算法(蝶式递归计算原理)求傅里叶变换 摘要 FFT,即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N^2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)^2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2(N/2)^2=N+N^2/2。继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog(2)(N)次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。 关键字:FFT 蝶式计算傅里叶变换

目录 一.题目及要求 (1) 1.1题目 (1) 二.设计算法、算法原理 (1) 2.1算法原理与设计 (1) 2.2设计步骤 (2) 三.算法描述、设计流程 (4) 3.1算法描述 (4) 3.2流程图 (6) 四.源程序代码及运行结果 (8) 4.1源程序代码 (8) 4.2运行结果 (13) 五.算法分析、优缺点 (15) 5.1算法分析 (15) 5.2优缺点 (16) 六.总结 (17) 七.参考文献 (18)

傅氏算法的探究

傅氏算法在数字保护中得到了广泛的应用,但关于傅氏算法中余弦正弦系数a,b是否是信号相量的实部和虚部,作者一直感到困惑。通过分析近年发表相关傅氏算法的文献,提出几个问题的质疑,结合实际的工程实例和信号的物理意义,认为信号的虚部是-b即相量用表示,才能正确计算出阻抗、负序分量等。 关键词:傅氏算法;相量表示;分量 Discussion on the Fourier algorithm application Yuan yubo, Lu yuping , Tang guoqing (Electrical Engineering Department of Southeast University Nanjing 210096) Abstract:Fourier Algorithm has been deeply applied in digital protection, however it was puzzled about whether coefficients a or b are real or image part of the phasor. After analyzing the document published in recent years, some problems query was put forward. It was concluded that the phasor could represented by form of a-jb and the correctly impedance or negative phase-sequence could be figure out by this form.. Key words: Fourier Algorithm, Digital Protection

傅里叶级数课程及习题讲解

第15章 傅里叶级数 § 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数系 21, , , , , n x x x 线性表出而得.不妨称 2 {1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下 面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积 为 (),()()()d b n m n m a u x u x u x u x x =??, 如果 0 (),() 0 n m l m n u x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n ππ π-=?=?=? ≠??; cos , cos cos cos d 0 m n mx nx mx nx x m n ππ π-=?=?=? ≠??; sin , cos sin cos d 0 mx nx mx nx x ππ -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 ()01 cos sin 2n n n a a nx b nx ∞ =++∑ 称为三角级数,其中011,,, ,,,n n a a b a b 为常数 2 以2π为周期的傅里叶级数

傅里叶变换的通俗解释

傅里叶变换的通俗解释 Document number:PBGCG-0857-BTDO-0089-PTT1998

傅里叶变换的通俗解释作者:韩昊(德国斯图加特大学通信与信息工程专业硕士生) 提要:这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗会死吗)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ———以上是开场白,下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… 一、啥叫频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间

不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢 这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的: 好的!下课,同学们再见。 是的,其实这一段写到这里已经可以结束了。上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。 现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。 将以上两图简化: 时域: 频域: 在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。 所以,你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。 抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。在第

半波傅氏算法及其改进算法的实现

目录 第一章半波傅氏算法 (1) 第二章半波傅氏算法的误差分析 (3) 第三章滤除衰减非周期分量的新算法 (4) 第四章仿真计算 (7) 第五章结论 (9) 参考文献 (10)

半周傅氏算法及其改进算法的实现 摘要 提出一种利用半波傅氏算法消除衰减非周期分量对基波分量影响的快速算法,新算法的数据窗是半个周期的采样值加两个采样点,而其滤波效果远远优于半波傅氏算法。该算法理论上可以完全消除任意衰减时间常数τ的非周期分量对基波分量的影响。通过大量的仿真试验表明,新算法滤除衰减非周期分量能力强,计算简单,速度快,具有实际应用价值。 大多数微机保护算法的计算可视为对交流信号中参数的估算过程,对算法性能的评价也取决于其是否能在较短数据窗中,从信号的若干采样值中获得基波分量或某次谐波分量的精确估计值。目前广泛采用全波傅氏算法和最小二乘算法作为电力系统微机保护提取基波分量的算法。但由于半波傅氏算法只用半个周期的采样数据,响应快,但滤波能力相对较弱,故只能用于保护切除出口或近处故障。为使保护快速动作,选择数据窗较短的快速算法就成为关键。从衰减非周期分量对半波傅氏算法的影响分析入手,提出新的计算方法,可完全滤除衰减非周期分量及奇次谐波分量,以提高其滤波能力。 关键词:微机保护衰减非周期分量半波傅氏算法快速算法

第一章 半波傅氏算法 为了分析衰减非周期分量对半波傅氏算法的影响,设电力系统故障电流有如下形式: (1-1) 式中 I m (n),φn 分别为n 次谐波的幅值和初相角。 因半波傅氏算法不能滤除偶次谐波,所以设式(1)中n 为奇数,则所得的n 次谐波分量的实部模值an 和虚部模值bn 的时域表达式分别为: (1-2) (1-3) 式中 T 为基波分量的周期;ω为基波分量的角频率,ω=2π/T 。 在计算机上实现时,是对离散的采样值进行计算。用离散采样值表示的半波傅氏算法为: (1-4) (1-5) 式中 k 表示从故障开始时的采样点序号;N 为每个周期的采样点数。 n 次谐波的幅值I m (n)和初相角φn 为: (1-6)

傅里叶级数课程及习题讲解

第15章 傅里叶级数 §15.1 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数系 21, , , , , n x x x L L 线性表出而得.不妨称 2{1,,,,,}n x x x L L 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx L L 称为三角函数系.其有下面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:L ,定义两个函数的内积为 (),()()()d b n m n m a u x u x u x u x x =??, 如果 0 (),() 0 n m l m n u x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:L 为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; cos , cos cos cos d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; sin , cos sin cos d 0 mx nx mx nx x π π -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 ()01cos sin 2n n n a a nx b nx ∞ =++∑ 称为三角级数,其中011,,,,,,n n a a b a b L L 为常数

傅里叶级数课程及习题讲解

第15章 傅里叶级数 §15.1 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数系 21, , , , , n x x x 线性表出而得.不妨称 2 {1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下 面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积 为 (),()()()d b n m n m a u x u x u x u x x =??, 如果 0 (),() 0 n m l m n u x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n ππ π-=?=?=? ≠??; cos , cos cos cos d 0 m n mx nx mx nx x m n ππ π-=?=?=? ≠??; sin , cos sin cos d 0 mx nx mx nx x ππ -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 ()01 cos sin 2n n n a a nx b nx ∞ =++∑ 称为三角级数,其中011,,, ,,,n n a a b a b 为常数 2 以2π为周期的傅里叶级数 定义1 设函数()f x 在[],ππ-上可积,

傅里叶变换的通俗解释

傅里叶变换的通俗解释

傅里叶变换的通俗解释 作者:韩昊(德国斯图加特大学通信与信息工程专业 硕士生) 提要:这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ———以上是开场白,下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… 一、啥叫频域? 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间

不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢? 这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的: 好的!下课,同学们再见。 是的,其实这一段写到这里已经可以结束了。上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。 现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。 将以上两图简化: 时域:

傅里叶级数课程及习题讲解

第15章傅里叶级数 §傅里叶级数 一基本内容 一、傅里叶级数 在幂级数讨论中,可视为经函数系 线性表出而得.不妨称为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数. 1 三角函数系 函数列称为三角函数系.其有下面两个重要性质. (1) 周期性每一个函数都是以为周期的周期函数; (2) 正交性任意两个不同函数的积在上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在可积的函数系,定义两个函数的内积为, 如果,则称函数系为正交系. 由于; ; ; ; , 所以三角函数系在上具有正交性,故称为正交系. 利用三角函数系构成的级数 称为三角级数,其中为常数 2 以为周期的傅里叶级数 定义1 设函数在上可积, ; , 称为函数的傅里叶系数,而三角级数 称为的傅里叶级数,记作 ~. 这里之所以不用等号,是因为函数按定义1所得系数而获得的傅里叶级数并不知其是否收敛于. 二、傅里叶级数收敛定理 定理1 若以为周期的函数在上按段光滑,则 ,

其中为的傅里叶系数. 定义2 如果,则称在上光滑.若 存在; ,存在, 且至多存在有限个点的左、右极限不相等,则称在上按段光滑. 几何解释如图. 按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点. 推论 段光滑,则, 有 . 定义3 设在上有定义,函数 称为的周期延拓. 二 习题解答 1 在指定区间内把下列函数展开为傅里叶级数 (1) ; 解:、,作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得 . 当时, , , 所以 ,为所求. 、,作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数.

相关文档
最新文档