Ⅲ-Ⅴ族化合物叠层太阳电池概论

Ⅲ-Ⅴ族化合物叠层太阳电池概论
Ⅲ-Ⅴ族化合物叠层太阳电池概论

Ⅲ-Ⅴ族化合物叠层太阳电池

摘要

叠层太阳电池是一种重要的新概念电池。本文简要介绍了叠层太阳电池的基本概念,了解了Ⅲ-Ⅴ族化合物的特点及为何Ⅲ-Ⅴ族化合物适用于制作叠层电池。怎样实现Ⅲ-Ⅴ族化合物叠层太阳能电池的工作原理、光伏特性及影响转换效率的因素等。探讨了相关的技术发展概况和技术难点,并就未来的发展趋势进行了展望。

关键词:Ⅲ-Ⅴ族化合物;太阳电池;新概念能源

III-V compound semiconductor multi-junction

monolithic solar cell

Abstract

Multi-junction monolithic solar cells is a new important concept of battery.This paper briefly introduces the basic concept of multi-junction monolithic solar cells,to understand the characteristics of III-V compound and why III-V compound is suitable for manufacturing multi-junction monolithic solar cells.How to realize the III-V compound laminated working principle of solar cells,photovoltaic properties and Influence factors of conversion efficiency etc.The relative progress and difficulty in technology was discussed.And the future direction was prospected.

Key words:III-V compound;solar cells;new concept resource

自从20世纪50年代人类发明了硅太阳电池以来,太阳电池就成了电源的主要角色。在接下来的几十年里,太阳电池技术不断进步。由于空间恶劣的环境和空间飞行器不断对电源系统提出更高的要求,人们日益迫切需要更高转换效率、更好抗辐照性和适应空间恶劣温度变化的太阳电池出现。同时,在全球气候变暖、人类生态环境恶化、常规能源资源短缺并造成环境污染的形势下,太阳能光伏发电技术也普遍得到各国政府的重视和支持。

太阳能电池的工作原理是,太阳光照在半导体P—N结上,形成空穴一电子对,在P—N结电场的作用下,N型半导体的空穴往P型区移动,P型区中的电子往N型区移动。接通电路后就形成电流。太阳能电池发展经历了三个阶段。以硅片为基础的“第一代”太阳能电池其技术发展已经成熟.但单晶硅纯度要求在99.999%,生产成本太高使得人们不惜牺牲电池转换率为代价开发薄膜太阳能电池。第二代太阳电池是基于薄膜材料的太阳电池。薄膜技术所需材料较晶体硅太阳电池少得多.且易于实现大面积电池的生产,可有效降低成本。薄膜电池主要有非晶硅薄膜电池、多晶硅薄膜电池、碲化镉以及铜铟硒薄膜电池,其中以多晶硅为材料的太阳能电池最优。太阳能光电转换率的卡诺上限是95%[1],远高于标准太阳能电池的理论上限33%,表明太阳能电池的性能还有很大发展空间。Martin Green认为,第三代太阳电池必须具有如下条件:薄膜化,转换效率高,原料丰富且无毒[2]。目前第三代太阳电池还处在概念和简单的试验研究。已经提出的主要有叠层太阳电池、多带隙太阳电池和热载流子太阳电池等。其中.叠层太阳能电池是太阳能电池发展的一个重要方向。

一、叠层太阳电池简介

由于太阳光光谱的能量分布较宽,现有的任何一种半导体材料都只能吸收其中能量比其禁带宽度值高的光子。太阳光中能量较小的光子将透过电池被背电极金属吸收,转变成热能;而高能光子超出禁带宽度的多余能量,则通过光生载流子的能量热释作用传给电池材料本身的点阵原子,使材料本身发热。这些能量都不能通过光生载流子传给负载,变成有效电能。因此对于单结太阳能电池,即使是晶体材料制成的,其转换效率的理论极限一般也只有25%左右。所以为了提高太阳能电池转换效率,叠层太阳能电池问世。

太阳光光谱可以被分成连续的若干部分,用能带宽度与这些部分有最好匹配的材料做成电池,并按禁带宽度从大到小的顺序从外向里叠合起来,让波长最短的光被最外边的宽隙材料电池利用,波长较长的光能够透射进去让较窄禁带宽度材料电池利用,这就有可能最大限度地将光能变成电能,这样结构的电池就是叠层太阳能电池[3]。

叠层太阳能电池可以通过机械堆叠法来制备,先制备出两个独立的太阳能电池,一个是高带宽的,一个则是低带宽的,然后把高带宽的堆叠在低带宽的电池上面。黄素梅、孙卓等[4]发明了一种高效叠层太阳能电池的制备方法.顶层和底层共用同一块玻璃基板,从顶层太阳电池引出一对电极.同时从底层太阳电池引出另一对电极.构成4个终端结构的叠层太阳能电池。实现对太阳能电池的最佳匹配.极大地提高太阳能电池的光电转换效率。提高太阳能电池的质量和性能。

该方法有效地改善了单个太阳能电池光谱吸收范围窄,光吸收利用效率低的问题,有效地提高了太阳能电池对光谱的吸收转换效率,其光电转换效率可高达25%~30%。

二、叠层太阳电池的结构分类

2.1 垂直串联叠层太阳电池

这种叠层太阳电池是利用MBE或MOCVD技术从下至上连续生长具有不同禁带宽度的p-n结子电池,并在各子电池之间插入超薄垂直掺杂的隧穿结,利用光生载流子的隧穿效应实现各级子电池互联的方法。如果将各p-n结直接串联在一起,会由于它们的反向偏置而不能实现载流子运输。采用高浓度掺杂实现的隧穿结,可以恰到好处的解决这一个问题。

如此,高质量隧穿结的制备便成为高效率叠层太阳电池制作的关键。其一,

作为能够有效的互连两个子电池的隧穿结,应该具有高透光率和低阻抗的特点。其二,上电池和下电池的晶格常数和热膨胀系数也应该尽可能的相匹配。其三,为避免隧穿结对叠层太阳电池的短路电流造成损失,隧穿结的峰值隧穿电流必须远远大于叠层太阳电池的最大短路电流。因此,要求p-n结两侧应具有足够高的掺杂浓度。这就需要在适宜的掺杂剂类型和浓度选择以及隧穿结构的优化等方面进行考虑[5]。

2.2 横向并联叠层太阳电池

并联叠层太阳电池的主要结构特点是整个电池为一个p-n结。其中间为本征层,而两侧分别是n型和p型掺杂层。对于n型掺杂一侧来说,从顶电池接触电极到本征层的掺杂浓度是逐渐增大的。通过改变合金材料的组分数可以调控叠层太阳电池的禁带宽度。受光照界面的带隙最宽,越往里带隙越小。因此,将会在电池的内部造成一个连续变化的内建电场。在统一的同向电场的作用下,光生电子-空穴对的分离和抽取作用将在受到该电场的逐层加速作用,因此载流子运输畅通无阻。尤其当载流子被加载到一定程度时,还可以发生雪崩倍增效应,由此进一步产生倍增载流子,这对增加广生电流是非常有利的。

三、Ⅲ-Ⅴ族化合物的基本特性

IIIA元素:B 、Al、Ga、In。VA元素:N、P、As、Sb。组合形成的化合物有15种(BSb除外)。前得到实用的III-V族化合物半导体有GaN GaN GaP GaP GaAs GaAs InP InP GaSb GaSb InSb InSb InAs。

Ⅲ-Ⅴ族化合物与Si相比,其独特性质在于:1.带隙较大,大部分室温时>1.1eV,因而所制造的器件耐受较大功率,工作温度更高;2.大都为直接跃迁型能带,因而其光电转换效率高,适合制作光电器件,如LED、LD、太阳电池等。GaP 虽为间接带隙,但Eg较大,掺入等电子杂质所形成的束缚激子发光仍可得到较高的发光效率。红、黄、绿光的LED 的主要材料之一;3. 电子迁移率高,很适合制备高频、高速器件。

GaAs是一种最具代表性的Ⅲ-Ⅴ族化合物半导体。其主要物理特性为:.1.光吸收系数高。GaAs 太阳能电池的有源区厚度多选取3um 左右,就可以吸收95%的太阳光谱中最强的部分。2.带隙宽度与太阳光谱匹配。GaAs 的带隙宽度正好位于最佳太阳电池材料所需要的能隙范围,具有更高的理论转换效率。3.耐高温性能好。GaAs 太阳能电池效率随温度升高降低比较缓慢,可以工作在更高的温度范围。4.抗辐照性能强。GaAs 是直接带隙材料,少数载流子寿命较短,在离结几个扩散度外产生损伤,对光电流和暗电流均无影响,因此,GaAs 太阳能电池具有较好的抗辐照性能。5.多结叠层太阳电池的材料。由于III-V 族三、四元化合物(GaInP、AlGaInP、GaInAs 等)半导体材料生长技术日益成熟,使电池的设计更为灵活,从而大幅度提高太阳电池的效率并降低成本。

四、GaInP2/GaAs/Ge三结空间电池的持续进步

4.1 Ⅲ-Ⅴ族半导体极性材料在非极性Ge单晶衬底上的成核(nucleation)技术

在非极性的Ge衬底上外延生长GaAs这样的极性材料,容易形成反相畴(AID)缺陷。但这在早期的Ge衬底GaAs太阳电池的外延生长技术中已得到较好的解决。对于多结电池来说,现在要解决的是,第一层外延层,即成核层的沉积,除了要为后继外延层的高质量生长提供基础外,还要通过控制Ⅲ-Ⅴ族杂质向Ge衬底内的扩散在Ge衬底表面形成p-n结,以形成性能良好的底电池。对于p-n结构,Ⅲ族的扩散应占主导,以及在n型Ge衬底内形成p-n结。而对于n+/p结构,则V族的扩散应占主导,以在P型Ge衬底内形成n+/p结。早期的n/p型GaInP2/GaAs/Ge三结电池仍在沿用GaAs/Ge单结电池外延工艺,使用GaAs成核层。后来的工作表明,以GaInP作为成核层,通过P,而不是As的扩散,可以更好地控制n/pGe结的性能。控制Ge结深度,改进发射区表面钝化,形成性能优良的Ge底电池是提高三结电池转换效率的关键之一[6.9]。

4.2 隧穿结

整体多结级连电池的另一项基本关键技术是用隧穿结将相邻的两级子电池连接起来,既不能造成明显的电压损失(隧穿结上的压降),也不能引起太大的电流损失(隧穿结的光吸收)。最早,人们只能设法用金属把相邻两级子电池之间的反级性界面短路掉[10]。但金属短路法需要进行多步光刻套刻和电池结构的逐层腐蚀,工艺复杂,而且会影响到电池的填充因数和电流密度等性能。MOVPE技术的进步使得GaAs隧穿结的整体生长成为可能。其关键要求是:(1)高度均匀的超薄外延层生长;(2)高搀杂的n+层和p+层之间具有陡峭的界面。早期的GaAs隧穿结[11]应用于GaAs中间电池和Ge底电池之间的连接虽无问题,但在用来连接GaInP顶电池和GaAs电池中间时,尽管隧穿结的电学性能在后来得到了很大改进[12],隧穿结的光吸收会影响到GaAs中间电池的短路电流密度。为此,人们研制了p+-GaAlAs/n+-GaInP[13],p+-GaInP /n+GaInP[14],甚至p+-GaAlA s/n+-InGaAlP[15]等宽带隙隧穿结。但是,随着带隙宽度的升高,隧穿结的隧穿几率和峰值电流会下降。实际上,作为宽带隙隧穿结,应用得最多的还是p+-GaAlAs/ n+-GalnP材料体系。

4.3 与Ge衬底完全晶格匹配的GaInP

GaInAs/Ge三结电池

2/

GaAs/Ge三结电池结构的实现已仅仅是上述两项关键技术解决后,GaInP

2/

材料外延生长程序的编制问题。因为,在这之前人们已对GaAs和GaInP单结电

GaAs/Ge 池有了足够的了解。于是,在上个世纪90年代中期诞生了第一代GaInP

2/

三结电池。其典型的性能参数为:u=2.54V:J=15.6mA/cm2,,使电池AM0效率限制在25%左右。进入21世纪后,一项极其简单,却很有意义的技术应用使基于GaAs的三结电池的效率水平上升到一个新的台阶。如果仔细观察,从图4可以看出,GaAs和Ge并不是精确的处在一条晶格匹配直线上。实际上,室温下Ge

的晶格常数为0.56578nm[16]。比GaAs(0.56232nm)高约0.6%。第一代GaInP

2 /GaAs/Ge三结电池的外延层是与GaAs晶格匹配的,与Ge衬底则构成约0.6%的晶格失配。即使如此小的晶格失配也会在GaAs外延层中引起应力,从而影响到少数载流子寿命。在GaAs掺入约1%的In,则可以实现与Ge的严格晶格匹配,完全消除Ga(In)As外延层中的应力,使少数载流子寿命提高达两个数量级[17]。这将大大改进Ga(In)As中间电池对光生载流的收集,提高电池的短路电流密度。而且In的掺入将使Ga(In)As的带隙变窄。这将使其吸收限“红移”十几meV,向红外方向扩展Ga(In)As 中间电池的光吸收范围。这成为提高中间电池的短路

电流密度的另一个或许是更重要的一个因素。同时,GaInP顶电池也应调InGa 比及电池基区厚度,与Ge达到完全晶格匹配并与Ga(In)As中间电池实现电流匹配。尽管开始时Spectrola等开发商对此避而不谈,但事实上正是这一改进使第一代三结电池的电流密度提高8%左右,升至17mA/cm 。从而使电池效率水平提高近两个百分点,升级到第二代产品,即所谓的ITJ。与第一代三结电池相比,ITJ的开路电压也有近20 mV的改进。这是由于外延层中应力的消除显著改进了GaInA s的晶体质量。作为晶体质量的表征,由x光衍射测定的半峰宽(FWHM)从50多弧秒下降到20弧秒以下。

4.4 提高顶电池带隙宽度

/Ga(In) As/Ge三结电池对于太阳光谱来说,并不是理想晶格匹配的GaInP

2

的材料组合。要实现顶电池与中间电池的电流匹配设计,要么不得不把顶电池减到足够薄,要么需要提高顶电池材料的带隙宽度,以使足够的阳光可以透过GalnP顶电池,进入Ga(In)As中间电池。显然,后一个途径更可取。因为,提高顶电池的带隙宽度将增加顶电池的开路电压,从而提高三结电池的整体开路电压。而前者,虽然也能达到子电池的电流匹配,却不能使顶电池更充分地利用太阳光谱的短波部分。在三结电池由于短路电流密度的提高从第一代升级到第二代后,如何提高顶电池的带隙宽度,改进电池的开路电压则成为进一步改善电池电性能的焦点。一个显而易见的方法是用AlGalnP四元合金取代GalnP。与我们前面提到的AlGaAs外延生长所碰到的问题一样,这在一定程度上受到Al对残余氧的敏感性的限制。另一条途径是通过增加Ⅲ族亚晶格的无序排列程度来提高GalnP的带隙宽度。实验表明。生长温度、搀杂浓度等工艺条件和衬底晶向都会影响GaInP外延层中Ⅲ族原子的无序排列程度,使其带隙宽度可以在约100meV 的差别范围内变化。正是利用完全无序的GalnP顶电池,Spectrolab在2002年创下了GalnP2/GaAs/Ge三结电池开路电压超过2.7V的记录,使电池AM0效率也破记录地逼近30%。由此,约一年后,Spectrolab的GalnP2/GaAs/Ge三结电池产品升级到第三代,即UTJ。UTJ的电性能参数与ITJ相比,最大的改进就是标称开路电压从2.56V提高100mV,达到了2.66V。国外的其他厂家也先后通过同样的技术途径实现了GalnP2/GaAs/Ge 三结电池的换代升级。美国Emcore公司最新一代的三结电池产品BTJ的平均效率达到28.5%,德国RWE公司的第二代三结电池产品平均效率达到27.8%,与Spectrolab 的UTJ水平相当。其共同的标志就是开路电压超过2.66V。对于基于GaAs的三结电池来说,在地面阳光下,最佳顶电池带隙宽度约为1.9eV,可以用完全无序的GalnP实现。但在外层空间太阳光谱下,则需要顶电池带隙宽度接近2.0eV。因此,仅仅靠Ⅲ族亚晶格的无续是不够的,需要在GaInP三元化合物中加入一定量的Al,形成更宽带隙的AlGaInP 四元合金。带隙更宽且仍能有效地钝化发射区表面的顶电池将是下一代三结电池的重要课题。Emcore已报道了高达 2.76v的开路电压,这表明Spectrolab所宣称的平均效率高达30%的第四代三结电池产品XTJ在近期内投产是完全可能的。

参考文献:

[1]Green M A.Third generation photovoltaies:Solar cells for 2020 and beyond [J].Physica E,2002,14:65—70.

[2]Are K,Tagaya H,Ogata T,et Electro—chemical intercalation organic molecules into layered oxides,MoO3 [J].Mater Res Bull,1996,3 1(3):283.

[3]李毅,胡盛明.非晶硅叠层太阳能电池的现状与发展方向。真空科学与技术学报,2000,20(3):222—225.Li Yi,Hu Sbengming.Vacuum Science and Technology,2000,20(3):222-225.[4]黄素梅,孙卓,许修兵,等.一种高效叠层太阳能电池及其制备方法:中国,CN200710042793.3[P].2008.

[5]彭英才,于威等编著.纳米太阳电池技术.北京:化学工业出版社,2010

[6] KARAMNH.Recent development in high eficiency GaIn/GaAs/Ge dual—and triple-junction solar cells steps to next generation pv cells[J].Solar Energy Materials&Solar Cells,2001,66:453—456.

[7]GRANATA J E.Advancement in GalnP2/ GalnAs/Ge solar cells—production status,qualification results and operation benefits[ A ].:9th IEEE Photovoltaic Specialist Confererience[C] New Orleans,IEEE Piscataway,2002,824—827

[8]GRANATA J E.Ultra triple Junction GaInP:/GaInAs/Ge solar cells:cell design and qualification status[A] 3rd World Cannce on Photoolmic Energy Con,celsion[C] Osaka’Japan:IEEE Piscatawav.2003654

[9]TAN M. 27.5‰efficiency 1nGaP/lnGa/Ge advanced triple junction (ATJ) space solar cells for high volume manufacturing [A].19th IEEE Photovoltaic Specialist Conference [C]New Orleans,.Louisiana.2002 816-819.

[10]LARUE RA The metal lnte~connected solar cell [A] l6th IEEE Ph otovoltaic Specialist Conference[C] ca1iforn USA:IEEE Piscatawav.1982 228-230.

[11]ZAHAN K.Efficient GaAs tunnel diode as an Inter-cell ohm ic contact in the tandem Al(x)Ga(l-x)As, GaAs[A] 23rd IEEE Photovolatic Specialist Conference Louisvil[O] .Ktucky.IEEE Piscatawav 1993 708—711

12.李愿杰.唐茜.黎兵.冯良桓.曾广根.蔡亚平.郑家贵.蔡伟.张静全.李卫.雷智.武莉莉CdS/CdTe叠层太阳电池的

制备及其性能[期刊论文]-半导体学报2007(5)

13.Miguel A C.Manuel J R.Nouif R Characterization of Cu (In,Ga)Sez materials used in record pedormance solar cells2006

14.Saitoh K.Ishignro N.Yanagawa N Performance of P-i-N solar cells with intrinsic μc-Si layer1996

15.Faraji M.Gokhales S.Choudhair S M High mobility hydrogenerated and oxygenated microcrystailine

silicon as a photosensitive material in photovoltaic applications1992(26)

16.Inoue S.Ichikuni N.Suzuki T Transport and interfacial transfer of electrons in dye-sensitized solars1998

17.Nutzenadel C.Zuttel A.Chartouni D Alloys and Compounds1999(2)

无机化合物颜色表

无机颜色表 含部分元素化合物常温下物态、颜色、形态等物理化学性质 卤族(英VIIA): Solid:I2 紫黑;ICl 暗红;IBr 暗灰;IF3 黄色;ICl3 橙;I2O5 白; I2O4 黄(离子晶体);I4O9 黄(离子晶体). Liquid:Br2 红棕;BrF3 浅黄绿;IBr3 棕;Cl2O6暗红;Cl2O7 无色油状;HClO4 无色粘稠状;(SCN)2 黄色油状. Gas:F2 浅黄;(CN)2无色;Cl2 黄绿;I2(g) 紫;BrF 红棕;BrCl 红;Cl2O 黄红;ClO2 黄色;Br2O 深棕;(SCN)n 砖红色固体. 氧族(英VIA): Solid:S 淡黄;Se 灰,褐;Te 无色金属光泽;Na2S,(NH4)2S,K2S,BaS 白,可溶;ZnS 白↓;MnS 肉红↓;FeS 黑↓;PbS 黑↓;CdS 黄↓;Sb2S3 橘红↓;SnS 褐色↓;HgS 黑(沉淀),红(朱砂);Ag2S 黑↓;Cu S 黑↓;Na2S2O3 白;Na2S2O4 白; SeO2 白,易挥发;SeBr2 红;SeBr4 黄;TeO2 白加热变黄;H2TeO3 白;TeBr2 棕;TeBr4 橙;TeI4 灰黑;PoO2 低温黄(面心立方),高温红(四方);SO3 无色;SeO3 无色易潮解;TeO3 橙色;H6TeO6 无色. Liquid:H2O 无色;纯H2O2 淡蓝色粘稠;CrO(O2)2(aq) 蓝;纯H2SO4 无色油状;SO32-(aq) 无色;SO4 2-(aq) 无色;SeO2(l) 橙;TeO2(l) 深红. Gas:O2 无色;O3 低浓度无色,高浓度淡蓝(鱼腥味);S2(g) 黄,上浅下深;H2S 无色;SO2 无色;H2Se 无色;H2Te 无色. 卤化硫(未注明者均为无色): Liquid:SF6;S2F10;SCl4 淡黄;SCl2 红籗2Cl2 无色;S2Br2 红. Gas:SF4;SF2;S2F2. 卤砜、卤化亚砜、卤磺酸: Liquid:SOCl2 白色透明;SO2Cl2 无色发烟. 氮族(英VA): Solid:铵盐无色晶体;氮化金属白;N2O3 蓝色(低温);N2O5 白;P 白,红,黑;P2O3 白;P2O5 白;P Br3 黄;PI3 红;PCl5 无色;P4Sx 黄;P2S3 灰黄;P2S5 淡黄;H4P2O7 无色玻璃状;H3PO2 白;As 灰;As2O3 白;As2O5 白;AsI3 红;As4S4 红(雄黄);As4S6 黄(雌黄);As2S5 淡黄;Sb 银白;Sb(OH)3 白↓;Sb2O3 白(锑白,颜料);Sb2O5 淡黄;SbX3(X<>I) 白;SbI3 红;Sb2S3 橘红↓;Sb2S5 橙黄;Bi 银白略显红;Bi2O3 淡黄;Bi2O5 红棕;BiF3 灰白;BiCl3 白;BiBr3 黄;BiI3 黑↓;Bi2S3 棕黑. Liquid:N2H4 无色;HN3 无色;NH2OH 无色;发烟硝酸红棕;NO3^-(l)无色;王水浅黄,氯气味;硝基苯黄色油状;氨合电子(液氨溶液) 蓝;PX3 无色;纯H3PO4 无色粘稠状;AsX3(X<>I) 无色;. Gas:N2 无色;NH3 无色;N2O 无色甜味;NO 无色;NO2 红棕;PH3 无色;P2H6 无色;AsH3 无色;SbH 3 无色;BiH3 无色. 卤化氮(未注明者均为无色): Solid:NBr3?(NH3)6 紫,爆炸性;NI3?(NH3)6 黑,爆炸性; Liquid:NCl3;无色 Gas:NF3;无色 碳族(英IVA): Solid:C(金刚石) 无色透明;C(石墨) 黑色金属光泽;Si 灰黑色金属光泽;Ge 灰白;Sn 银白;Pb 暗灰;SiO2 无色透明;H2SiO3 无色透明胶状↓;Na2SiF6 白晶;GeO 黑;GeO2 白;SnO 黑;SnO2 白;Sn(OH) 2 白↓;PbO黄或黄红;Pb2O3 橙;Pb3O4 红;PbO2 棕;CBr4 淡黄;CI4 淡红;GeI2 橙;GeBr2 黄;Ge

化合物薄膜太阳能电池.doc

化合物薄膜太阳能电池 陆宇衡171840741 南京大学数理科学类 一、摘要 能源短缺是21世纪面临的主要问题之一。寻找清洁、环保及廉价的可再生新能源迫在眉睫。太阳能光伏发电是公认的解决这一难题的方式之一。薄膜光伏电池具有制造成本低、能量回收期短、便于大面积连续生产等优点,被公认为未来太阳电池发展的重要方向之一,半导体薄膜太阳电池也在一步步发展中,其中CdTe和CIGS是两大重要的研究方向,CdTe 和CIGS各具特点,而且分别已经发展出各自的制作工艺,在实验室中已经有较高的光电转换效率。未来光伏发电应用趋向多样性、灵活性,这位薄膜太阳电池尤其是化合物薄膜电池提供了良好的发展机遇,因为CIGS和CdTe薄膜太阳电池具有可与晶体硅电池竞争的成本、可靠性高、稳定性好、光电转换效率高、能量回收期短、组建应用多样性等优势。但同时它们也面临这很大的挑战,所以进一步的发展迫在眉睫。 二、关键词 太阳能,化合物,光伏电池,薄膜。 三、前言 薄膜太阳电池具有制造成本低、能量回收期短、便于大面积连续生产等优点,同时它还可被制成柔性可卷曲形状,使其应用范围更加广泛。因此,薄膜太阳电池被公认为未来太阳电池发展的重要方向之一,并且受到国内外研究单位和产业界的持续广泛的关注。半导体化合物薄膜太阳电池主要包括碲化镉薄膜太阳电池(CdTe thin film solar cell)、铜铟镓硒薄膜太阳电池(CIGS thin film solar cell)等。在2013年6月,美国GE Global Research公布了CdTe太阳电池的最新世界纪录,光电转换效率达到了19.6%【1】,2012年9月瑞士EMPA 小组在柔性衬底上成功制备光电转换效率达到20.4%【1】的CIGS太阳电池。本文就将向大家介绍CdTe薄膜太阳电池和CIGS薄膜太阳电池。 四、CdTe薄膜太阳电池 1、简介 CdTe薄膜太阳电池是以p型CdTe和n型CdS的异质结为基础的薄膜太阳电池,CdTe 是II-VI族化合物,具有和立方硫化锌类似的结构,是直接带隙化合物半导体材料,其禁带宽度约为1.45eV【2】,吸收的光谱范围相对较宽,比较接近光伏材料的理想禁带宽度1.5eV 【2】。CdTe有较高的光学吸收系数,在可见光范围,吸收系数可以高达105cm?1,所以理论上大约只要几微米厚的薄膜就足以吸收90%的光【2】,理论光电转换效率约为28%【3】。 2、结构与特点 CdTe薄膜太阳电池的结构从上至下依次为玻璃、TCO (Transparent Conducting Oxide)、CdS、CdTe、金属电极,光从玻璃那一侧进入。它的制作过程是先将透明导电氧化物膜,即TCO沉积在玻璃衬底上,然后分别依次制备n型CdS、p型CdTe与背接触金属电极,TCO 的制备方法通常为真空溅射、电子束蒸发、化学气相沉积法等【4】,常用的TCO材料为ITO, ZnO: Al, ZnO: B, SnO: F等【4】,显然,其中ZnO基的TCO膜占重要地位。CdS薄膜的厚度通常会小于10nm。CdTe吸收层的质量严重影响着电池转换效率,比较成熟的CdTe薄膜制备方法有近空间升华法(CSS)、电化学沉积法(ECD)、真空蒸发法等。通常CdTe薄膜需要在CdCl2中400℃进行30分钟的退火处理,从而提高CdTe薄膜的性能【5】。退火处理后的CdTe薄膜晶粒尺寸增大,同时促进了CdS/CdTe界面的混合晶化【5】。 3、CdTe薄膜制备工艺【6】 如上面所介绍的,制备工艺主要有近空间升华法、电化学沉积法、真空蒸发法等。

Ⅲ-Ⅴ族化合物叠层太阳电池

Ⅲ-Ⅴ族化合物叠层太阳电池 摘要 叠层太阳电池是一种重要的新概念电池。本文简要介绍了叠层太阳电池的基本概念,了解了Ⅲ-Ⅴ族化合物的特点及为何Ⅲ-Ⅴ族化合物适用于制作叠层电池。怎样实现Ⅲ-Ⅴ族化合物叠层太阳能电池的工作原理、光伏特性及影响转换效率的因素等。探讨了相关的技术发展概况和技术难点,并就未来的发展趋势进行了展望。 关键词:Ⅲ-Ⅴ族化合物;太阳电池;新概念能源

III-V compound semiconductor multi-junction monolithic solar cell Abstract Multi-junction monolithic solar cells is a new important concept of battery.This paper briefly introduces the basic concept of multi-junction monolithic solar cells,to understand the characteristics of III-V compound and why III-V compound is suitable for manufacturing multi-junction monolithic solar cells.How to realize the III-V compound laminated working principle of solar cells,photovoltaic properties and Influence factors of conversion efficiency etc.The relative progress and difficulty in technology was discussed.And the future direction was prospected. Key words:III-V compound;solar cells;new concept resource

硅太阳能电池的结构及工作原理

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显

(整理)薄膜太阳能电池种类

薄膜太阳能电池种类 为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。 砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。 磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。 GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中 MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术异质外延方法制造GaAs电池是降用低成本很有希望的方法。已研究的砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷--砷化镓异质结,金属-半导体砷化镓,金属--绝缘体--半导体砷化镓太阳电池等。 砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb,GaInP等电池材料也得到了开发。 1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为 24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研

有机太阳能电池原理及其前景展望

电子信息学院 《太阳能电池》 结业论文 有机太阳能电池原理及其前景展望

班级 姓名 学号 指导教师 日期2015.10

有机太阳能电池原理及其前景展望 *** (***) 摘要:俗话说,万物生长靠太阳,地球上的风能、水能、生物质能等等都来自于太阳;即使是化石燃料(如煤炭、石油、天然气等),从根本上说也是来自于太阳。如今,这些远古时期留下来的不可再生资源面临着枯竭的命运,如何寻找新的可替代能源成为当务之急,而太阳能以其清洁环保、资源丰富的特点成为其中一个选择,其中有机太阳能电池是实现将太阳能直接转变为电能的最有前景的器件之一。介绍了有机太阳能电池的基本原理,并对其应用前景做出了展望分析。 关键词:有机太阳能电池;原理;结构;转换效率;缺陷;优势 中图分类号:TM914.4文献标识码:A The Principle of Organic Solar Cells and its prospect *** (***) Abstract:As the saying goes, all living things depend on the sun for their growth, and on earth, wind, water, and biomass energy and so on from the sun;Even (fossil fuels such as coal, oil, natural gas, etc.), basically is from the sun.Today, the non-renewable resources of ancient times to stay face the fate of dried up, how to look for new alternative energy become priority, and the characteristics of solar energy with its clean environmental protection, resources become one of the options, including organic solar cells is the realization of the solar energy directly into electrical energy one of the most promising devices.This paper introduces the basic principle of organic solar cells, and to the analysis and outlook of its application prospect. Key words:organic solar cells;principle;structures;transfer efficiency;defect;superiority 0引言 现今能源问题是世界各国经济发展的首要问题,太阳能是未来最有希望的能源之一[1],

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解 摘要:上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池 单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。来源:大比特半导体器件网 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。来源:大比特半导体器件网 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为 1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LP E技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术

有机太阳能电池研究进展(1)

专题介绍 有机太阳能电池研究进展 X 林 鹏,张志峰,熊德平,张梦欣,王 丽 (北京交通大学光电子技术研究所,信息存储、显示与材料开放实验室,北京,100044) 摘 要:有机太阳能电池与无机太阳能电池相比,还存在许多关键性问题。为了改善有机太阳能电池的性能,各种研究工作正在进行,这些研究主要是为了寻找新的材料,优化器件结构。对电池原理、部分表征方法、效率损失机制、典型器件结构、最近的发展、以及未来的发展趋势作了简要描述。 关键词:有机太阳能电池;器件结构;给体;受体;转换效率 中图分类号:T N 383 文献标识码:A 文章编号:1005-488X(2004)01-0055-06 Progres s in Study of Organic Sola r Ce ll LIN Peng ,ZHANG Zhi -feng ,XIONG De -ping ,ZHANG Meng -xin ,WANG Li (I nstitute of O p toelectronics T echnology ,Beij ing J iaotong University ,Beijing ,100044,China )Abstr act :Compaer ed with inorganic solar cells ,organic solar cells still have many critical pr oblems.In order to improve the properties of organic solar cells,a lot of different studies have been carried on.T he main purposes of these studies are to seek new mater ials and new device structure.A brief review of the theory of photovoltaic cells,along with some aspects of their characterization ,the basic efficiency loss mechanism ,typical device structures ,and the trends in research will be presented. Key wor ds :organic photovoltaic cell;device structure;donor;acceptor ;conversion effi-ciency 前 言 进入21世纪以来,由于煤、石油、天然气等自然资源有限,已经不能满足人类发展的需要。环境污染也已经成为亟待解决的严重问题。同使用矿物燃料发电相比,太阳能发电有着不可比拟的优点。 太阳能取之不尽,太阳几分钟射向地球的能量相当 于人类一年所耗用的能量。太阳能的利用已经开始逐年增长。但目前使用的硅等太阳能电池材料,因成本太高,只能在一些特殊的场合如卫星供电、边远地区通信塔等使用。目前太阳能发电量只相当于全球总发电量的0.04%。要使太阳能发电得到大规模推广,就必须降低太阳能电池材料的成本,或 第24卷第1期2004年3月 光 电 子 技 术OPT OELECT RONIC T ECHNOLOGY Vol.24No.1 Mar.2004   X 收稿日期:2003-11-17 作者简介:林 鹏(1978-),男,硕士生。主要从事光电子技术研究。 张志峰(1977-),男,硕士生。主要从事有机电致发光(OLED)的研究工作。熊德平(1975-),男,硕士生。主要从事无机半导体材料方面的研究工作。

太阳能电池

实验12 太阳能电池(工科) 目录 一、实验目的 (2) 二、实验仪器 (2) 三、实验原理 (2) 四、实验内容与步骤 (5) 五、数据处理 (7) 六、注意事项 (7) 七、参考文献 (7) 能源短缺和地球生态环境污染已经成为人类面临的最大问题。本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。另一方面,煤炭、石油等矿物能源的使用,产生大量的CO2、SO2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。根据计算,现在全球每年排放的CO2已经超过500亿吨。我国能源消费以煤为主,CO2的排放量占世界的15%,仅次于美国,所以减少排放CO2、SO2等温室气体,已经成为刻不容缓的大事。推广使用太阳辐射能、水能、风能、生物质能等可再生能源是今后的必然趋势。 广义地说,太阳光的辐射能、水能、风能、生物质能、潮汐能都属于太阳能,它们随着太阳和地球的活动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。太阳的光辐射可以说是取之不尽、用之不竭的能源。太阳与地球的平均距离为1亿5千万公里。在地球大气圈外,太阳辐射的功率密度为1.353kW /m2,称为太阳常数。到达地球表面时,部分太阳光被大气层吸收,光辐射的强度降低。在地球海平面上,正午垂直入射时,太阳辐射的功率密度约为1kW /m2,通常被作为测试太阳电池性能的标准光辐射强度。太阳光辐射的能量非常巨大,从太阳到地球的总辐射功率比目前全世界的平均消费电力还要大数十万倍。每年到达地球的辐射能相当于49000亿吨标准煤的燃烧能。太阳能不但数量巨大,用之不竭,而且是不会产生环境污染的绿色能源,所以大力推广太阳能的应用是世界性的趋势。 太阳能发电有两种方式。光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成蒸气,再驱动汽轮机发电,太阳能热发电的缺点是效率很低而成本很高。光—电直接转换方式是利用光生伏特效应而将太阳光能直接转化为电能,光—电转换的基本装置就是太阳能电池。 与传统发电方式相比,太阳能发电目前成本较高,所以通常用于远离传统电源的偏远地区,2002年,国家有关部委启动了“西部省区无电乡通电计划”,通过太阳能和小型风力发电解决西部七省区无电乡的用电问题。随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅,多晶硅,非晶硅3种太阳能电池。本实验研究多晶硅太阳能电池的特性。

薄膜晶体硅太阳能电池分析比较

薄膜晶体硅太阳能电池分析比较 《中国组件行业投资前景及策略咨询报告》分析:目前在工业上,硅的成本大约占硅太阳能电池生产成本的一半。为减少硅的消耗量,光伏(PV)产业正期待着一些处于研究开发中的选择方案。其中最显然的一种就是转向更薄的硅衬底。现在,用于太阳能电池生产的硅衬底厚度略大于200mm,而衬底厚度略小于100mm的技术正在开发中。为使硅有源层薄至5-20 mm,可以在成本较低的硅衬底上淀积硅有源层,这样制得的电池被称为薄膜。为使其具有工业可行性,主要的挑战是在适于大规模生产的工艺中,怎样找到提高效率和降低成本之间的理想平衡。已经存在几种制造硅有源层的技术1,本文将讨论其中的三种。 薄膜PV基础 第一种技术是制作外延(epitaxial)(图1),从高掺杂的晶体硅片(例如优级冶金硅或废料)开始,然后利用化学气相淀积(CVD)方法来淀积外延层。除成本和可用性等优势以外,这种方法还可以使硅太阳能电池从基于硅片的技术逐渐过渡到薄膜技术。由于具有与传统体硅工艺类似的工艺过程,与其它的薄膜技术相比,这种技术更容易在现有工艺线上实现。 第二种是基于层转移(layer transfer)的技术,它在多孔硅薄膜上外延淀积单晶硅层,从而可以在工艺中的某一点将单晶硅层从衬底上分离下来。这种技术的思路是多次重复利用母衬底,从而使每个太阳能电池的最终硅片成本很低。正在研究中的一种有趣的选择方案是在外延之前就分离出多孔硅薄膜,并尝试无支撑薄膜工艺的可能性。 最后一种是薄膜多晶硅太阳能电池,即将一层厚度只有几微米的晶体硅淀积在便宜的异质衬底上,比如陶瓷(图2)或高温玻璃等。晶粒尺寸在1-100mm之间的多晶硅薄膜是一种很好的选择。我们已经证实,利用非晶硅的铝诱导晶化可以获得高质量的多晶硅太阳能电池。这种工艺可以获得平均晶粒尺寸约为5 mm 的很薄的多晶硅层。接着利用生长速率超过1 mm/min的高温CVD技术,将种子层外延生长成几微米厚的吸收层,衬底为陶瓷氧化铝或玻璃陶瓷。选择热CVD是因为它的生长速率高,而且可以获得高质量的晶体。然而这样的选择却限定了只能使用陶瓷等耐热衬底材料。这项技术还不像其它薄膜技术那样成熟,但已经表现出使成本降低的巨大潜力。

2017年-高考化学常见无机物及化合物专题复习

2017年-高考化学常见无机物及化合物专题复习

2017年高考化学常见无机物及化合物专题复习 【考情快报】 在高考中该部分知识的主要题型是直接考查常见无机物性质及其应用的选择题、框图推断题和以常见无机物的知识作为载体综合考查有关概念、理论、实验和计算的非选择题。 (1)金属元素及其重要化合物中侧重考查铁、铝、钠、铜的单质、氧化物、氢氧化物和盐的性质及其应用。(2)非金属元素及其重要化合物中侧重考查SO2、NO、NO2、CO、Cl2、HNO3、H2SO4、碳酸盐等物质的性质及其应用。 【基础回顾】 一、金属及其化合物

对于Na、Al、Fe、Cu等元素的单质及其化合物,其中:1.能与冷水剧烈反应的单质是___,反应的离子方程式为__________________________。能用作供氧剂的是______。 2.能与NaOH溶液反应的单质是Al,反应的离子方程式为____________________________;能与NaOH溶液反应的氧化物是Al2O3,反应的离子方程式为_______________________;属于两性氢氧化物的是_______。 3.以上元素形成的氢氧化物中,易被空气中的氧气氧化的是Fe(OH)2,反应的化学方程式为_____________。 4.四种元素形成的金属阳离子共有__种,其中氧化性最强

的是Fe3+。它与单质铜反应的离子方程式为______。 二、非金属单质及其化合物 1.对于H、C、N、O、Si、S、Cl等元素形成的单质中(1)属于空气主要构成成分的是______,它们相互反应的化学方程式为_________________; (2)能用于自来水消毒的是____,它与NaOH溶液反应的离子方程式为_______________________,实验室中制备该气体的化学方程式为_____________________________________; (3)属于半导体材料的是___,其工业制取方法为_____________ _________。 2.在CO、CO2、SO2、NO、NO2、SiO2等氧化物中 (1)能用做工业炼铁还原剂的是______。 (2)能使品红溶液褪色的是_____。 (3)能与水反应生成强酸的是NO2,反应的化学方程式为____________________。 (4)属于普通玻璃构成成分的是_____,它与氢氟酸反应的化学方程式为_______________________。 3.在浓硝酸、稀硝酸、浓硫酸、稀硫酸中 (1)常温时能使Fe、Al钝化的是_______________。 (2)清洗试管内壁上的单质铜通常选用_______,反应的离子方程式为_________________________________。(3)见光易分解的是_______,反应的化学方程式为

太阳能电池的应用

引言 1954年Bell实验室研发出第一个单晶硅太阳能电池,效率为6%。自此开启了太阳能电池的新纪元。硅系太阳能电池已从单晶,多晶硅发展到非晶硅,从块状发展到薄膜,实现第一代到第二代的的转换。 20世纪后期,各种化合物薄膜电池兴起,呈现欣欣向荣的局面。碲化镉,砷化镓,铜铟镓硒如雨后春笋般地登上舞台。 有机物薄膜电池也不甘寂寞,在沉寂了数年之后也焕发出勃勃生气。21世纪注定是太阳能利用的新世纪。那么,在诸多太阳能电池中,究竟哪些会脱颖而出,或者说占主导地位呢? 一.太阳能电池的工作原理 太阳能电池发电原理:太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。

晶体硅太阳能电池的制作过程:“硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。20世纪末,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。 二.各种太阳能电池的优劣 1.单晶硅太阳能电池 单晶硅太阳能电池是最早实现商业化的一种太阳能电池,商业光电转换效率为16%~20% 。原料硅来源丰富,它的结构和生产工艺已定型, 产品已广泛用于空间和地面。但用作太阳能电池的不是普通的硅,而是 99.9999%的高纯硅。硅的提纯工艺复杂, 电耗很大, 在太阳能电池生产总成本中己超过了1/2。另外,目前冶炼的时候多用煤炭作为燃料,且用改良西门子法提纯硅时会产生大量的硅氯化合物,如果处理不当,将会造成很大的污染,这种情形在中国尤其严重。 2.多晶硅太阳能电池 多晶硅太阳能电池使用的多晶硅材料, 多半是含有大量单晶颗粒的集合体, 或用废次单晶硅料和冶金级硅材料熔化浇铸而成。因此成本相对单晶硅来说要小,污染也降低了,但随之而来效率也降低了,商业转换效率大概在12%~13% 。 3.无机薄膜太阳能电池

叠层电池总结

叠层太阳能电池小结 1叠层电池概述 由于太阳光光谱中的能量分布较宽,现有的任何一种半导体材料都只能吸收其中能量比其能隙值高的光子。太阳光中能量较小的光子将透过电池,被背电极金属吸收,转变成热能;高能光子超出能隙宽度的多余能量,则通过光生载流子的能量热释作用传给电池材料本身的点阵原子使材料本身发热。这些能量都不能通过光生载流子传给负载,变成有效的电能。因此单结太阳能电池的理论转换效率的一般较低。 太阳光光谱可以被分成连续的若干部分,用能带宽度与这些部分有最好匹配的材料做成电池,并按能隙从大到小的顺序从外向里叠合起来,让波长最短的光被最外边的宽隙材料电池利用,波长较长的光能够透射进去让较窄能隙材料电池利用,这就有可能最大限度地将光能变成电能,这样的电池结构就是叠层电池,可以大大提高性能和稳定性。 叠层a-Si:H太阳电池能提高效率、解决单结电池存在的稳定性问题的原因在于:(1)叠层电池把不同禁带宽度的材料组合在一起,加宽了光谱响应的范围。(2)顶电池的i层较薄(<2000×10-8cm),以致光照后产生的空间电荷对i层电场的调制已不明显,i层中电场强度分布变化不大,仍是高场区,有源区上的这种高电场显然足以把i层中的光生载流子有效抽出,从而阻止光致衰退的发生。(3)底电池产生的光生载流子约为单结电池的一半,底电池的光致衰退效应较小。 双结叠层电池通常由宽禁带带隙的顶电池、隧道结和窄带带隙的底电池三部分依次串联而成。为了获得尽可能高的光电转换效率,叠层电池应满足材料晶格匹配、禁带宽度组合合理和顶底子电池电流匹配等基本要求。叠层电池电流密度一般不同,顶底电池的电流失配会使电池性能大受影响。设法获取电池匹配的结构是保证叠层电池具有良好性能的重要一环。 叠层太阳能电池的制备可以通过两种方式得到:一种是机械堆叠法,先制备出两个独立的太阳能电池,一个是高带宽的作为顶电池,一个则是低带宽的作为底电池。然后把高带宽的堆叠在低带宽的电池上面。另一种是一体化的方法,先制备出一个完整的太阳能电池,再在第一层电池上生长或直接沉积在第一层电池上面。 典型叠层电池的结构如图1所示。 图1 薄膜非晶/微晶叠层电池结构 2叠层电池的隧道结 作为有效地互连两个子电池的过渡结,隧道结应具有高透光率、阻抗小(重掺杂)的特点,且其晶格常量和热膨胀系数与上下层也要求匹配。隧穿结厚度包括非晶顶电池N层的厚度和微晶底电池P层的厚度。 在叠层电池p1-i1-n1-p2-i2-n2结构中,n1-p2结特性的好坏对电池特性参数Voc、Isc、FF均有重要影响。因为n1-p2结相对器件内建场为反偏结,任何寄生势垒都将使电池的I-V 特性变坏。因此,为了进一步提高电池的转换效率就需提供一个特性优良的隧道结,要求该

HIT太阳能电池

高效HIT太阳能电池的发展现状 2013-5-27 13:17|发布者: 沈秋晨|查看: 1973|评论: 0|原作者: 乔秀梅,贾锐等|来自: Solarzoom 摘要: 摘要:带有本征薄层的异质结(Heterojunctionwith Intrinsic Thinfilm(HIT))太阳能电池起源于Hamakawa等设计的a-Si/c-Si堆叠太阳能电池,与单晶、非晶硅太阳能电池相比,其具有低温工艺,高的稳定性等优点, ... 摘要:带有本征薄层的异质结(Heterojunctionwith Intrinsic Thinfilm (HIT))太阳能电池起源于Hamakawa等设计的a-Si/c-Si堆叠太阳能电池,与单晶、非晶硅太阳能电池相比,其具有低温工艺,高的稳定性等优点,具有广阔的发展前景。 本文介绍了HIT太阳能电池的基本结构和能带并对其特点进行了深入的分析,根据相关文献从清洗,透明导电氧化层(TCO)的制备,非晶硅层的制备,背表面场的制备等方面深入分析了HIT太阳能电池的技术发展状况,并以三洋公司为引线,简单介绍了HIT太阳能电池的产业发展现状。 关键词:HIT;太阳能电池;结构;特点;技术发展;产业发展 1HIT太阳能电池的结构及其特点 1.1HIT太阳能电池的结构 1.1.1基本结构 HIT电池的本质是异质结太阳能电池,A.I.Gubanov于1951年就已经提出了异质结的概念,并且进行了理论分析,但是由于当时制备异质结的工艺技术十分复杂和困难,所以异质结的样品迟迟没有制备成功。1960年Anderson成功的制备出高质量的异质结样品,还提出了十分详细的理论模型和能带结构图。带本征薄层异质结(HIT)太阳能电池是由MakotoTanaka和MikioTaguchi等人于1992年在三洋公司第一次制备成功。图1为常见的双面异质结电池的结构示意图,其特征是三明治结构,中间为衬底p(n)型晶体Si,光照侧是n(p)-i型a-Si膜,背面侧是i-p+(n+)型a-Si膜,在两侧的顶层溅射TCO膜,电极丝印在TCO膜上,构成具有对称型结构的HIT太阳电池。本征a-Si:H起到钝化晶体硅表面的缺陷的作用。最常见的是p型硅基异质结太阳能电池,其广泛应用于光伏产业,因为p型硅片是常见的光伏材料且以p型单晶硅为衬底的电池接触电阻较低,但是由于硼和间隙氧的存在,使得以p型单晶硅为衬底的太阳电池有较严重的光照衰减问题。且由于c-Si(p)/a-Si(i/p)界面氢化非晶硅价带带阶(0.45ev)要比导带带阶大(0.15ev),n型硅基比p型硅基更适合双面异质结太阳能电池。图2是异质结的能带图。对n型Si衬底HIT电池,前表面处较大的价带带阶形成少子空穴势阱,因势阱中空穴势垒较高,热发射概率小,从而有效地阻止了光生空穴的传输。在背面处,薄本征a-Si:H层以及n型a-Si:H层与n型c-Si形成有效

有机太阳能电池的原理和应用

有机太阳能电池的原理和应用 一、结构和基本原理 目前的有机太阳能电池可以分为三类。 1.1 肖特基型有机太阳能电池 第一个有机光电转化器件是由Kearns 和Calvin在1958 年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。在这种有机半导体器件中,电子在光照下被从HOMO 能级激发到LUMO能级,产生一对电子和空穴。电子被低功函数的电极提取,空穴则被来自高功函数电极的电子填充,由此在光照下形成光电流。理论上,有机半导体膜与两个不同功函数的电极接触时,会形成不同的肖特基势垒。这是光致电荷能定向传递的基础。因而此种结构的电池通常被称为“肖特基型有机太阳能电池”。在这个器件上,他们观测到了200 mV的开路电压,光电转化效率很低。此后二十多年间,有机太阳能电池领域内创新不多,所有报道的器件之结构都类似于1958 年版,只不过是在两个功函数不同的电极之间换用各种有机半导体材料。由于肖特基型有机太阳能电池是单纯由一种纯有机化合物夹在两层金属电极之间制成的,因此效率比较低,现在已经被淘汰。 1.2 双层膜异质结型有机太阳能电池 在肖特基型有机太阳能电池的基础上,1986 年,行业内出现了一个里程碑式的突破。 实现这个突破的是柯达公司的邓青云博士。这个时代的有机太阳能电池所采用的有机材料主要还是具有高可见光吸收效率的有机染料。邓青云的器件之核心结构是由四羧基苝的一种衍生物(又称作PV)和铜酞菁(CuPc)组成的双层膜。这种太阳能电池又叫做p-n 异质结型有机太阳能电池。在双层膜结构中,p-型半导体材料(电子给体(Donor),以下简记为D)和n-型半导体材料(电子受体(Acceptor),以下简记为A)先后成膜附着在正负极上(下图)。D 层或者A 层受到光的激发生成激子,激子扩散到 D 层和 A 层界面处发生点电荷分离生成载流子,然后电子经A层传输到电极,空穴经D层传输到对应的电极。1992 年,土耳其人Sariciftci 在美国发现,激发态的电子能极快地从有机半导体分子注 入到C60 分子中,而反向的过程却要慢得多。也就是说,在有机半导体材料与C60 的界面上,激子可以以很高的速率实现电荷分离,而且分离之后的电荷不容易在界面上复合。这是由于C60的表面是一个很大的共轭结构,电子在由60个碳原子轨道组成的分子轨道上离域,可以对外来的电子起到稳定作用。因此C60 是一种良好的电子受体材料。1993 年,Sariciftci在此发现的基础上制成PPV/C60 双层膜异质结太阳能电池。PPV通常叫作“聚对苯乙烯撑”,是一种导电聚合物,也是一种典型的P 型有机半导体材料。此后,以C60 为电子受体的双层膜异质结型太阳能电池层出不穷。 1.3 混合异质结型有机太阳能电池 随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(Bulk Heterojunction)。混合异质结概念主要针对光电转化过程中激子分离和载流子传输这两方面的限制。双层膜太阳能电池中,虽然两层膜的界面有较大的面积,但激子仍只能在界面区域分离,离界面较远处产生的激子往往还没移动到界面上就复合了。而且有机材料的载流子迁移率通常很低,在界面上分离出来的载流子在向电极运动的过程中大量损失。这两点限制了双层膜电池的光电转化效率。 而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。其给体和受体在混合膜里形成一个个单一组成的区域,在任何位置产生的激子都可以通过很短的路径到达给体与受体的界面(即结面),电荷分离的效率得到了提高。同时,在界面上形成的正负载流子亦可通过较短的途径到达电极,从而弥补载流子迁移率的不足。2008 年3 月,大阪大学和大阪市立研究所宣布,成功开发出了单元转换效率高达5.3%的有机固体太阳能电池。这一转换效率是通过采用纯度99.99999%以上的C60 结

相关文档
最新文档